Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

1	Ozone catalytic oxidation for ammonia removal from simulated air at
2	room temperature
3	Yang Liu ^a , Xiao-Song Li ^a , Jing-Lin Liu ^a , Chuan Shi ^a , Xiaobing Zhu ^{a,} *, Ai-Min Zhu ^a ,
4	Ben WL. Jang ^b .*
5	^a Laboratory of Plasma Physical Chemistry, Dalian University of Technology, 116024 Dalian,
6	China
7	^b Department of Chemistry, Texas A&M University-Commerce, PO Box 3011, Commerce, TX
8	75429, United States
9	
10	* Corresponding authors. Fax: +86-411-84706094 (X. Zhu), +1-903-468-6020 (B.WL. Jang).
11	E-mail addresses: xzhu@dlut.edu.cn (X. Zhu), Ben.Jang@tamuc.edu (B.WL. Jang).
13	ABSTRACT
14	Ozone catalytic oxidation (OZCO) for removing ammonia from simulated air
15	over AgMn/HZSM-5 (AgMn/HZ) catalyst with high ammonia conversion and high N_2
16	selectivity at room temperature is reported for the first time. HZ, Ag/HZ, Mn/HZ and
17	AgMn/HZ catalysts were compared in the OZCO reactions of gaseous and adsorbed
18	$NH_3.$ In OZCO of gaseous NH_3,N_2 was the major product and N_2O was the minor
19	product. NH_3 conversion dropped quickly with time-on-stream (TOS) over HZ and
20	Ag/HZ catalysts while it remained almost constant at a high level over Mn/HZ and
21	AgMn/HZ catalysts during the entire test. N_2 selectivity of AgMn/HZ catalyst was
22	higher than that of Mn/HZ catalyst. When the initial concentration of NH_3 was 521
23	ppmv and the ratio of initial concentration of O_3 to NH_3 was 1.73, 99% of NH_3
24	conversion with 94% of N_2 selectivity was obtained over AgMn/HZ catalyst at room

6	Keywords: Catalytic oxidation; Ozone; Ammonia removal; AgMn/HZSM-5 catalyst.
5	
4	of adsorbed and gaseous NH ₃ .
3	comparative investigation of the gaseous products and surface species during OZCO
2	pathways for OZCO of NH_3 were proposed for the four catalysts based on the
1	temperature and 150,000 ml·g ⁻¹ ·h ⁻¹ of gas hourly space velocity (GHSV). Finally, the

1 1. Introduction

Ammonia, which is a toxic, corrosive and reactive gas with an irritating odor, is 2 considered as a highly hazardous pollutant and of great importance in PM 2.5 3 formation and acid rain deposition.¹ Due to the increasing environmental concerns, 4 NH₃ removal from air is becoming a serious issue. Selective catalytic oxidation (SCO) 5 of NH₃ to N₂ is an ideal technology for NH₃ abatement.²⁻¹² Several catalysts have 6 been proposed for SCO of NH₃, however, they usually require high temperatures and, 7 therefore, are energy-consuming. Typically, Pt or PtO based catalysts, supported on 8 γ -Al₂O₃ or HZSM-5 (HZ) zeolites, required temperatures of 200-250 °C to achieve 9 10 100% of NH₃ conversion using O₂ (gas hourly space velocity (GHSV^{\ddagger}) = 60,000 ml'g⁻¹·h⁻¹ with 1000 ppmv of NH₃).² Long et al.⁵ have prepared several Fe based 11 12 catalysts, such as Fe₂O₃-TiO₂, Fe₂O₃-ZrO₂, Fe₂O₃-Al₂O₃ and Fe₂O₃-SiO₂, for SCO of NH₃ and found that 95-99% of NH₃ conversion could be obtained at temperatures as 13 high as 500 °C (GHSV = 150,000 ml[·]g⁻¹·h⁻¹ with 1000 ppmv of NH₃). Lippits *et al.*¹⁰ 14 and Liang *et al.*¹² reported that, over Cu/ γ -Al₂O₃ catalysts, 100% of NH₃ conversion 15 was achieved at temperatures exceeding 300 °C (GHSV = 12,000 ml g^{-1} ·h⁻¹ with 16 20,000 ppmv of NH_3^{10} and 30,000 ml·g⁻¹·h⁻¹ with 1000 ppmv of NH_3^{12} respectively). 17 O₃, which is a strong oxidant, has attracted extensive attention and is now being 18

