Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Mechanism of the effect of H₂O on the low temperature selective catalytic reduction of NO with NH₃ over Mn-Fe spinel

Shangchao Xiong, Yong Liao, Xin Xiao, Hao Dang, Shijian Yang*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

 H_2O showed a notable inhibition on the low temperature selective catalytic reduction (SCR) reaction over Mn based catalysts. However, the mechanism of H_2O effect was not clear. In this work, the mechanism of H_2O effect on the low temperature SCR reaction over Mn-Fe spinel was studied using the transient reaction study and the steady-state kinetic analysis. According to the steady-state kinetic analysis, the

- ¹⁰ reaction kinetic rate constants of NO reduction over Mn-Fe spinel (including the rate constants of N₂ formation through the Eley-Rideal mechanism and the Langmuir -Hinshelwood mechanism, and the rate constants of N₂O formation) in the presence of H₂O and in the absence of H₂O were compared. According to the transient reaction study, the effect of H₂O on the elementary reactions of NO reduction over Mn-Fe spinel through both the Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism
- ¹⁵ was investigated. The results indicated that the effect of H_2O on the low temperature SCR reaction over Mn-Fe spinel was not only attributed to the competition adsorption of H_2O with NH₃ and NO_x, but also related to the decrease of the oxidation ability and the inhibition of the interface reaction.

1. Introduction

Because the space and access for the operation of high ²⁰ temperature selective catalytic reduction (SCR) catalysts for example V₂O₅-WO₃(MoO₃)/TiO₂ are limited in many existing coal-fired power plants, ¹ there is a strong demand for the low temperature SCR catalysts, ² which can be placed downstream of the electrostatic precipitator and desulfurizer. So far, Mn based

²⁵ catalysts, for example MnO_x/TiO₂, ³⁻⁷ MnO_x-CeO₂, ^{8, 9} MnO_x-CeO₂/TiO₂, ¹⁰ and Fe₂O₃-MnO₂/TiO₂ ¹¹ have been regarded as the most promising low temperature SCR catalysts. However, Mn based catalysts are currently extremely restricted in the application for at least three reasons: the lower N₂ selectivity, the ³⁰ unrecoverable deactivation by SO₂ and the recoverable deactivation by H₂O. ^{2, 12}

Mn-Fe spinel showed an excellent low temperature SCR performance, whose pseudo-first rate constant of NO reduction was close to that of MnO_x -CeO₂.¹² Meanwhile, N₂ selectivity of

- ³⁵ NO reduction over Mn-Fe spinel was much better than that over MnO_x-CeO₂. ^{13, 14} Furthermore, magnetic Mn-Fe spinel deactivated by SO₂ due to the deposition of NH₄HSO₄/(NH₄)₂SO₄ and the sulfation of catalyst can be regenerated after water washing. ¹²
- $_{40}$ H₂O showed an obvious inhibition on the low temperature SCR reaction over Mn-Fe spinel, while N₂ selectivity of NO reduction over Mn-Fe spinel increased remarkably after the introduction of H₂O. ^{13, 14} The recoverable deactivation of Mn based catalysts by H₂O was generally attributed to the

investigated in this work using the steady-state kinetic study and the transient reaction study. To compare the reaction kinetic rate constants of NO reduction over Mn-Fe spinel in the absence and in the presence of H₂O, the steady-state kinetic study was

ss performed. To study the influence of H_2O on the elementary reactions of N_2O and N_2 formation over Mn-Fe spinel through both the Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism, the transient reaction study was conducted. The results indicated that the effect of H_2O on the low temperature

 $_{60}$ SCR reaction over Mn-Fe spinel was not only attributed to the competition adsorption of H₂O with NH₃ and NO_x, but also related to the decrease of the oxidation ability and the inhibition of the interface reaction.

2. Experimental

65 2.1 Catalyst preparation

Mn-Fe spinel was prepared using a co-precipitation method.^{12, 17, 18} The solution of the mixture of ferrous sulfate, ferric chloride, and manganese sulfate (Fe³⁺:Fe²⁺:Mn²⁺=4:1:1, and total cation amount=0.075 mol) was added to an ammonia solution (100 mL) 70 with 800 rpm of stirring. The particles were then separated by

This journal is © The Royal Society of Chemistry [year]

Dynamic Article Links

⁴⁵ competition adsorption of H₂O with NH₃. ^{15, 16} However, the improvement of N₂ selectivity in the presence of H₂O cannot be explained by the competition adsorption. As in situ DRIFT spectra study is difficult to be performed in the presence of a high concentration of water vapor, the mechanism of H₂O effect on the ⁵⁰ low temperature SCR reaction over Mn-Fe spinel was

centrifugation and washed with distilled water 3 times. At last, the particles were calcined under air at 400 $^{\circ}$ C for 3 h after dried at 105 $^{\circ}$ C for 12 h.

