Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

Journal Name

RSCPublishing

COMMUNICATION

MeReO₃/Al₂O₃ and Me₄Sn–activated Re₂O₇/Al₂O₃ Alkene Metathesis Catalysts Have Similar Active Sites

Cite this: DOI: 10.1039/x0xx00000x

Maxence Valla,^a Matthew P. Conley^a and Christophe Copéret*^a

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

We studied the solid-state NMR signature of Re_2O_7/Al_2O_3 activated with Me₄Sn (Me₄Sn/Re₂O₇/Al₂O₃), a heterogeneous alkene metathesis catalyst. These studies showed that the SnMe₄ activation step generates μ -methylene Al-CH₂ReO₃ species, similar to the intermediates observed in MeReO₃/Al₂O₃. The μ -methylene species probably forms through the *in-situ* generation of MeReO₃. These results establish the role of Me₄Sn in this oxide-based heterogeneous catalyst and explain why Me₄Sn/Re₂O₇/Al₂O₃ has a reactivity profile more similar to MeReO₃/Al₂O₃ than parent Re₂O₇/Al₂O₃.

Introduction

The ethenolysis of 2-butenes to form propene is a central reaction in the Lummus process. This reaction is catalysed by the heterogeneous WO₃/SiO₂ alkene metathesis catalyst at temperatures above 400 °C.¹⁻⁴ Related heterogeneous catalysts, such as MoO₃/SiO₂ or MoO₃/SiO₂-Al₂O₃ operate at lower temperatures between 100 and 300 °C,⁵⁻⁷ while Re₂O₇/Al₂O₃ catalyses this reaction at temperatures as low as 25 °C.⁸⁻¹⁰ In general, these heterogeneous metathesis catalysts are incompatible with alkenes containing functional groups unless pre-activated. These catalysts are usually prepared by introducing high-valent metal oxide precursors to the high surface area support by incipient wetness impregnation followed by calcination to form isolated metal sites on the support surface. This preparation technique leads to complicated mixtures of surface sites with a low concentration of catalytically active sites,^{11,12} which are difficult to study and to understand at the molecular level.

One approach to studying these heterogeneous catalysts is the synthesis of well-defined supported catalysts by grafting molecular – Mo–, W– or Re–alkylidene – precursors on partially dehydroxylated surfaces.¹³⁻¹⁹ For example, Re(\equiv C-^tBu)(=CH-^tBu)(-CH₂-^tBu)₂ grafted on silica forms a heterogeneous catalyst with high concentrations of active sites, fully characterized by spectroscopic techniques and compatible with functionalized alkenes.¹⁸⁻²⁰ In some cases, these well-defined environments can also lead to the determination of intermediates in the alkene metathesis catalytic cycle,^{15,17,21} which is currently not possible for the classical catalysts.

In the context of pure metal oxide heterogeneous catalysts, we showed that MeReO₃ supported on alumina has similar reactivity patterns in propene metathesis as the parent Re₂O₇/Al₂O₃ catalyst.²² Surprisingly, MeReO₃/Al₂O₃ and related systems also catalyse the metathesis of ethylene and ethyl oleate, an alkene containing an ester functional group, both of which are unreactive towards the Re₂O₇/Al₂O₃ catalyst.²²⁻²⁹ Detailed NMR and computational studies of MeReO₃/Al₂O₃ revealed that two major surface Re-species are present in this material (Scheme 1).^{22,30} The major species (85-90 %) is MeReO₃ coordinated to a surface Al by an Re=O group and is inactive (oxo species). The minor species (10-15 %) corresponds to a µ-methylene bridging ligand in which a C-H bond in MeReO₃ is activated on an Al-O bond to form a methylene group bound to Re and Al (µ-methylene species). The oxo-bound and μ -methylene species are distinguishable by their characteristic NMR chemical shift. The signal for the oxobound complex appears at 30 ppm, while the µ-methylene is at 66 ppm. From titration and selective labelling experiments the minor μ -methylene surface species is active in metathesis.^{22,27,30}

Scheme 1: Surface species resulting from the grafting of MeReO₃ on Al_2O_3 : oxo and μ -methylene species. Al_s corresponds to surface aluminium atoms.