widely investigated in the catalytic removal of toxic substances from polluted gases because its performance in such reactions is superior to that of O_2 . On the basis of the results from Mehandjiev and co-authors,¹³⁻¹⁶ using O_3 instead of O_2 permitted the reaction to proceed in a low-temperature range and achieved a high catalytic activity.

The data obtained using manganese oxide as the catalyst demonstrated that the 1 activation energy in catalytic benzene oxidation using O₃ was three times lower than 2 that using O_2 .¹³ O_3 has been frequently used for the removal of benzene,^{13,17-26} 3 toluene,²⁷⁻³³ chlorobenzene,^{34,35} formaldehyde^{36,37} and carbon monoxide,^{14,16,38-40} etc. 4 However, to the best of our knowledge, very few studies focused on the ozone 5 catalytic oxidation (OZCO) of NH₃. One is reported by Kastner and co-authors,¹ who 6 7 investigated OZCO of NH₃ at room temperature using wood fly ash and biomass char as catalysts. However, the best NH₃ conversion achieved was around 60% at 8 relatively low GHSV of 76,200 ml[·]g⁻¹·h⁻¹ and low inlet NH₃ concentration of about 11 9 ppmv. Another is reported by Ichikawa *et al.*,⁴¹ but it is about aqueous-phase reaction 10 of NH_4^+ with O_3 . 11 Manganese oxide catalysts are highly active for ozone decomposition^{13,17,25,27,42} 12

and the supported Ag catalysts were reported to be active for NH_3 oxidation.⁶ HZ zeolites are often used as catalyst supports in NH_3 oxidation processes, since the acid sites in HZ can enhance the adsorption and activation of NH_3 molecules and the pore structure of HZ favors NH_3 oxidation to N_2 .^{4,7} Herein, the investigation on OZCO of NH_3 over the well-defined HZ supported Ag and/or Mn catalysts is reported in this study. To clarify the reaction mechanisms for OZCO of NH_3 , OZCO of adsorbed NH_3 is also examined comparatively over the same catalysts.

20

21 2. Experimental

22 **2.1. Catalyst preparation**

1 HZ-supported catalysts were prepared via incipient wetness impregnation method using HZ (SiO₂/Al₂O₃ = 360, BET^{\ddagger} surface area = 341 m²·g⁻¹, Catalyst Plant 2 3 of Nankai University, China) as the support. AgNO₃ and Mn(CH₃COO)₂:4H₂O were used as Ag and Mn precursors, respectively. The impregnated samples were aged 4 5 overnight at ambient temperature in darkness followed by drying at 110 $\,^{\circ}$ C for 6 h and calcination in static air in an oven at 450 °C for 3 h. The obtained powders were 6 7 grounded, tableted, crushed and sieved to 20-40 mesh.

8

2.2. ICP & BET characterization and the chemical states of Ag and Mn species

9 Inductively coupled plasma-atomic emission spectroscopy (ICP-AES, optima 2000DV, USA) was used to determine Ag and Mn loadings. The Ag loading of Ag/HZ 10 catalyst was 0.7 wt% and the Mn loading of Mn/HZ catalyst was 2.3 wt%. The Ag 11 12 and Mn loadings of AgMn/HZ catalyst were 0.8 wt% and 2.4 wt%, respectively. The reason why the Ag loading of 0.8 wt% and Mn loading of 2.4 wt% were chosen for 13 AgMn/HZ catalyst is based on our previous study,²⁶ which showed such AgMn/HZ 14 15 catalyst possessing the best activity and stability in benzene oxidation by O₃.