2.2 Catalytic test

- ⁵ The catalytic reaction was performed on a fixed-bed quartz tube reactor. ^{12, 19, 20} The mass of catalyst with 40-60 mesh was 100 mg, the total flow rate was 200 mL min⁻¹, and the corresponding gas hourly space velocity (GHSV) was 120000 cm³ g⁻¹ h⁻¹. The typical reactant gas contained 500 ppm of NH₃
- ¹⁰ (when used), 500 ppm of NO (when used), 2% of O_2 , 5% of H_2O (when used) and balance of N_2 . The gas composition in the outlet was continually monitored by a Fourier transform infrared spectrometer (FTIR, Thermo SCIENTIFIC, ANTARIS, IGS Analyzer).
- ¹⁵ The capacities of Mn-Fe spinel for NH_3 and $NO+O_2$ adsorption at 150 °C were determined using NH_3 -TPD and NO-TPD, respectively. NH_3 -TPD and NO-TPD were carried out on the fixed-bed quartz tube reactor. Before the experiment, about 0.10 g of Mn-Fe spinel was pretreated under N_2 atmosphere (200 mL
- ²⁰ min⁻¹) at 300 °C for 60 min to remove adsorbed H₂O and other gases. After Mn-Fe spinel was cooled to 150 °C, the N₂ flow was switched to a flow of 500 ppm of NH₃ or 500 ppm of NO+2% of O₂ (200 ml min⁻¹) for 120 min. The sample was then purged by N₂ (200 ml min⁻¹) for another 30 min. NH₃-TPD and NO-TPD for the flow of the flow
- $_{25}$ were performed at a heating rate of 10 ^{o}C min $^{-1}$ to 700 ^{o}C under a N_{2} flow (200 ml min $^{-1}$).

2.3 Steady-state kinetic study

To determine the rate constants of NO reduction over Mn-Fe spinel, the steady-state kinetic study was conducted. Gaseous ³⁰ NH₃ concentration in the inlet was kept at 500 ppm, while gaseous NO concentration varied from 200 to 500 ppm. ^{2, 13, 14} To overcome the diffusion limitation (including the inner diffusion and external diffusion), a very high GHSV of 1200000-4800000 cm³ g⁻¹ h⁻¹ (the catalyst mass ranged from 5 to 20 mg, and the

 $_{35}$ total flow rate was 400 mL) was adopted to obtain less than 15% of NO_x conversion.

2.4 Transient reaction study

To study the effect of H₂O on the elementary reactions of N₂O formation over Mn-Fe spinel through the Eley-Rideal mechanism, ⁴⁰ the amounts of N₂O formed during passing NO+O₂ over NH₃ presorbed Mn-Fe spinel, passing NO+O₂+H₂O over NH₃+H₂O presorbed Mn-Fe spinel and passing NO+O₂+H₂O over NH₃+H₂O presorbed Mn-Fe spinel and passing NO+O₂+H₂O over NH₃+H₂O presorbed Mn-Fe spinel were compared. To study the

 ⁴⁵ effect of H₂O on the elementary reactions of N₂O formation over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism, the amounts of N₂O formed during passing NH₃ over NO+O₂ presorbed Mn-Fe spinel, passing NH₃+H₂O over NO+O₂ presorbed Mn-Fe spinel, and passing NH₃ over NO+O₂+H₂O
 ⁵⁰ presorbed Mn-Fe spinel and passing NH₃+H₂O over

NO+O₂+H₂O presorbed Mn-Fe spinel were compared.

3. Results

3.1 Effect of H₂O on the SCR reaction over Mn-Fe spinel

As shown in Fig. 1, Mn-Fe spinel showed an excellent SCR

⁵⁵ activity at low temperatures, and NO_x conversion was higher than 80% above 140 °C with the GHSV of 1200000 cm³ g⁻¹ h⁻¹. Furthermore, a lot of N₂O formed during the SCR reaction over Mn-Fe spinel, and N₂O selectivity obviously increased with the increase of reaction temperature from 120 to 200 °C. Fig. 1 shows
⁶⁰ that NO_x conversion over Mn-Fe spinel obviously decreased as 5% of H₂O added. Meanwhile, N₂O selectivity of NO reduction over Mn-Fe spinel in the presence of 5% of H₂O was much less than that in the absence of H₂O. They suggest that NO reduction and N₂O formation over Mn-Fe spinel were both restrained in the
⁶⁵ presence of H₂O. This result was consistent with the result of our previous study on Mn-Fe spinel. ^{12, 14}

Fig. 1 Effect of 5% of H₂O on the SCR performance of Mn-Fe spinel. Reaction conditions: $[NH_3]=[NO]=500 \text{ ppm}$, $[O_2]=2\%$, catalyst mass=100 mg, total flow rate=200 mL min⁻¹ and GHSV=120000 cm³ g⁻¹ h⁻¹.

3.2 Effect of H₂O on NO and NH₃ adsorption on Mn-Fe spinel

The inhibition of NO reduction over Mn based catalysts by H_2O was generally attributed to the competition adsorption of H_2O with NH₃ and NO_x.^{15, 16} Therefore, the effect of 5% of H_2O

This journal is © The Royal Society of Chemistry [year]

^{2 |} *Journal Name*, [year], **[vol]**, 00–00

on the adsorption of NH₃ and NO_x on Mn-Fe spinel was studied. Fig. 2 shows the NH₃-TPD profiles of Mn-Fe spinel saturated with NH₃ adsorption at 150 °C in the absence of H₂O and in the presence of 5% of H₂O. The capacities of Mn-Fe spinel for NH₃

- $_{\text{5}}$ adsorption at 150 $^{\text{o}}\text{C}$ in the absence of H2O and that in the presence of 5% of H₂O, which were calculated from the NH₃-TPD profiles, are listed in Table 1. Table 1 shows that the capacity of Mn-Fe spinel for NH3 adsorption in the presence of 5% of H₂O was less than that in the absence of H₂O. It suggests that
- 10 the adsorption of NH₃ on Mn-Fe spinel was restrained by H₂O due to the competition adsorption, which was also supported by Fig. 3a. The breakthrough curves of NH₃ adsorbed on fresh Mn-Fe spinel and it pretreated by 5% of H₂O (Fig. 3a) show that the pretreatment of Mn-Fe spinel by H2O showed an obvious

15 inhibition on the adsorption of NH₃.