Journal Name

Activation of Re2O7/Al2O3 with Me4Sn forms Me4Sn/ Re₂O₇/Al₂O₃ that displays catalytic properties more similar to MeReO₃/Al₂O₃ than Re₂O₇/Al₂O₃. For instance, Me₄Sn/Re₂O₇/Al₂O₃ is active in both ethylene and ethyl oleate self-metathesis reactions. Spectroscopic studies of Re₂O₇/Al₂O₃ show that most Re-sites are isolated from one another and adopt a tetrahedral geometry,^{11,31-35} and contacting Re₂O₇/Al₂O₃ with Me₄Sn was proposed to result in a surface alkylidene.³⁶ In view of the similar reactivity patterns between Me₄Sn/Re₂O₇/Al₂O₃ and MeReO₃/Al₂O₃ we investigated the role of Me₄Sn in the activation step of Re2O7/Al2O3 by solid-state NMR spectroscopy.

Experimental

General Procedure. Re₂O₇ and Me₄Sn were purchased from STREM chemicals and Aldrich, respectively. Alumina (Alu C) was obtained from Evonik, and agglomerated by slurring the solid in distilled water, following by a drying under air at 100 °C and sieving to obtain compacted alumina with a grain size of 250-400 µm. All gases were purified by passage through activated 4 Å molecular sieves and BASF copper-catalyst prior to use. Carbon tetrachloride and diethyl ether were purchased from Sigma-Aldrich, THF-d₈ was purchased from Cambridge Isotope Laboratories. THF and diethyl ether were distilled over sodium/benzophenone. Gas analyses were performed on an Agilent Technologies 7890A GC systems equipped with a flame ionization detector and a HP-Al/KCl on fused silica column (50 m x 0.32 mm). GC/MS measurements were performed on an Agilent GC 7820 A equipped with a mass Spectrometer (5975). The column used were HP-Al/KCl on fused silica for alkenes type compounds and HP-88 Agilent column for tin based compounds. Solution NMR spectra were recorded on either 250 or 500 MHz Bruker spectrometers. The solid-state NMR spectra were measured on either 400 or 700 MHz Bruker NMR spectrometers equipped with 4 mm triple resonance probe heads. The method used was ¹H-¹³C crosspolarization magic angle spinning (CP-MAS) using a radio frequency field of 100 kHz on the proton channel.

Preparation of CH_3ReO_3 or $*CH_3ReO_3$ supported on Al_2O_3 (500°C). These compounds were prepared as previously reported.^{22, 37} Elemental analysis: Re (5.6 wt%).

Preparation of Re_2O_7/Al_2O_3 by incipient wetness impregnation. Al₂O₃ (5.5 g, Alu C) was impregnated with a solution of 0.78 g of perrhenic acid (99.99% pure) in 4.1 mL of water.³⁸ The resulting solid was dried at 150 °C (10°C min⁻¹ heating ramp) under static air for 16 h, rewetted with 5 mL of water and dried at 300 °C with a ramp of 10 °C min⁻¹ for 4 h. This material was calcined under a flow of synthetic air at 500 °C with a ramp of 10 °C min⁻¹ for 16 h and evacuated under high vacuum (10⁻⁵ mBar) line for 60 min. Elemental analysis: Re (8.1 wt%).

Synthesis of $SnMe_2Me_2^*$. A 2 neck round bottom flask equipped with a dropping funnel and a condenser was loaded with magnesium (2.6 g, 106 mmol, 2.4 equiv) and 150 mL of diethyl ether. ¹³C labelled idodomethane (6.2, 44 mmol, 2.2 equiv) was added dropwise to the suspension. The magnesium slowly disappears and a solid was formed in the solution. After one

hour the mixture was cooled to 0 °C and a solution of dichlorodimethyltin (20 mmol, 1 equiv) in 40 mL of ether was added dropwise for 30 min. The reaction mixture was warmed to room temperature and maintained at this temperature overnight. 1 M HCl (20 mL) was added to the mixture and the phases were separated. The aqueous phase was extracted with diethyl ether (3 x 20 mL). The combined organic phases were dried over anhydrous MgSO₄. After 3 successive careful distillations of the azeotrope diethyl ether / Me₄Sn, the desired product was obtained with a yield of 11 % (bp 74 °C at 1 atm). ¹H (250 MHz, C₆D₆) δ : 0.12 (s, Me₄Sn J_{H-C}=120 Hz).