The specific surface areas of the supported catalysts were measured by the N_2 16 adsorption BET method at -196 °C (Autosorb-1, Quantachrome, USA). The BET 17 surface areas were 341, 334 and 336 m²·g⁻¹ for Ag/HZ, Mn/HZ and AgMn/HZ 18 catalysts, respectively. 19

As revealed by the XPS²⁵ and UV-vis Diffuse Reflectance Spectra²⁶ of the 20 catalysts, Ag was present in metallic state over Ag/HZ and AgMn/HZ catalysts and 21 Mn existed as a mixture of Mn³⁺ and Mn⁴⁺ over Mn/HZ and AgMn/HZ catalysts after 22

6

1 calcination.

22

2 2.3. Quantification methods of the concentrations of NH₃, N₂O, O₃, NO, NO₂ and
3 N₂

For the quantification of NH₃, N₂O and O₃, the standard curves of "Strongest 4 FT-IR peak height versus Concentration" were established on a Fourier 5 transform-infrared (FT-IR) spectrometer (Nicolet-Antaris IGS Analyzer, Thermo, 6 7 USA). For the standard curves of NH_3 and N_2O , their concentrations were given by their standard gases. For O₃ standard curve, due to O₃ standard gas being unavailable, 8 O₃ concentrations were calibrated by the iodometric titration method. The strongest 9 peak heights at 1000-900 cm⁻¹, 2300-2150 cm⁻¹ and 2150-2000 cm⁻¹ were used for the 10 quantification of NH₃, N₂O and O₃, respectively. 11

However, for NO (2000-1800 cm⁻¹) and NO₂ (1700-1500 cm⁻¹), their 12 concentrations could not be precisely evaluated by the FT-IR spectrometer alone due 13 to the superposition of H_2O (2000-1200 cm⁻¹). Therefore, NO and NO₂ were 14 quantified with mass spectrometer (HPR 20 QIC, HIDEN Analytical, England) by the 15 internal standard method. The product of N₂O was used as the internal standard 16 17 because its concentration could be determined simultaneously by the FT-IR spectrometer. The specific quantification methods of NO, NO2 and N2 are described in 18 Supplementary Data. 19

20 2.4. OZCO of gaseous NH₃ and investigation of the surface species after OZCO 21 process

Catalytic reactions were carried out with a fixed-bed flow reactor. A quartz

U-tube reactor (i.d. 4 mm) with about 0.1 g of catalyst was immersed in water bath at 1 2 17 °C. Ozone was generated from pure O₂ (purity > 99.999%) by a homemade 3 ozone generator and monitored online by the FT-IR spectrometer. Before performing the experiments, all catalysts were pretreated in a dry simulated air stream at 450 $^{\circ}$ C 4 5 for 1 h and then cooled down to room temperature in the same atmosphere. The feed gas of 250 SCCM[‡](Standard Cubic Centimeters per Minute), containing NH₃, O₃, 20 6 vol.% of O_2 and balanced by N_2 , was flowed through the catalyst bed, which 7 corresponded to a GHSV of 150,000 ml[·]g⁻¹·h⁻¹. Unless otherwise stated, NH₃ and O₃ 8 9 concentrations were c.a. 530 ppmv and 450 ppmv, respectively. NH₃ conversion $(X_{\rm NH_3})$, O₃ conversion $(X_{\rm O_3})$, ratio of converted O₃ to NH₃ $(n_{\rm O_3}^{\rm Conv.}/n_{\rm NH_3}^{\rm Conv.})$, N₂O 10 selectivity (s_{N_2O}) and N₂ selectivity (s_{N_2}) were calculated as follows: 11

12
$$X_{\rm NH_3}(\%) = \frac{C_{\rm NH_3}^{\rm in} - C_{\rm NH_3}^{\rm out}}{C_{\rm NH_3}^{\rm in}} \times 100\%$$
(1)

13
$$X_{O_3}(\%) = \frac{C_{O_3}^{in} - C_{O_3}^{out}}{C_{O_3}^{in}} \times 100\%$$
 (2)

14
$$n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}} = \frac{C_{O_3}^{\text{in}} \cdot X_{O_3}}{C_{\text{NH}_3}^{\text{in}} \cdot X_{\text{NH}_3}}$$
 (3)