Table 1 Capacity of Mn-Fe spinel for NH3 and NOx adsorption at 150 °C /µmol g⁻¹

20 Fig. 3 Effect of the pretreatment of Mn-Fe spinel by H2O on the adsorption of (a) NH₃ and (b) NO+O₂ at 150 °C.

Fig. 4 shows the NO_x-TPD profiles of Mn-Fe spinel saturated with NO+O₂ adsorption at 150 °C in the absence of H₂O and in the presence of 5% of H₂O. The capacities of Mn-Fe spinel for 25 NO+O₂ adsorption at 150 °C in the absence of H₂O and that in the presence of 5% of H_2O , which were calculated from the NO_x -TPD profiles, are listed in Table 1. Table 1 shows that the capacity of Mn-Fe spinel for NO+O2 adsorption at 150 °C in the presence of 5% of H₂O was much less than that in the absence of

³⁰ H₂O. It suggests that the adsorption of NO+O₂ on Mn-Fe spinel was obviously restrained by H₂O. This result was consistent with the breakthrough curves of NO+O2 adsorbed on fresh Mn-Fe spinel and it pretreated by 5% of H₂O (Fig. 3b). The desorbed

This journal is © The Royal Society of Chemistry [year]

NO_x species from Mn-Fe spinel saturated with NO+O₂ adsorption $_{35}$ in the absence of H₂O was mainly NO₂ (shown in Fig. 4a), while it from the adsorption in the presence of 5% H₂O was mainly NO (shown in Fig. 4b). There is generally agreement that the desorbed NO and NO2 resulted from the decomposition of nitrite and nitrate, respectively. 21-25 It suggests that the further 40 oxidization of NO₂ to NO₃ on Mn-Fe spinel was suppressed by H₂O. ¹⁴

Fig. 4 NO-TPD profiles of Mn-Fe spinel: (a), saturated with the 45 adsorption of NO+O2 in the absence of H2O at 150 °C; (b), saturated with the adsorption of NO+O2 in the presence of H2O at 150 °C.

3.3 Effect of H₂O on NO and NH₃ oxidation over Mn-Fe spinel

	Temperature/	NH_3	Selectivity		
	°C	conversion	N_2	N_2O	NO _x
in the absence of H ₂ O	120	10	88	12	0
	140	19	86	14	0
	160	33	83	17	0
	180	53	80	20	0
	200	75	74	26	0
in the presence of 5% of H ₂ O	120	3.5	99	1	0
	140	3.7	99	1	0
	160	4	99	1	0
	180	4.5	98	2	0
	200	6.5	96	4	0

50 Reaction conditions: [NH₃]=500 ppm, [O₂]=2%, catalyst mass=100 mg, total flow rate=200 mL min⁻¹ and GHSV=120000 cm³ g⁻¹ h⁻¹

Table 2 and Fig. 5 show the effect of H₂O on NH₃ and NO oxidation over Mn-Fe spinel. Mn-Fe spinel showed an excellent activity for NH₃ oxidation, and NH₃ conversion was higher than $_{55}$ 50% above 180 °C with the GHSV of 1200000 cm³ g⁻¹ h⁻¹. Meanwhile, some N₂O formed during NH₃ oxidation. However, the amount of N₂O formed from the catalytic oxidation of NH₃ was much less than that formed during the SCR reaction over Mn-Fe spinel. Meanwhile, NH3 conversion was close to NO 60 conversion during the SCR reaction over Mn-Fe spinel (the data

55

(3)

Catalysis Science & Technology Accepted Manuscri

were not shown). It suggests that the catalytic oxidation of NH_3 can be approximately neglected during the SCR reaction over Mn-Fe spinel and N₂O formed during the SCR reaction over Mn-Fe spinel mainly resulted from the non selective catalytic

- $_{\rm 5}$ reduction (NSCR) reaction. Table 2 also shows that the oxidation of NH₃ was completely suppressed in the presence of 5% of H₂O (shown in Table 2). Meanwhile, the oxidation of NO to NO₂ was obviously restrained in the presence of H₂O (shown in Fig. 5). The catalytic oxidation of NO and NH₃ over Mn-Fe spinel was
- ¹⁰ mainly related to the amounts of NH₃ and NO_x adsorbed on Mn-Fe spinel and the oxidation ability of Mn-Fe spinel. ²⁶⁻²⁸ In comparison of Table 2 and Fig. 5 with Table 1, the inhibition on NH₃ oxidation and NO oxidation by H₂O was much remarkable than that on NH₃ adsorption and NO+O₂ adsorption. It suggests
- $_{15}$ that the oxidation ability of Mn-Fe spinel obviously decreased in the presence of H_2O .

Fig. 5 Effect of 5% of H₂O on NO oxidation over Mn-Fe spinel. Reaction conditions: [NO]=500 ppm, [O₂]=2%, catalyst mass=100 mg, total flow rate=200 mL min⁻¹ and GHSV=120000 cm³ g⁻¹ h⁻¹.

