Dalton Transactions

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/dalton

Journal Name

RSCPublishing

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Synthesis of dimesitylborane-substituted phenylcarbazoles as bipolar host material and green PHOLED performances with substitute position of boron atom

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Hong-Gu Jang, Bo Seong Kim, Jun Yeob Lee and Seok-Ho Hwang*

Two structural isomers of bipolar host material containing dimesitylborane moiety were synthesized and their device performance were investigated. Quantum efficiency of their device took place depending on the substituent position of the dimesitylborane moiety. The maximum external quantum efficiency of the device reached as high as 23.8 % with a green color coordinate of (0.30, 0.63).

For more than ten years, much progress has been made in the field of phosphorescent organic light-emitting diodes (PHOLEDs) because they effectively harvest electro-generated singlet and triplet excitons to accomplish internal quantum efficiency close to 100%, which is much superior to the 25% upper limit imposed by the formation of singlet excitons in fluorescence.¹ To realize highly efficient PHOLEDs, a suitable host material is usually employed to suppress the intrinsic detrimental effects, such as aggregation quenching and/or triplet-triplet annihilation, of transition metal-centered phosphors.² However, designing host materials having higher triplet energy levels than that of the phosphorescent dopant still remains a challenge for materials researchers. Recently, PHOLED-related research has significantly drifted to the development of host materials possessing bipolar properties. With bipolar host materials consisting of both hole- and electron-injecting/transporting functional groups, the wise selection and proper linking of hole- and electron-transporting moieties can promote balancing of the charge fluxes in the devices, alignment of energy levels with the neighboring functional layers and meanwhile still provide large enough triplet energies compatible with emitters.

One of the most important core structures of bipolar host molecules is the carbazole moiety due to its good hole-transport property and large triplet energy. To achieve bipolarity in the molecular designs based on carbazole, various moieties capable of electron-accepting such as pyridine, triazole, triazine, phenanthroline, oxadiazole, benzimidazole, phosphine oxide, and phosphine sulfide, were incorporated to give novel bipolar hosts.³

As another electron acceptor, boron-containing derivatives have attracted a great deal of attention due to their intriguing electronic and photophysical properties as a result of overlap between the vacant *p*-orbital of the boron atom.⁴ Although these derivatives had been demonstrated to be highly efficient fluorophores,⁵ electron-

transporting materials,⁶ emissive materials,⁷ and even bipolar materials in some cases,^{5,7(b),7(d)} thus far bipolar phosphorescent host materials based on the combination of phenylcarbazole and dimesitylborane have not been much exploited for green PHOLEDs devices. In this communication, we reported the synthesis and characterization of a novel bipolar and high triplet-energy phosphorescent host materials, 3-(dimesitylboryl)-9-phenyl-9*H*-carbazole (1) and 9-(4-(dimesitylboryl)phenyl)-9*H*-carbazole (3), that coupled between dimesitylborane and phenylcarbazole to correlate the position of the boron atom of dimesitylborane with device performances.

Scheme 1 Reagents and Conditions: (i) *n*-BuLi, $(Mes)_2BF$, THF, -78°C to 20 °C; (ii) K₂CO₃, CuI, 18-crown-6, DMF, 130 °C; (iii) *n*-BuLi, $(Mes)_2BF$, THF, -78°C to 20 °C.

The bipolar host material 1 (33%) was synthesized by the reaction of 3-bromo-*N*-phenylcarbazole first with *n*-butyllithum to give the lithiate intermediate which was subsequently quenched with fluorodimesityl borane. Synthesis of **3** began with commercially available 9*H*-carbazole, which was *N*-arylated with 1,4-dibromobenzene using Ullmann coupling reaction to give **2** (36%) that was subsequently treated with *n*-butyllithum and fluorodimesityl borane to form the desired host material **3** (28%). The synthesis of

the host materials was confirmed by 1 H and 13 C NMR, mass data. The detailed synthetic procedure and analytical methods are described in ESI[†].

The thermal behavior was studied by TGA and DSC under a nitrogen atmosphere. Their glass transition temperatures were clearly appeared to be 105 $^{\circ}$ C (1) and 89 $^{\circ}$ C (3), respectively. Also, the decomposition temperatures at which initial 5 wt.-% loss of mass were 290 $^{\circ}$ C (1) and 296 $^{\circ}$ C (3), respectively. These results mean that they should be suitable to use as PHOLED component.