15
$$S_{N_2O}(\%) = \frac{C_{N_2O} \times 2}{C_{NH_3}^{in} \cdot X_{NH_3}} \times 100\%$$
 (4)

16
$$S_{N_2}(\%) = 1 - S_{N_2O}$$
 (5)

17 where $c_{\rm NH_3}^{\rm in}$ and $c_{\rm NH_3}^{\rm out}$ are the inlet and outlet NH₃ concentrations in the gas stream 18 during OZCO of gaseous NH₃, respectively; $c_{\rm O_3}^{\rm in}$ and $c_{\rm O_3}^{\rm out}$ are the inlet and outlet O₃ 19 concentrations in the gas stream during OZCO of NH₃, respectively; $c_{\rm N_2O}$ is the outlet 20 N₂O concentration in the gas stream during OZCO of NH₃.

To verify the reliability of N₂ selectivity derived from eqn. (5), additional experiments using Ar as the balanced gas for direct measurement of N₂ were carried out: 0.2 g of AgMn/HZ catalyst, 500 SCCM of total flow rate with 1000 ppmv of NH₃ and 500 ppmv of O₃, 20 vol.% of O₂ and Ar balanced. The results are shown in Fig. S1. The N₂ selectivity in Fig. S1e was derived from the direct measurement according to eqn. (6):

7
$$S_{N_2}(\%) = \frac{C_{N_2} \times 2}{C_{NH_3}^{in} \cdot X_{NH_3}} \times 100\%$$
 (6)

8 where c_{N_2} is the outlet N₂ concentration in the gas stream during OZCO of NH₃ and 9 could be obtained from eqn. S(16). And the N₂ selectivities derived from eqns. (5) and 10 (6) were 80% and *c.a.*75%, respectively. This confirms that the N₂ selectivity derived 11 from eqn. (5) is reliable in this work.

After OZCO of NH₃, the used catalyst pellets were unloaded from the reactor, ground into powders for ATR (attenuated total reflectance) measurements and temperature programmed desorption (TPD) studies.

15 The ATR spectra were recorded on a Nicolet 6700 spectrometer (Thermo, USA) with an MCT detector (Mercury Cadmium Telluride detector, which needs to be 16 17 cooled with liquid nitrogen). The catalyst powder was loaded onto the Smart ATR accessory with diamond as the ATR material. The background spectrum was recorded 18 19 with the bare diamond and it was subtracted from the spectra of HZ, Mn/HZ, Ag/HZ 20 and AgMn/HZ catalysts. The beam path inside the spectrometer was purged with 21 purified CO₂-free dry air. The spectra were recorded by averaging 32 scans at a resolution of 4 cm^{-1} . 22

Catalysis Science & Technology Accepted Manuscript

1	For the TPD experiments of the used catalysts, a helium stream was flowed
2	through the catalyst bed of 0.03 g at a flow rate of 100 SCCM for 1 h until the
3	baseline of the mass spectrometer became stable. The temperature was raised linearly
4	at 10 $^{\circ}$ min ⁻¹ to 450 $^{\circ}$ and held for 30 min afterwards.
5	2.5. OZCO of adsorbed NH ₃
6	2.5.1. Investigation of surface adsorption sites on the catalysts towards NH_3 by
7	NH ₃ -TPD
8	NH_3 -TPD tests were carried out with 0.1 g of catalyst under an Ar stream of 100
9	SCCM. Before the TPD measurements, the samples were pretreated in 100 SCCM of
10	Ar flow at 450 °C for 1 h and then cooled down to room temperature in the same
11	atmosphere. The samples were then treated with 540 ppmv of NH_3 for 25 min. After
12	that, the NH_3 stream was replaced with 100 SCCM of Ar flow for 1 h to remove the
13	physisorbed NH ₃ . Subsequently, the temperature was increased in an Ar stream of 100
14	SCCM to 450 °C with a ramp of 10 °C min ⁻¹ .
15	2.5.2. OZCO of adsorbed NH_3 and investigation of the surface species after
16	OZCO
17	After pretreated in dry simulated air at 450 $^{\circ}$ C for 1h and cooled down to room
18	temperature, the samples were treated with 540 ppmv of NH_3 for 25 min at room
19	temperature. Then the NH_3 stream was replaced with 250 SCCM of He flow
20	containing 20 vol.% of O_2 for 40 min to remove the physisorbed NH ₃ . After that, a