4. Discussion

4.1 Reaction mechanism

According to the transient reaction study and in situ DRIFT spectra study (shown in the Supporting Information), our ²⁵ previous studies demonstrated that both the Langmuir-Hinshelwood mechanism (i.e. the reaction between adsorbed NO_x species and adsorbed NH_3 species) and the Eley-Rideal mechanism (i.e. the reaction between adsorbed NH_3 species and gaseous NO) contributed to NO reduction (including N_2 ³⁰ formation and N_2O formation) over Mn-Fe spinel. ^{12, 14} NO

reduction over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism can be approximately described as: ^{12, 14, 29}

$$NH_{3(g)} \rightarrow NH_{3(ad)}$$
 (1)

$$NO_{(g)} \rightarrow NO_{(ad)}$$
 (2)

$$\equiv Mn^{4+} = O + NO_{(ad)} \rightarrow \equiv Mn^{3+} - O - NO$$

$$\equiv Mn^{3+} \text{-O-NO} + \frac{1}{2}O_2 \rightarrow \equiv Mn^{3+} \text{-O-NO}_2$$
(4)

$$\equiv Mn^{3+}-O-NO+NH_{3(ad)} \rightarrow \equiv Mn^{3+}-O-NO-NH_{3}$$

$$\rightarrow \equiv Mn^{3+}-OH+N_{2}+H_{2}O$$
(5)

$$\equiv Mn^{3+} - O - NO_2 + NH_{3(ad)} \rightarrow \equiv Mn^{3+} - O - NO_2 - NH_3$$

$$\rightarrow \equiv Mn^{3+} - OH + N_2O + H_2O$$
(6)

$$\equiv Mn^{3+} - OH + \frac{1}{4}O_2 \rightarrow \equiv Mn^{4+} = O + \frac{1}{2}H_2O$$
(7)

⁴⁰ The SCR reaction over Mn-Fe spinel started with the adsorption of NH₃ (i.e. Reaction 1). Meanwhile, gaseous NO can be physically adsorbed on Mn-Fe spinel, ²² which was then oxidized by Mn⁴⁺ on the surface to form monodentate NO₂⁻ (i.e. Reaction 3). Besides to be further oxidized to monodentate NO₃⁻ 45 (i.e. Reaction 4), ²¹ adsorbed NO₂⁻ can react with adsorbed NH₃ on the adjacent sites to form NH₄NO₂ (i.e. Reaction 5), which was then decomposed to N₂ and H₂O. Adsorbed monodentate NO₃⁻ can react with adsorbed NH₃ species on the adjacent sites to form NH₄NO₃ (i.e. Reaction 6), which was then decomposed to So N₂O. ²² Reaction 7 was the regeneration of Mn⁴⁺ on the surface.

Meanwhile, NO reduction over Mn-Fe spinel through the Eley-Rideal mechanism can be approximately described as: ^{12, 14, 22, 29}

ľ

N

$$\mathrm{NH}_{3(g)} \to \mathrm{NH}_{3(\mathrm{ad})}$$
 (1)

$$NH_{3(ad)} + \equiv Mn^{4+} \equiv O \longrightarrow NH_2 + \equiv Mn^{3+} - OH$$
(8)

$$\mathrm{NH}_{2} + \mathrm{NO}_{\mathrm{(g)}} \to \mathrm{N}_{2} + \mathrm{H}_{2}\mathrm{O} \tag{9}$$

$$MH_2 + \equiv Mn^{4+} = O \rightarrow NH + \equiv Mn^{3+} - OH$$
 (10)

$$NH+NO_{(g)} + Mn^{4+} = O \rightarrow N_2O+Mn^{3+}-OH$$
 (11)

$$\equiv Mn^{3+} - OH + \frac{1}{4}O_2 \rightarrow \equiv Mn^{4+} = O + \frac{1}{2}H_2O$$
(7)

Reaction 8 was the activation of adsorbed NH_3 by Mn^{4+} on ⁶⁰ Mn-Fe spinel to form NH_2 , which then reacted with gaseous NO to form N_2 (i.e. Reaction 9). Meanwhile, NH_2 on Mn-Fe spinel can be further oxidized to NH (i.e. Reaction 10), which then reacted with gaseous NO to form N_2O (i.e. Reaction 11).

The kinetic equations of N₂O and N₂ formation through the ⁶⁵ Langmuir-Hinshelwood mechanism (i.e. Reactions 5 and 6) can be described as:

$$\frac{|[N_2O]|}{dt}\Big|_{L-H} = k_1[Mn^{3+}-O-NO_2-NH_3]$$
(12)

$$\frac{d[N_2]}{dt}\Big|_{L-H} = k_2[Mn^{3+}-O-NO-NH_3]$$
(13)

Where, k_1 , k_2 , $[Mn^{3+}O-NO_2-NH_3]$ and $[Mn^{3+}O-NO-NH_3]$ ⁷⁰ were the rate constants of NH₄NO₃ and NH₄NO₂ decomposition and the concentrations of NH₄NO₃ and NH₄NO₂ on Mn-Fe spinel, respectively.

Our previous studies demonstrated that $[Mn^{3+}-O-NO-NH_3]$ and $[Mn^{3+}-O-NO_2-NH_3]$ can be approximately regarded as the 75 constants at the steady state, ^{14, 29} which were independent of the concentrations of gaseous NO and NH₃. Hinted by Equations 12 and 13, N₂O formation and N₂ formation through the Langmuir-Hinshelwood mechanism were both not related to gaseous NO and NH₃ concentrations, and the reaction orders of N₂ and N₂O

4 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

formation through the Langmuir-Hinshelwood mechanism with respect to gaseous NO concentration were both nearly zero.

The kinetic equations of N_2O and N_2 formation through the Eley-Rideal mechanism (i.e. Reactions 9 and 11) can be 5 described as: 13

$$\frac{d[N_2O]}{dt}\Big|_{E-R} = -\frac{d[NH]}{dt} = k_3[NH][NO_{(g)}][Mn^{4+}=O]$$
(14)

$$\frac{d[N_2]}{dt}\Big|_{E-R} = -\frac{d[NH_2]}{dt} = k_4[NH_2][NO_{(g)}]$$
(15)

Where, k_3 , k_4 , $[NO_{(g)}]$, $[NH_2]$, [NH] and $[Mn^{4+}=O]$ were the rate constants of Reactions 11 and 9, gaseous NO concentration ¹⁰ and the concentrations of NH₂, NH and Mn⁴⁺ on Mn-Fe spinel, respectively.