Preparation of $Me_4Sn/Re_2O_7/Al_2O_3$. Representative procedure. To Re₂O₇/Al₂O₃ (500 mg) suspended in 1 mL of CCl₄ in a 50 mL Schlenck under Argon was added Me₄Sn (0.1 mL, 0.56 mmol). The reaction mixture was stirred for 30 min at room temperature, and the colour changed from white to brown. The solid was isolated by filtration, and washed three times with 1 mL of CCl₄. Elemental analysis: Re (6.7 wt%) and Sn (1.1 wt%).Preparation of SnMe₂Me₂* –activated Re₂O₇/Al₂O₃. This compound was prepared as described above using SnMe₂Me₂* in place of Me₄Sn.³⁹

Extraction of $Me_4Sn/Re_2O_7/Al_2O_3$ with *THF-d*₈. To $Me_4Sn/Re_2O_7/Al_2O_3$ (500 mg) was suspended in 1 mL of dry THF d₈ under inert atmosphere. The mixture was stirred 16 h. The resulting liquid was analysed by ¹¹⁹Sn solution NMR and by GC-MS. It revealed the presence of unreacted Me₄Sn, CCl₄ and Me₃SnCl.

Reaction of carbon-13 di-labelled ethene with Me_4Sn -activated Re_2O_7/Al_2O_3 . Me₄Sn/Re₂O₇/Al₂O₃ (200 mg) was loaded in a 110 mL glass reactor and contacted with carbon-13 di-labelled ethene (0.4 equiv per Re metal centre). After 15 h at room temperature, the gas phase was analysed by GC and GC/MS showing the presence of di-, mono- and non-labelled ethene (di-labelled 81 %, mono-labelled 14 % and non-labelled 5 %). The number of non labelled carbon is therefore 12% in the gas phase, this number is multiplied by the number of equivalent of ethylene added per Re centre. Therefore, the calculated number of active sites is 5%.

Reaction of carbon-13 di-labelled and non-labelled ethene with Me_4Sn -activated Re_2O_7/Al_2O_3 . $Me_4Sn/Re_2O_7/Al_2O_3$ (200 mg) was loaded in a 110 mL glass reactor and contacted with 20 equiv. of non-labelled ethene and 10 equivalent of ¹³C di-labelled ethene and left for 24 hours to react at 25°C. The resulting gas phase was analysed by GC-MS leading a 45/39/16 mixture of non-labelled, mono labelled and di-labelled ethylene (di-labelled 16 %, mono-labelled 39 % and non-labelled 45 %).

Results and discussion

 Re_2O_7/Al_2O_3 (8 wt % Re) was synthesized by incipient wetness impregnation of perrhenic acid on alumina followed by calcination at 500 °C for 16 h.⁴⁰ Contacting Re_2O_7/Al_2O_3 with a solution of Me₄Sn in CCl₄ generates Me₄Sn/Re₂O₇/Al₂O₃.⁴¹ This activated material catalyses the self-metathesis of propene. For instance, Me₄Sn/Re₂O₇/Al₂O₃ converts 450 equivalent of propene into the equilibrium mixture of ethene (*ca.* 15%), propene (*ca.* 65%) and 2-butenes (*ca.* 20% in *E/Z* isomers of Journal Name

3:1 ratio) in 90 min at 25 °C.³⁸ Contacting non-labelled and carbon-13 di-labelled ethylene with Me₄Sn/Re₂O₇/Al₂O₃ results in a statistical mixture of isotopomers, indicating that the activated material catalyses ethylene self-metathesis, in contrast to Re₂O₇/Al₂O₃.²⁵

The number of active sites in Me₄Sn/Re₂O₇/Al₂O₃ was evaluated by contacting the catalysts with 0.4 equiv of carbon-13 di-labelled ethylene, with respect to Re, for 15 h at 25 °C. A mixture of di-labelled, mono-labelled and non-labelled ethylene isotopomers was obtained in 81/14/5 ratio. The quantity of unlabelled carbons in the gas phase is directly related to the number of exchangeable active sites because the Me₄Sn/Re₂O₇/Al₂O₃ was activated with natural abundance SnMe₄. Considering that only 0.4 equiv of labelled ethylene was added (per Re centre) to the catalyst, the number of active sites is ca. 5% in Me₄Sn/Re₂O₇/Al₂O₃, which is slightly lower than in MeReO₃/Al₂O₃ (ca. 10-15 %).^{22,27}