He, was flowed through the catalyst bed for 30 min. In order to present how much

feed gas of 250 SCCM, containing 450 ppmv of O3, 20 vol.% of O2 and balanced by

- 1 N₂O was produced during OZCO of adsorbed NH₃, N₂O / (N₂ + N₂O) was defined as
- 2 follows:

3
$$N_2O/(N_2 + N_2O)(\%) = \frac{F \cdot \int_0^t C_{N_2O} \cdot dt}{F \cdot \left(\int_0^t C_{N_2O} \cdot dt + \int_0^t C_{N_2O} \cdot dt\right)} \times 100\%$$
 (7)

where *F* and *t* are the total flow rate and oxidation time during OZCO of adsorbed
NH₃, respectively. And the integral is the area under the curve for N₂ or N₂O versus
time during OZCO of adsorbed NH₃.

7 Thereafter, ATR and TPD experiments were performed over the used catalysts
8 under the conditions described in Section 2.4.

9

10 **3. Results and discussion**

11 **3.1. OZCO of gaseous NH**₃

3.1.1. Comparison of OZCO of gaseous NH₃ over HZ, Mn/HZ, Ag/HZ and
 AgMn/HZ catalysts

Based on the results of Olszyna *et al.*,⁴³ mixtures of NH_3 and O_3 could react at 30 °C in gaseous phase. Therefore, a control consisting of a reactor system without catalyst was operated at room temperature, 250 SCCM of dry simulated air with 527 ppmv of NH_3 and 446 ppmv of O_3 . The result shows that almost no NH_3 conversion was observed, which demonstrates that the gaseous reaction of O_3 and NH_3 could be neglected in this study.

The catalytic performance of HZ and HZ-supported catalysts was evaluated in the OZCO of gaseous NH₃ and the results are presented in Fig. 1. Fig. 1a shows the

1	variation of NH ₃ conversion with time-on-stream (TOS) during NH ₃ oxidation using
2	O_3 . As shown in Fig. 1a, Ag/HZ and Mn/HZ catalysts possessed much higher NH_3
3	conversion than the bare HZ support did, which indicates that the addition of Ag or
4	MnO_x greatly enhanced the NH_3 oxidation. Compared with the Mn/HZ catalyst, the
5	increase of NH ₃ conversion on AgMn/HZ catalyst was not significant, since Mn/HZ
6	catalyst had already possessed very high NH ₃ conversion before the addition of Ag.

In terms of catalyst stability, NH_3 conversion dropped quickly with TOS over HZ and Ag/HZ catalysts. However, the conversion was almost constant around 50% over Mn/HZ and AgMn/HZ catalysts during the entire reaction. The results demonstrate that the addition of MnO_x greatly suppressed catalyst deactivation and enhanced the catalyst stability.

Additionally, as shown in Fig. 1b, O_3 conversion remained relatively constant at 60% and 80% over HZ and Ag/HZ catalysts, respectively. The relatively constant conversion of O_3 with decreasing conversion of NH₃ suggests that the usage of O_3 for NH₃ oxidation decreases with time over HZ and Ag/HZ. However, for Mn/HZ and AgMn/HZ catalysts, O_3 conversion was at 100% during the entire test. This should be ascribed to the very high activity of manganese oxides on O_3 decomposition and the consistent usage of O_3 for NH₃ oxidation throughout the test.^{13,17,25,27,42}

In all four cases, N_2 was the main gaseous product with small amount of N_2O . NO or NO₂ was not detected during OZCO of gaseous NH₃. As shown in Fig. 1c, N_2O and N_2 selectivities of the catalysts were compared among all four catalysts. In general, the N_2 selectivities were high on all samples, exceeding 80%. However,