Spatial distributions of the HOMO and LUMO orbitals of 1 and 3 were calculated with the Gaussian program at the B3LYP/6-31G(d) level, using the density function theory (DFT) for the geometry optimizations. As shown in the Fig. 1, the HOMO of 1 and 3 is mainly localized at the phenylcarbazole because of strong electron donating character of nitrogen of carbazole. In contrast, those LUMO showed a different behavior. The LUMO of 3 was localized to the central phenyl and dimesitylborane unit; however, in the case of 1, a quite extension of the LUMO to the carbazole unit was observed.

Fig. 1 HOMO and LUMO distribution of 1 and 3.

Fig. S5 depicts the room temperature absorption and PL spectra of 1 and 3 in various solutions. The absorption spectra in 1,3-Dioxane, CH₂Cl₂, Acetone and DMSO are almost identical, *i.e.*, independent of the solvent polarity, implying that the Franck-Condon excitedstate is subject to a rather small dipolar change with respect to the ground state. On the other hand, the signals in the photoluminescence spectra shifted significantly to longer wavelength upon increasing the solvent polarity. We attribute this phenomenon to a mechanism involving rapid photoinduced electron transfer between the carbazole donor and the dimesitylborane acceptor units, resulting in a large change in the dipole moment in the excited state; a subsequent solvent relaxation process leads to the solvent polaritydependent emission.8 When we plotted the emission peak frequencies of 1 and 3 in various organic solvents as a function of solvent polarities, we obtained almost linear relationship together with a slope as steep as -4936 (1) and -7990 (3) cm⁻¹, consistent with our assignment of a charge-transfer emission (see Fig. S6 in ESI[†]).⁸ The absorption spectra of 1 and 3 show strong absorption peaks corresponding to π - π * absorption of the carbazole linked dimesitylborane backbone appeared below 300 nm. Also, two compounds exhibit a strong absorption band around 340 nm assigned to an intramolecular charge transfer (ICT) band from the HOMO delocalized over the carbazole moiety to the LUMO mainly localized on the boron center. In contrast to this similarity in the absorption spectra, significant differences are observed in the

fluorescence properties. The solution PL emissions of the 1 and 3 were observed at 400 nm and 430 nm, respectively. The wavelength of the emission maximum (λ_{em}) of $\boldsymbol{3}$ is more than 30 nm longer than that of **1**. The Stokes shift of **3** exceeds 86 nm (5810 cm⁻¹), whereas that of **1** is only 56 nm (3980 cm⁻¹). This large Stokes shift is one notable characteristic of the present 4-boryl-phenylcarbazole skeleton; presumably, it may be attributed to the change from the twisted structure to the planar structure in the excited state.^{7(t)} The triplet energy of 1 and 3 were 2.88 and 2.72 eV, which could be calculated from the first phosphorescent emission peak of low temperature (77 K) PL spectrum at 430 and 455 nm, respectively. The triplet energy of them was high enough to use the host material as a green phosphorescent dopant. The triplet energy of the Tris[2phenylpyridinato- C^2 , N jiridium (Ir(ppy)₃) dopant is 2.41 eV and effective energy transfer from synthesized hosts to Ir(ppy)₃ dopant is expected.

On the basis of the roughly evaluated electrochemical oxidation onset potential, the HOMO level of 1 and 3 were estimated as -6.21 and -6.17 eV, respectively. The LUMO level of them is -2.86 and -2.95 eV, calculated from the HOMO level and energy bandgap determined from the UV/vis absorption threshold. The LUMO level of 3 was much lower than that of the 1 because there may be different electron accepting ability of boron center depending on the substitute position onto phenylcarbzole.

Fig. 2 UV/vis, solution PL and low temp. PL spectra of 1 and 3.

Hole- and electron-only devices composed of 1 and 3 were fabricated to compare the hole and electron density in the host materials. Fig. 3 shows the current density-voltage curves of holeand electron-only devices bearing 1 and 3. Hole and electron current density of 3 was much higher than those of 1, which indicates that 3 shows better performance than 1, in terms of charge transportation. The HOMO and LUMO levels of 1 and 3 were determined to be suitable for hole and electron injection, which accounted for the high hole and electron current densities by better charge transport properties. Therefore, hole and electron transport properties of 3 were enhanced, resulting in high hole and electron current densities in the hole- and electron-only devices. The better hole transport properties of 3 than that of 1 are due to the localization of the HOMO on carbazole which shows good hole transport properties. The dimesitylborane moiety degraded the hole transport character of carbazole in 1, which resulted in low hole current density in 1. Similarly, poor electron transport character of 1 is due to extensive dispersion of the LUMO on the carbazole unit which has poor electron transport properties. On the contrary, the LUMO of 3 was localized on electron deficient phenyl unit modified with dimesitylborane, which improved the electron transport properties of 3.