The ¹³C CPMAS NMR of Me₄Sn/Re₂O₇/Al₂O₃ contains a signal at 0 ppm (Figure 1a), consistent with the presence of a surface methyltin group.⁴² We also found that small amounts of Me₃SnCl were formed during the activation process from ¹¹⁹Sn NMR and GC-MS analyses. After reacting Me₄Sn/Re₂O₇/Al₂O₃ with carbon-13 di-labelled ethylene (0.4 equiv./Re), the 13 C CPMAS NMR contains signals at 66, 30, 18, 10 along with the surface methyltin peak at 0 ppm (Figure 1b). The signals at 10 and 18 ppm were previously attributed to the formation of ethylene oligomers on the Al₂O₃ surface.^{22,27,28} The signals at 30 and 66 ppm are similar to those obtained in carbon-13 labelled *MeReO₃/Al₂O₃ shown in Figure 1d.²² These peaks were previously assigned to the oxo-, and the µ-methylene surface species shown in Scheme 1.22,27,28 The observation of both µ-methylene and oxo species after exposure to ¹³Clabelled ethene indicates that these species probably interconvert; possibly through H-transfer or tautomerization processes (see Scheme S1).43

Figure 1: ¹³C CPMAS spectra of supported Re-based catalysts on alumina. For all the spectra the contact time was set to 0.6 ms and the recycling delay was 1 sec. a) $Me_4Sn/Re_2O_7/Al_2O_3$, 400 MHz, 60k scans, b) Spectrum of $Me_4Sn/Re_2O_7/Al_2O_3$ contacted with 2-¹³C *C₂H₄ 100k scans, c) *Me_2Me_2Sn/Re_2O_7/Al_2O_3, 80k scans, 400 MHz and d) ¹³C labeled *MeReO₃/ Al₂O₃, 5k scans, 700 MHz.

The surface Re-species generated, after contacting Me₄Sn/Re₂O₇/Al₂O₃ with carbon-13 labelled ethylene, are in low concentration. To determine the spectroscopic signature of Me₄Sn/Re₂O₇/Al₂O₃ we synthesized the carbon-13 enriched material by treating Re₂O₇/Al₂O₃ with *Me₂Me₂Sn. The ¹³C CPMAS spectrum of *Me2Me2Sn/Re2O7/Al2O3 contains an intense signal at 0 ppm associated with carbon-13 enriched methyltin compounds as well as the two signals at 66 and 30 ppm, as already observed in Figure 1b. The close chemical shift agreement between *Me₂Me₂Sn/Re₂O₇/Al₂O₃ (Figure 1c) and MeReO₃/Al₂O₃ (Figure 1d) also supports the assignment of these peaks as the $\mu\Box$ methylene and oxo species, respectively.^{22,27,28} The peak assigned to oxo species at 40 and 51 ppm in Figure 1c are shifted to higher frequency in comparison to MeReO₃/Al₂O₃. This may be due to Re=O units binding to different alumina sites on the surface. However, these species are inactive in ethylene metathesis since they are not observed in Figure 1b. Contacting *Me2Me2Sn/Re2O7/Al2O3 with an excess of non-labelled propylene induces a significant decrease in the resonance intensity for the signals at 66 and 40-30 ppm (Figure S1).

The reaction of Me₄Sn with Re₂O₇/Al₂O₃ forms a catalyst that has similar reactivity trends and solid-state NMR spectral features as MeReO₃/Al₂O₃. The carbon-containing surface species include surface methyltin species, physisorbed Me₃SnCl, μ methylene and oxo species. Grafting alkyltin species on oxide surfaces^{42,44} and reaction of Me₄Sn with XReO₃ (X = OReO₃, OCOCF₃, etc.)^{37,45} are well known. In this case, these reactions would form Me₃SnO-Al and MeReO₃ (Scheme 2). Me₃SnCl formation may arise from the reaction of CCl₄ and Me₃SnO-Al. The μ methylene and oxo species would arise from the reaction of aluminium bound perrhenate and Me₄Sn to form MeReO₃, which further reacts with Al,O sites to provide the active μ methylene sites along with some adsorbed oxo (Scheme 2).⁴⁵

Scheme 2: a) Generation of $MeReO_3$ from surface perhenate and Me_4Sn , and subsequent reaction of $MeReO_3$ with surface Al sites. b) Formation of $MeReO_3$ by reaction of Re_2O_7 and $SnMe_4$.