The kinetic equations of NH_2 and NH formation on Mn-Fe spinel (i.e. Reactions 8 and 10) can be described as:

$$\frac{d[NH_2]}{dt} = k_5[NH_{3(ad)}][Mn^{4+}=O]$$
(16)

$$\frac{d[NH]}{dt} = -\frac{d[NH_2]}{dt} = k_6[NH_2][Mn^{4+}=O]$$
(17)

Where, $[NH_{3(ad)}]$, k_5 and k_6 were the concentration of NH₃ adsorbed, the reaction rate constants of Reactions 8 and Reaction 10, respectively.

According to Equations 15-17, the variation of NH_2 on Mn-Fe $_{20}$ spinel can be described as:

$$-\frac{d[NH_{2}]}{dt} = k_{6}[NH_{2}][Mn^{4+}=O]$$

$$+k_{4}[NH_{2}][NO_{(g)}] - k_{5}[NH_{3(ad)}][Mn^{4+}=O]$$
(18)

 NH_2 concentration on Mn-Fe spinel would not change at the steady state. Therefore,

$$\frac{\mathrm{d[NH}_2]}{\mathrm{d}t} = 0 \tag{19}$$

25 Thus,

15

$$[\mathrm{NH}_{2}] = \frac{k_{5}[\mathrm{NH}_{3(\mathrm{ad})}][\mathrm{Mn}^{4+}=\mathrm{O}]}{k_{6}[\mathrm{Mn}^{4+}=\mathrm{O}] + k_{4}[\mathrm{NO}_{(\mathrm{g})}]}$$
(20)

Then, the kinetic equation of N_2 formation through the Eley-Rideal mechanism (i.e. Equation 15) would be transformed as:

$$\frac{d[N_2]}{dt}\Big|_{E-R} = k_4[NH_2][NO_{(g)}]$$

$$= k_4[NO_{(g)}]\frac{k_5[NH_{3(ad)}][Mn^{4+}=O]}{k_6[Mn^{4+}=O]+k_4[NO_{(g)}]}$$
(21)

³⁰ If the rate of N₂O formation was very low (for example the SCR reaction over Mn-Fe spinel in the presence of 5% of H₂O), the value of k_6 [Mn⁴⁺=O][NH₂] would be close to zero (hinted by Equation 17). Therefore, N₂ formation through the Eley-Rideal mechanism would be approximately independent of gaseous NO ³⁵ concentration. Meanwhile, Equation 13 shows that N₂ formation

through the Langmuir-Hinshelwood mechanism was not related to gaseous NO concentration. They suggest that the reaction order of N₂ formation over Mn-Fe spinel with respect to gaseous NO concentration would be nearly zero. However, Fig. 6 shows that 40 the rate of N₂ formation remarkably increased with the increase

of gaseous NO concentration in the presence of H₂O. They indicate the rate of NH₂ formation (i.e. Equation 16) was much higher than the rate of NH₂ reduction (i.e. Equations 15 and 17) and NH₂ reduced through Reactions 9 and 10 can be rapidly ⁴⁵ recovered through Reaction 8. Therefore, NH₂ concentration on Mn-Fe spinel at the steady state can be approximately regarded as a constant,^{13, 14} which was not related to the concentrations of gaseous NO and gaseous NH₃. Hinted by Equation 16, NH₂ concentration on Mn-Fe spinel depended on the oxidation ability ⁵⁰ of Mn-Fe spinel, and the concentrations of NH₃ adsorbed and Mn⁴⁺ on Mn-Fe spinel.

NH on Mn-Fe spinel resulted from the further oxidation of NH₂ (i.e. Reaction 10), and it was consumed through Reaction 11. NH concentration on Mn-Fe spinel would not change at the ⁵⁵ steady state. Therefore,

$$\frac{d[NH]}{dt} = k_6[NH_2][Mn^{4+}=O]$$

$$-k_3[NH][NO_{(g)}][Mn^{4+}=O]=0$$
(22)

Thus,

$$[NH] = \frac{k_6 [NH_2]}{k_3 [NO_{(g)}]}$$
(23)

Then, the kinetic equation of N_2O formation over Mn-Fe spinel 60 through the Eley-Rideal mechanism (i.e. Equation 14) can be transformed as:

$$\frac{d[N_2O]}{dt}\Big|_{E-R} = k_3[NH][NO_{(g)}][Mn^{4+}=O]$$

$$= k_3 \frac{k_6[NH_2]}{k_3[NO_{(g)}]}[NO_{(g)}][Mn^{4+}=O]$$

$$= k_6[NH_2][Mn^{4+}=O]$$
(24)

According to Equations 12, 13, 15 and 24, the kinetic equations of NO reduction and N_2O formation over Mn-Fe spinel ⁶⁵ can be described as follows:

$$\frac{d[N_2O]}{dt} = \frac{d[N_2O]}{dt} \Big|_{E-R} + \frac{d[N_2O]}{dt} \Big|_{L-H}$$

= $k_6[NH_2][Mn^{4+}=O] + k_1[Mn^{3+}-O-NO_2-NH_3]$
= k_{N_2O} (25)

$$-\frac{d[NO_{(g)}]}{dt} = \frac{d[N_2]}{dt}\Big|_{E-R} + \frac{d[N_2]}{dt}\Big|_{L-H} + \frac{d[N_2O]}{dt}$$

$$= k_4[NH_2][NO_{(g)}] + k_2[Mn^{3+}-O-NO-NH_3]$$

$$+ k_6[NH_2][Mn^{4+}=O] + k_1[Mn^{3+}-O-NO_2-NH_3]$$

$$= k_{N_2(E-R)}[NO_{(g)}] + k_{N_2(L-H)} + k_{N_2O}$$
(26)