Fig. 3 Current density-voltage of hole- and electron-only device made of 1 and 3.

The triplet energy of 1 and 3 was suitable for evaluation as the host material of green PHOLEDs. The green PHOLEDs were fabricated using the host materials with 10% of $Ir(ppy)_3$ doping concentration in all devices. Fig. 4 (A) shows current density-voltage-luminance curves of the green PHOLEDs. The current density of the green PHOLED with 3 as the host was much higher than that of the green PHOLED with 1 as the host, which agrees with the current density-voltage curve of the single carrier devices in Fig. 3. As the hole and electron current densities of the 3 device were higher than those of the 1 device, high current density and luminance were observed in the 3 device. The maximum luminance of the 1 device could not reach 1,000 cd/m² compared with over 10,000 cd/m² of the 3 device. Poor charge transport properties of 1 limited the maximum current density and luminance of the 1 device.

External quantum efficiency-luminance curves of the green PHOLEDs are shown in Fig. 4 (B). The 3 device exhibited much higher quantum efficiency than the 1 device at the same luminance. The maximum quantum efficiency and the quantum efficiency at 1,000 cd/m² of the **3** device were 23.8% and 21.7% compared with maximum quantum efficiency of 6.5% of the 1 device. There was more than three times improvement of the quantum efficiency in the 3 device. The high quantum efficiency of the 3 device is related with balanced charge density, exciton confinement and efficient energy transfer. As shown in the single carrier device data in Fig. 3, the hole current density of **3** was similar to the electron current density of **3**, which indicates bipolar charge transport properties. The bipolar charge transport properties of 3 balanced holes and electrons in the emitting layer, which contributed to the high quantum efficiency of the 3 device. However, the hole current density was much higher than the electron current density in the 1 device, which lead to poor charge balance and low quantum efficiency. Exciton confinement by high triplet energy host, hole transport material and electron transport material also played an important role of enhancing the quantum efficiency of 3 device. As the triplet energy of the host and charge transport materials was higher than that of Ir(ppy)₃, triplet excitons of Ir(ppy)₃ could be effectively confined in the emitting layer with little quenching. Finally, efficient energy transfer as can be observed in the electroluminescence (EL) spectrum of 3 device in Fig. 5 was another key factor for the high quantum efficiency of the 3 device. Only green emission of $Ir(ppy)_3$ without any emission from 3 host material was observed in the EL spectra, implying good energy transfer from **3** host to $Ir(ppy)_3$. The low quantum efficiency of the 1 device is due to poor charge balance in the emitting layer because excitons can be effectively confined in the 1 device and no

emission from $1\ \text{host}$ was observed in the EL spectrum of the $1\ \text{device}.$

EL spectra of the **1** and **3** devices are shown in Fig. 5. Strong green emission by $Ir(ppy)_3$ appeared at 509 nm with a shoulder at 539 nm. No other emission peak from host or charge transport materials was observed, confirming effective charge confinement in the emitting layer. Color coordinates of the **1** and **3** devices were (0.31,0.62) and (0.30,0.63), respectively.

Fig. 4 Current density-voltage-luminance (A) and quantum efficiency-luminance (B) curves of 1 and 3 green PHOLEDs.

Fig. 5 EL spectra of 1 and 3 green PHOLEDs.

Conclusions

In summary, two structural isomers, 3-(dimesitylboryl)-9-phenyl-9*H*-carbazole and 9-(4-(dimesitylboryl)phenyl)-9*H*-carbazole, with the dimesitylboyl group at different positions of the phenylcarbazole moiety were synthesized. Thereof, the photophysical properties and device performances were correlated with the molecular structure. The maximum quantum efficiency and the quantum efficiency at $1,000 \text{ cd/m}^2$ of the device with **3** were 23.8% and 21.7% compared with maximum quantum efficiency of 6.5% of the device with **1**. Therefore, the dimesityboryl group should be selectively introduced in the molecular structure of host materials to manage the charge transport properties of host materials.

Acknowledgements

The present research was conducted by the research fund of Dankook University in 2012 (Grant no. 108863).

Notes and references

Department of Polymer Science and Engineering, Dankook University, Yongin, Gyeonggi 448-701, Republic of Korea.