Conclusions

The activation of Re_2O_7/Al_2O_3 with Me_4Sn results in the formation of μ -methylene (Al-CH₂ReO₃) and oxo species, similar to that found in CH₃ReO₃/Al₂O₃. This explains the similar reactivity of $Me_4Sn/Re_2O_7/Al_2O_3$ and CH_3ReO_3/Al_2O_3

towards functionalized alkenes and ethylene, and distinguishes these catalysts from the pure oxide based Re_2O_7/Al_2O_3 .

Acknowledgement

MV thanks the SNF foundation for financial support (Grant No. 200021_142600).

Notes and references

^{*a*} Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg. 2 CH-8093 Zurich, Switzerland.

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/c000000x/

- 1. R. L. Banks and G. C. Bailey, *Ind. Eng. Chem. Prod. Rd.*, 1964, 3, 170.
- 2. J. C. Mol, J. Mol. Catal. A, 2004, 213, 39-45.
- N. Popoff, E. Mazoyer, J. Pelletier, R. M. Gauvin and M. Taoufik, *Chem. Soc. Rev.*, 2013, 42, 9035-9054.
- 4. S. Lwin and I. E. Wachs, ACS Catal., 2014, 4, 2505-2520.
- 5. J. C. M. Kenneth J. Ivin, Olefin Metathesis and Metathesis Polymerization, 1997.
- H. Tian, C. A. Roberts and I. E. Wachs, J. Phys. Chem. C, 2010, 114, 14110-14120.
- D. P. Debecker, M. Stoyanova, U. Rodemerck and E. M. Gaigneaux, J. Mol. Catal. A, 2011, 340, 65-76.
- 8. M.J. Lawrenson, US Patent US3974233A, 1976.
- 9. J. C. Mol, Catalysis Today, 1999, 51, 289-299.
- 10. Y. Imamoğlu, *Metathesis Polymerization of Olefins and Polymerization of Alkynes*, Kluwer Academic, 1998.
- 11. Y. Chauvin and D. Commereuc, J. Chem. Soc., Chem. Commun., 1992, 462-464.
- A. J. Moffat, A. Clark and M. M. Johnson, J. Catal., 1971, 22, 379.
- C. Copéret, M. Chabanas, R. Petroff Saint-Arroman and J.-M. Basset, Angew. Chem. Int. Ed., 2003, 42, 156-181.
- 14. C. Coperet, Dalton Trans., 2007, 5498-5504.
- 15. V. Mougel and C. Coperet, Chem. Sci., 2014, 5, 2475-2481.
- M. P. Conley, V. Mougel, D. V. Peryshkov, W. P. Forrest, D. Gajan, A. Lesage, L. Emsley, C. Copéret and R. R. Schrock, J. Am. Chem. Soc., 2013, 135, 19068-19070.
- 17. M. P. Conley, W. P. Forrest, V. Mougel, C. Copéret and R. R. Schrock, *Angew. Chem. Int. Ed.*, 2014, 126, 14445-14448.
- 18. M. Chabanas, A. Baudouin, C. Copéret and J.-M. Basset, J. Am. Chem. Soc., 2001, 123, 2062-2063.
- 19. M. Chabanas, C. Copéret and J.-M. Basset, *Chem. –Eur. J.*, 2003, 9, 971-975.
- A.-M. Leduc, A. Salameh, D. Soulivong, M. Chabanas, J.-M. Basset, C. Copéret, X. Solans-Monfort, E. Clot, O. Eisenstein, V. P. W. Böhm and M. Röper, *J. Am. Chem. Soc.*, 2008, 130, 6288-6297.
- 21. F. Blanc, R. Berthoud, C. Copéret, A. Lesage, L. Emsley, R. Singh, T. Kreickmann and R. R. Schrock, *Proc. Nat. Acad. Sci. U.S.A.*, 2008, 105, 12123-12127.
- A. Salameh, J. Joubert, A. Baudouin, W. Lukens, F. Delbecq, P. Sautet, J. M. Basset and C. Copéret, *Angew. Chem. Int. Ed.*, 2007, 46, 3870-3873.
- W. W. Wolfgang A. Herrmann, Uwe Flessner, Ursula Volkhardt, Hartmut Komber, *Angew. Chem. Int. Ed.*, 1991, 103, 1704-1706.