Ag/HZ catalyst possessed the highest N2 selectivity of 95% while Mn/HZ catalyst was 1 the least selective to N2 among all catalysts. The oxidation of NH3 can be described as 2 the abstraction of hydrogen process,⁴⁴ in which the H atoms in the NH₃ molecules 3 were abstracted one by one to form adsorbed NH_x species and N atoms. Then the N 4 5 atoms could either be further oxidized into NO, which can react with NH_x to form N_2 , or further react with NO formed and release as N_2O .⁴⁴ The reason why that the N_2 6 selectivities over HZ and Ag/HZ catalysts were slightly higher than those of Mn/HZ 7 and AgMn/HZ catalysts (Fig. 1c) is not clear at this point. Since the N₂ selectivity of 8 9 AgMn/HZ catalyst (about 87%) was higher than that of Mn/HZ catalyst (c.a. 80%) (Fig. 1c), it indicates that Ag is beneficial to promote the selective oxidation of NH₃ to 10 11 N₂ during OZCO of gaseous NH₃. The $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratio during NH₃ oxidation is summarized in Fig. 1d. As shown 12 in Fig. 1d, the $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratio was relatively constant around 1.7 over Mn/HZ and 13 AgMn/HZ catalysts during the entire reaction. However, for HZ and Ag/HZ catalysts, 14 their $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratios were low at the beginning of OZCO reaction and then 15

increased fast with TOS, especially for HZ, the $n_{O_3}^{Conv.}/n_{NH_3}^{Conv.}$ ratio of which arrived at 17 about 2 at TOS = 60 min. Again, these results suggest that Mn/HZ and AgMn/HZ are more efficient and stable in O₃ utilization for NH₃ oxidation. 18

3.1.2. Effects of $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio over AgMn/HZ catalyst 19

16

Fig. 2 shows the effects of $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio on the NH₃ oxidation by O₃ over 20 AgMn/HZ catalyst at TOS = 60 min. Based on the proposed O_3 decomposition 21 mechanism by Oyama and co-workers,⁴⁵ it is assumed that only one oxygen atom 22

Catalysis Science & Technology Accepted Manuscript

1	derived from O_3 molecule is responsible for NH_3 oxidation. The production of N_2 and
2	N_2O could be written as eqns. (8) and (9), respectively:
3	$1.5 O_3 + NH_3 \rightarrow 0.5 N_2 + 1.5 O_2 + 1.5 H_2 O$ (8)
4	$2O_3 + NH_3 \rightarrow 0.5 N_2O + 2O_2 + 1.5 H_2O$ (9)
5	It can be seen from eqn. (8) that the stoichiometric ratio of O_3 to NH_3 is 1.5 for OZCO
6	of NH ₃ to N ₂ . When the $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio was 0.85, which is about half of the
7	stoichiometry, close to half of the NH_3 feed was excessive with respect to O_3 .
8	Therefore, the NH ₃ and O ₃ conversions are 51% and 100% at $C_{O_3}^{in} / C_{NH_3}^{in} = 0.85$,
9	respectively, as shown in Fig. 2. As the $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio increased to 1.32, which is
10	slightly lower than the stoichiometric ratio of 1.5, the NH ₃ conversion rose to 84%
11	and nearly all the O_3 was consumed (O_3 conversion was 95%, as shown in Fig. 2).
12	Moreover, almost 100% of NH ₃ conversion could be achieved at $C_{O_3}^{in} / C_{NH_3}^{in} = 1.73$,
13	which is slightly higher than the stoichiometric ratio of 1.5. In this case, O_3 was
14	slightly excessive and the O_3 conversion dropped to 84% (Fig. 2). In terms of N_2
15	selectivity, it was high in all three cases and increased from 87% ($C_{O_3}^{in} / C_{NH_3}^{in} = 0.85$) to
16	94% ($C_{O_3}^{in} / C_{NH_3}^{in} = 1.73$), which indicates that higher $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio promotes selective
17	oxidation of NH ₃ to N ₂ during OZCO process. When the $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio was 1.73, the
18	NH_3 conversion and N_2 selectivity were as high as 99% and 94%, respectively, over
19	AgMn/HZ catalyst at room temperature and GHSV of 150,000 ml [·] g ⁻¹ ·h ⁻¹ .