Where, $k_{N2(E-R)}$, $k_{N2(L-H)}$ and k_{N2O} were the reaction rate constants of N₂ formation over Mn-Fe spinel through the Eley-

This journal is © The Royal Society of Chemistry [year]

35

Rideal mechanism, that of N₂ formation through the Langmuir-Hinshelwood mechanism and that of N₂O formation. $k_{N2(E-R)}$, $k_{N2(L-H)}$ and $k_{N2(E-R)}$ can be described as:

$$k_{N_2(E-R)} = k_4[NH_2]$$
 (27)

$$k_{N_{2}(I,H)} = k_{2}[Mn^{3+} - O-NO-NH_{3}]$$
 (28)

$$k_{N_{2}O} = k_6 [NH_2] [Mn^{4+} = O] + k_1 [Mn^{3+} - O - NO_2 - NH_3]$$
 (29)

4.2 Steady-state kinetic study

5

30

To obtain the rate constants of NO reduction over Mn-Fe spinel (i.e. $k_{N2(E-R)}$, $k_{N2(L-H)}$ and k_{N2O}), the steady-state kinetic ¹⁰ study was performed. ² Figs. 6a and 6b show that there was an excellent linear relationship between the rate of NO reduction and gaseous NO concentration, which was consistent with the hint of Equation 26. ¹⁴ Meanwhile, Figs. 6c and 6d show that the rate of N₂O formation was generally independent of gaseous NO ¹⁵ concentration, which was consistent with the hint of Equation 25. ¹⁴ Therefore, the rate constants of NO reduction over Mn-Fe spinel (i.e. $k_{N2(E-R)}$, $k_{N2(L-H)}$ and k_{N2O}) in the presence and in the absence of H₂O can be calculated from Fig. 6 after the linear regression, which are listed in Table 3.

Table 3 shows that $k_{N2(E-R)}$ and k_{N2O} of NO reduction over Mn-Fe spinel in the presence of H₂O were both much less than those in the absence of H₂O. They suggest that N₂ formation through Eley-Rideal mechanism and N₂O formation over Mn-Fe spinel were both restrained remarkably by H₂O. Furthermore, Table 3

²⁵ also shows that the decrease of $k_{\rm N2O}$ due to the presence of H₂O was much faster than the decrease of $k_{\rm N2(E-R)}$. It suggests that the inhibition of N₂O formation over Mn-Fe spinel by H₂O was much more remarkable than the inhibition on N₂ formation, resulting in an obvious decrease of N₂O selectivity (shown in Fig. 1).

Fig. 6 Dependence of NO conversion rate on gaseous NO concentration during the SCR reaction over Mn-Fe spinel: (a), in the absence of H₂O; (b), in the presence of 5% of H₂O; Dependence of N₂O formation rate on gaseous NO concentration during the SCR reaction over Mn-Fe spinel: (c), in the absence of H₂O; (d), in the presence of 5% of H₂O;Dependence of N₂ formation rate on gaseous NO concentration during the SCR reaction over Mn-Fe spinel: (e), in the absence of H₂O; (f), in the presence of 5% of H₂O. Reaction conditions: [NH₃]=500 ppm, 45 [NO]=200-500 ppm, [O₂]=2%, catalyst mass=5-20 mg, total flow rate=400 mL min⁻¹ and GHSV=1200000-4800000 cm³ g⁻¹ h⁻¹.

6 | Journal Name, [year], [vol], 00–00

This journal is © The Royal Society of Chemistry [year]

50

Table 3 The	rate constants	of N ₂ form	nation	over	Mn-Fe spinel through the		
Eley-Rideal	mechanism	$(k_{N2(E-R)})$	and	the	Langmuir-Hinshelwood		
mechanism ($k_{N2(L-H)}$), and the rate constant of N ₂ O formation (k_{N2O})							

Temperature/ºC		$-\frac{d[NO_{(g)}]^{*}}{dt} = k_{N_{2}(E-R)}[NO_{(g)}] + k_{N_{2}(L-H)} + k_{N_{2}O}$				
		<i>k</i> _{N2(L-H)} /μmol g ⁻¹ min ⁻¹	$k_{\text{N2(E-R)}}$ /mol g ⁻¹ min ⁻¹	$k_{ m N2O}$ /µmol g ⁻¹ min ⁻¹	- K	
in the absence of H ₂ O	120	4	0.081	8	0.994	
	140	3	0.12	16	0.996	
	160	0	0.15	27	0.998	
	180	0	0.18	51	0.999	
	200	0	0.20	73	0.999	
in the presence of 5% of H ₂ O	120	2.4	0.028	0.1	0.997	
	140	0	0.047	0.2	0.997	
	160	0	0.090	0.4	0.998	
	180	3.9	0.15	0.5	0.999	
	200	2.8	0.18	1.1	0.999	

* The unit of $[NO_{(g)}]$ in this equation was m³ m⁻³.

5 4.3 Transient reaction study

To clarify the mechanism of H₂O inhibition on NO reduction over Mn-Fe spinel, the transient reaction study was conducted (shown in Figs. 7 and 8). Because N₂ formed cannot be determined in this work, N₂O was selected as a probe to study the ¹⁰ effect of H₂O on NO reduction over Mn-Fe spinel.