- A. M. J. Rost, H. Schneider, J. P. Zoller, W. A. Herrmann and F. E. Kuhn, J. Organomet. Chem., 2005, 690, 4712-4718.
- 25. J. R. McCoy and M. F. Farona, J. Mol. Catal., 1991, 66, 51-58.
- 26. R. Buffon, A. Auroux, F. Lefebvre, M. Leconte, A. Choplin, J. M. Basset and W. A. Herrmann, J. Mol. Catal., 1992, 76, 287-295.
- A. Salameh, A. Baudouin, D. Soulivong, V. Boehm, M. Roeper, J.-M. Basset and C. Copéret, *J. Catal.*, 2008, 253, 180-190.
- 28. A. Salameh, A. Baudouin, J. M. Basset and C. Copéret, *Angew. Chem. Int. Ed.*, 2008, 47, 2117-2120.
- 29. A. W. Moses, C. Raab, R. C. Nelson, H. D. Leifeste, N. A. Ramsahye, S. Chattopadhyay, J. Eckert, B. F. Chmelka and S. L. Scott, J. Am. Chem. Soc., 2007, 129, 8912-8920.
- R. Wischert, C. Copéret, F. Delbecq and P. Sautet, *ChemCatChem*, 2010, 2, 812-815.
- 31. N. Tsuda and A. Fujimori, J. Catal., 1981, 69, 410-417.
- 32. L. G. Duquette, R. C. Cieslinski, C. W. Jung and P. E. Garrou, J. Catal., 1984, 90, 362-365.
- 33. F. D. Hardcastle, I. E. Wachs, J. A. Horsley and G. H. Via, J. Mol. Catal., 1988, 46, 15-36.
- 34. M. A. Vuurman, D. J. Stufkens, A. Oskam and I. E. Wachs, J. Mol. Catal., 1992, 76, 263-285.
- 35. F. Schekler-Nahama, O. Clause, D. Commercuc and J. Saussey, Appl. Catal. A, 1998, 167, 247-256.
- 36. A. Ellison, A. K. Coverdale and P. F. Dearing, Appl. Catal., 1983, 8, 109-121.
- W. A. Herrmann, F. E. Kuehn, R. W. Fischer, W. R. Thiel and C. C. Romao, *Inorganic Chemistry*, 1992, 31, 4431-4432.
- A. Andreini, X. D. Xu and J. C. Mol, *Appl. Catal.*, 1986, 27, 31-40.
- 39. E. Verkuijlen, F. Kapteijn, J. C. Mol and C. Boelhouwer, J. Chem. Soc., Chem. Commun., 1977, 198-199.
- 40. W. Daniell, T. Weingand and H. Knözinger, J. Mol. Catal. A, 2003, 204, 519-526.
- F. K. Evert Verkuijlen, Johannes C. Mol, Cornelis Boelhouwer, J.C.S. Chem. Comm., 1977, 198.
- 42. C. Nedez, A. Theolier, F. Lefebvre, A. Choplin, J. M. Basset and J. F. Joly, *J. Am. Chem. Soc.*, 1993, 115, 722-729.
- 43. In view of the high stability of bis-grafted species (see ref. 29), it is possible that the observed interchange dynamics (between μmethylene and oxo species) under pressure of ethylene could take place on mono-grafted species.
- 44. C. Nedez, F. Lefebvre, A. Choplin, G. P. Niccolai, J. M. Basset and E. Benazzi, J. Am. Chem. Soc., 1994, 116, 8638-8646.
- 45. W. A. Herrmann, J. G. Kuchler, J. K. Felixberger, E. Herdtweck and W. Wagner, *Angew. Chem. Int. Ed.*, 1988, 27, 394-396.

TOC FIGURE

 $MeReO_3/Al_2O_3$ and Re_2O_7/Al_2O_3 activated with Me_4Sn , which have the same reactivity toward functionalized alkenes and ethylene, share similar active sites.

Journal Name

39x10mm (600 x 600 DPI)

75x48mm (600 x 600 DPI)