E-mail: bach@dankook.ac.kr, Fax: +82 31 8005 3585; Tel: +82 31 8005 3588

† Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/c000000x/

- (a) J. Kido, M. Kimura and K. Nagai, *Science*, 1999, **267**, 1332; (b)
 S. R. Forrest, *Org. Electron.*, 2003, **4**, 45; (c) W. D'Andrade and S.
 R. Forrest, *Adv. Mater.*, 2004, **16**, 1585; (d) Y. Chi and P.-T. Chou, *Chem. Soc. Rev.*, 2010, **39**, 638.
- 2 (a) M. A. Baldo, C. Adachi and S. R. Forrest, *Phys. Rev. B: Condens. Matter.*, 2000, **62**, 10967; (b) S.-J. Su, H. Sasabe, T. I. Takeda and J. Kido, *Chem. Mater.*, 2008, **20**, 1691.
- 3 (a) S.-J. Su, C. Cai and J. Kido, *Chem. Mater.*, 2011, 23, 274; (b) M. K. Kim, J. Kwon, T.-H. Kwon and J.-I. Hong, *New J. Chem.*, 2010, 34, 1317; (c) Z. Q. Gao, M. Luo, X. H. Sun, H. L. Tam, M. S. Wong, B. X. Mi, P. F. Xia, K. W. Cheah and C. H. Chen, *Adv. Mater.*, 2009, 21, 688; (d) Y. Tao, Q. Wang, L. Ao, C. Zhong, J. Qin, C. Yang and D. Ma, *J. Mater. Chem.*, 2010, 20, 1759; (e) Z. Ge, T. Hayakawa, S. Ando, M. Ueda, T. Akiike, H. Miyamoto, T. Kajita and M. Kakimoto, *Adv. Funct. Mater.*, 2008, 18, 584; (f) S. O. Jeon, S. E. Jang, H. S. Son and J. Y. Lee, *Adv. Mater.*, 2011, 23, 1436.
- 4 (a) J.-L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, Acc. Chem. Res., 2009, 42, 1691; (b) C. D. Entwistle and T. B. Marder, Angew. Chem., Int. Ed., 2002, 41, 2927; (c) S. Yamaguchi, T. Shirasake, S. Akiyama and K. Tamao, J. Am. Chem. Soc., 2002, 124, 8816; (d) S. K. Murphy, C. Baik, J.-S. Lu and S. Wang, Org. Lett., 2010, 12, 5266; (e) H. Pan, G.-L. Fu, Y.-H. Zhao and C.-H. Zhao, Org. Lett., 2010, 12, 5192; (f) S.-C. Lo and P. L. Burn, Chem. Rev., 2007, 107, 1097.
- 5 S. L. Lin, L. H. Chan, R. H. Lee, M. Y. Yen, W. J. Kuo, C. T. Chen and R. J. Jeng, *Adv. Mater.*, 2008, **20**, 3947.
- 6 (a) A. Wakamiya, T. Taniguchi and S. Yamaguchi, *Angew. Chem., Int. Ed.*, 2006, 45, 3170; (b) D. Tanaka, T. Takeda, T. Chiba, S. Watanabe and J. Kido, *Chem. Lett.*, 2007, 36, 262.
- 7 (a) T. Noda, H. Ogawa and Y. Shirota, *Adv. Mater.*, 1999, 11, 283;
 (b) Y. Shirota, M. Kinoshita, T. Noda, K. Okumoto and T. Ohara, *J. Am. Chem. Soc.*, 2000, 122, 11021;
 (c) M. Kinoshita and Y. Shirota, *Chem. Lett.*, 2001, 30, 614;
 (d) H. Doi, M. Kinoshita, K. Okumoto and Y. Shirota, *Chem. Mater.*, 2003, 15, 1080;
 (e) M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani and G. Gigli, *Adv. Mater.*, 2005, 17, 34;
 (f) A. Wakamiya, K. Mori and S. Yamaguchi, *Angew. Chem., Int. Ed.*, 2007, 46, 4273.
- 8 (a) Y. Y. Chien, K. T. Wong, P. T. Chou and Y. M. Cheng, *Chem. Commun.* 2002, 2874; (b) K. T. Wong, S. Y. Ku, Y. M. Cheng, X. Y.

Lin, Y. Y. Hung, S. C. Pu, P. T. Chou, G. H. Lee and S. M. Peng, *J. Org. Chem.* 2006, **71**, 456.

<Graphical Abstract>

Two structural isomers of bipolar host materials containing dimesitylborane moiety were synthesized and their device performance were investigated. Quantum efficiency of their device took place depending on the substituent position of the dimesitylborane moiety.