After NO+O₂ passed over NH₃ presorbed Mn-Fe spinel, 2.3 μ mol of N₂O formed (shown in Fgiure 7a). The formed N₂O mainly resulted from the Eley-Rideal mechanism. ^{13, 14, 29} However, only 1.5 μ mol of N₂O formed during passing

- ¹⁵ NO+O₂+H₂O over NH₃ presorbed Mn-Fe spinel (shown in Fig. 7b). As NH₃ adsorption and the activation of adsorbed NH₃ (i.e. Reactions 1, 8 and 10) were not affected by H₂O, it suggests that k_3 in the presence of H₂O was less than that in the absence of H₂O, resulting in the inhibition of Reaction 11 by H₂O. Fig. 7c shows
- ²⁰ that approximately 1.2 µmol of N₂O formed as NO+O₂ passed over NH₃+H₂O presorbed Mn-Fe spinel. As the interface reaction (i.e. Reaction 11) was not affected by H₂O, it suggests that the concentration of NH on Mn-Fe spinel in the presence of H₂O was only approximately 52% of that in the absence of H₂O. NH₃-TPD
- ²⁵ profiles show that the concentration of NH₃ adsorbed on Mn-Fe spinel (i.e. $[NH_{3(ad)}]$) decreased approximately 14% in the presence of H₂O (shown in Table 1). It suggests that k_6 in the presence of H₂O was much less than that in the absence of H₂O, resulting in the inhibition of the over-activation of adsorbed NH₃
- $_{30}$ (Reaction 10). The decrease of k_6 was related to the decrease of the oxidation ability of Mn-Fe spinel in the presence of H₂O, which was hinted by the results of NH₃ oxidation and NO oxidation (shown in Fig. 5). As a result, the formation of N₂O over Mn-Fe spinel through the Eley-Rideal mechanism was
- ³⁵ obviously restrained in the presence of H_2O and only 0.9 µmol of N_2O formed during passing $NO+O_2+H_2O$ over NH_3+H_2O presorbed Mn-Fe spinel (shown in Fig. 7d). The mechanism of N_2 formation over Mn-Fe spinel through the Eley-Rideal mechanism was similar to that of N_2O formation. The decrease of the presence of H O also caused to the
- ⁴⁰ oxidation ability in the presence of H_2O also caused to the decrease of k_5 . Meanwhile, the concentration of NH_3 adsorbed on

Mn-Fe spinel decreased in the presence of H₂O (shown in Table 1). Hinted by Equation 16, [NH₂] on Mn-Fe spinel notably decreased in the presence of H₂O. Furthermore, the decrease of k_3 ⁴⁵ in the presence of H₂O also indicates the decrease of k_4 . Hinted by Equation 27, $k_{N2(E-R)}$ would decrease remarkably in the presence of H₂O, which was demonstrated in Table 3.

Fig. 7 Transient reaction taken at 150 °C upon: (a), passing NO+O₂ over NH₃ presorbed Mn-Fe spinel; (b), passing NO+O₂+H₂O over NH₃ presorbed Mn-Fe spinel; (c), passing NO+O₂ over NH₃+H₂O presorbed
⁵⁵ Mn-Fe spinel; (d), passing NO+O₂+H₂O over NH₃+H₂O presorbed Mn-Fe spinel.

Journal Name, [year], [vol], 00–00

7

Fig. 8 Transient reaction taken at 150 °C upon: (a), passing NH₃ over NO+O₂ presorbed Mn-Fe spinel; (b), passing NH₃+H₂O over NO+O₂ presorbed Mn-Fe spinel; (c), passing NH₃ over NO+O₂+H₂O presorbed Mn-Fe spinel; (d), passing NH₃+H₂O over NO+O₂+H₂O presorbed Mn-Fe ¹⁰ spinel.

After NH₃ passed over NO+O₂ presorbed Mn-Fe spinel, 1.3 µmol of N₂O formed (shown in Fig. 8a). The formed N₂O mainly resulted from the Langmuir-Hinshelwood mechanism. However, only 0.1 µmol of N₂O formed during passing NH₃+H₂O over ¹⁵ NO+O₂ presorbed Mn-Fe spinel (shown in Fig. 8b). As the

adsorption of NO_x species on Mn-Fe spinel (i.e. Reactions 2-4) was not affected by H₂O, it suggests the formation of NH₄NO₃ and/or the decomposition of NH₄NO₃ (i.e. Reaction 6) were suppressed by H₂O. Fig. 8c shows that approximately 0.45 µmol ²⁰ of N₂O formed as NH₃ passed over NO+O₂+H₂O presorbed Mn-Fe spinel. As the formation of NH₄NO₃ and the decomposition of NH₄NO₃ (i.e. Reaction 6) were not affected by H₂O, it suggests that the formation of NO₃⁻ on Mn-Fe spinel was restrained by H₂O. This result was consistent with the result of NO-TPD ²⁵ (shown in Fig. 4). As a result, N₂O formation over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism was suppressed by H₂O and little N₂O can be observed during passing NH₃+H₂O over NO+O₂+H₂O presorbed Mn-Fe spinel (shown in Fig. 8d). Therefore, the value of *k*₁[Mn³⁺-O-NO₂-NH₃] decreased to 0 in ³⁰ the presence of H₂O. Meanwhile, *k*₆ and [NH₂] both obviously

decreased in the presence of H₂O. Hinted by Equation 29, $k_{\rm N2O}$ in the presence of H₂O was much less than that in the absence of H₂O, which was demonstrated in Table 2.

5. Conclusion

³⁵ H₂O showed a notable inhibition on NO reduction and N₂O formation over Mn-Fe spinel. NO reduction and N₂O formation over Mn-Fe spinel through the Eley-Rideal mechanism were notably restrained by H₂O due to the decrease of the oxidation ability, the inhibition of NH₃ adsorption and the inhibition of the ⁴⁰ interface reaction. Furthermore, N₂O formation over Mn-Fe spinel through the Langmuir-Hinshelwood mechanism was completely suppressed by H₂O due to the suppression of the formation and/or decomposition of NH₄NO₃.

Acknowledgements:

⁴⁵ This study was financially supported by the National Natural Science Fund of China (Grant No. 21207067 and 41372044), the Fundamental Research Funds for the central Universities (Grant No. 30920130111023), and the Zijin Intelligent Program, Nanjing University of Science and Technology (Grant No. 2013-0106).

50 Notes and references

School of Environmental and biological Engineering, Nanjing University of Science and technology, Nanjing, 210094 P. R. China; E-mail: yangshijiangsq@163.com

- 1. Y. Liu, T. T. Gu, X. L. Weng, Y. Wang, Z. B. Wu and H. Q. Wang, J. Phys. Chem. C, 2012, 116, 16582-16592.
- 2. G. S. Qi and R. T. Yang, J. Catal., 2003, 217, 434-441.
- P. G. Smirniotis, P. M. Sreekanth, D. A. Pena and R. G. Jenkins, Ind. Eng. Chem. Res., 2006, 45, 6436-6443.
- 4. Z. B. Wu, B. Q. Jiang, Y. Liu, H. Q. Wang and R. B. Jin, Environ. Sci. Technol., 2007, 41, 5812-5817.
- 5. B. Q. Jiang, Y. Liu and Z. B. Wu, J. Hazard. Mater., 2009, 162, 1249-1254.
- Y. J. Kim, H. J. Kwon, I. S. Nam, J. W. Choung, J. K. Kil, H. J. Kim, M. S. Cha and G. K. Yeo, Catal. Today, 2011, 151, 244-250.
- 65 7. S. M. Lee, K. H. Park, S. S. Kim, D. Kwon and S. C. Hong, J. Air Waste Manage. Assoc., 2012, 62, 1085-1092.
- 8. G. S. Qi, R. T. Yang and R. Chang, Appl. Catal. B-environ, 2004, 51, 93-106.
- 9. G. S. Qi and R. T. Yang, J. Phys. Chem. B, 2004, 108, 15738-15747.
- 70 10. Z. B. Wu, R. B. Jin, Y. Liu and H. Q. Wang, Catal. Commun., 2008, 9, 2217-2220.
- 11. G. S. Qi and R. T. Yang, Appl. Catal. B-environ, 2003, 44, 217-225.

This journal is © The Royal Society of Chemistry [year]

- S. Yang, C. Wang, J. Li, N. Yan, L. Ma and H. Chang, Appl. Catal. B-environ, 2011, 110, 71-80.
- S. Yang, Y. Liao, S. Xiong, F. Qi, H. Dang, X. Xiao and J. Li, J. Phys. Chem. C, 2014, 118, 21500-21508.
- ⁵ 14. S. Yang, S. Xiong, Y. Liao, X. Xiao, F. Qi, Y. Peng, Y. Fu, W. Shan and J. Li, Environ. Sci. Technol., 2014, 48, 10354-10362.
 - 15. Z. G. Lei, B. Han, K. Yang and B. H. Chen, Chem. Eng. J., 2013, 215, 651-657.
- 16. S. W. Pan, H. C. Luo, L. Li, Z. L. Wei and B. C. Huang, J. Mol. 10 Catal. A-chem, 2013, 377, 154-161.
- 17. S. J. Yang, Y. F. Guo, N. Q. Yan, D. Q. Wu, H. P. He, Z. Qu and J. P. Jia, Ind. Eng. Chem. Res., 2011, 50, 9650-9656.
- S. Yang, N. Yan, Y. Guo, D. Wu, H. He, Z. Qu, J. Li, Q. Zhou and J. Jia, Environ. Sci. Technol., 2011, 45, 1540-1546.
- 15 19. S. J. Yang, Y. F. Guo, H. Z. Chang, L. Ma, Y. Peng, Z. Qu, N. Q. Yan, C. Z. Wang and J. H. Li, Appl. Catal. B-environ, 2013, 136, 19-28.
- S. J. Yang, J. H. Li, C. Z. Wang, J. H. Chen, L. Ma, H. Z. Chang, L. Chen, Y. Peng and N. Q. Yan, Appl. Catal. B-environ, 2012, 117, 73-80.
- 21. M. Machida, M. Uto, D. Kurogi and T. Kijima, J. Mater. Chem., 2001, 11, 900-904.
- 22. G. Busca, L. Lietti, G. Ramis and F. Berti, Appl. Catal. B-environ, 1998, 18, 1-36.
- 25 23. F. Eigenmann, M. Maciejewski and A. Baiker, Appl. Catal. Benviron, 2006, 62, 311-318.
 - L. A. Chen, J. H. Li and M. F. Ge, Environ. Sci. Technol., 2010, 44, 9590-9596.
- 25. M. Kantcheva, J. Catal., 2001, 204, 479-494.
- 30 26. L. Chmielarz, P. Kustrowski, A. Rafalska-Lasocha and R. Dziembaj, Appl. Catal. B-environ, 2005, 58, 235-244.
- 27. L. Gang, B. G. Anderson, J. van Grondelle and R. A. van Santen, Appl. Catal. B-environ, 2003, 40, 101-110.
- 28. S. J. Yang, C. X. Liu, H. Z. Chang, L. Ma, Z. Qu, N. Q. Yan, C. Z. Wang and J. H. Li, Ind. Eng. Chem. Res., 2013, 52, 5601-5610.
- 29. S. Yang, Y. Fu, Y. Liao, S. Xiong, Z. Qu, N. Yan and J. Li, Catal. Sci. Technol., 2014, 4, 224-232.