20 3.1.3. Studies on the surface species after OZCO of gaseous NH₃

Fig. 3 shows the ATR spectra of the fresh samples and the used catalysts after OZCO of gaseous NH₃ for 90 min. Compared with the fresh samples (Fig. 3a), new

bands at 1328 cm⁻¹, 1432 cm⁻¹, 3080 cm⁻¹ and 3254 cm⁻¹ were observed on all used 1 samples (Fig. 3b), which indicates the formation of new species after NH₃ oxidation. 2 Nitrates are one of the frequently recognized intermediates or by-products that would 3 be formed in NH₃ oxidation process.^{46,47} But the assignment of these new bands is not 4 5 straightforward, since the characteristic vibrations are different in literature due to different catalyst preparation and reaction conditions; especially for the 6 high-frequency regions (above 3000 cm⁻¹), the assignments are rare. In order to 7 facilitate the assignment of the new bands on the used catalysts, the spectrum of the 8 NH₄NO₃-HZ, prepared by impregnation of HZ with NH₄NO₃, was also given in Fig. 9 3b for reference. The same bands as those on the used samples were also observed on 10 the NH₄NO₃-HZ sample. Hence, bands at 1328 cm⁻¹ and 1432 cm⁻¹ could be assigned 11 12 to the symmetric and asymmetric stretching vibration of N=O in monodentate nitrates,⁴⁸ respectively; bands at 3080 cm⁻¹ and 3254 cm⁻¹ are attributed to the 13 symmetric and asymmetric stretching of N-H,⁴⁹ respectively. Therefore, it is 14 reasonable to deduce that monodentate nitrates and adsorbed ammonia ([NH₃]_a) were 15 deposited on the used catalyst surfaces after OZCO of gaseous NH₃. 16 17

Moreover, TPD studies were also performed over the used catalysts to further confirm the nature of the surface species after OZCO of gaseous NH₃. Fig. 4 shows the TPD results of the used HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts after 90-min OZCO of gaseous NH₃. The desorption of NH₃ was detected on all samples (Fig. S2) and no NO was detected by the FT-IR spectrometer. The MS data are shown in Fig. S3. As shown in Figs. S3a and S3b, no N₂ was formed over HZ and Ag/HZ catalysts.

1	Figs. 4a and 4b clearly indicate N_2O as the main product over HZ and Ag/HZ
2	catalysts (at 203 ${}^\circ\!\! C$ and 202 ${}^\circ\!\! C$ for HZ and Ag/HZ catalysts, respectively), together
3	with negligible amount of NO ₂ . Based on the results of Colombo <i>et al.</i> ⁵⁰ and the ATR
4	results of the used catalysts (Fig. 3b), it is tentatively deduced that N_2O came from the
5	decomposition of ammonia-nitrates complex. $^{50}\ \mathrm{H_2O}$ was not produced on HZ and
6	Ag/HZ catalysts, as shown in Fig. 4e. However, besides the evolution of N_2O , N_2 was
7	detected by the mass spectrometer (Figs. S3c and S3d) in a considerable amount at
8	208 $^{\circ}\!\!\!\mathrm{C}$ and 213 $^{\circ}\!\!\!\mathrm{C}$ over Mn/HZ and AgMn/HZ catalysts, respectively (Figs. 4c and
9	4d). Colombo <i>et al.</i> ⁵⁰ also proposed that surface nitrate species ($[-NO_3]_s$) could be
10	reduced by $[NH_3]_a$ to produce N_2 . Hence, it is deduced that N_2 came from the
11	reduction of monodentate nitrates by $[\mathrm{NH}_3]_a$ over Mn/HZ and AgMn/HZ catalysts.
12	However, during TPD process, N_2 was not formed on the used HZ and Ag/HZ
13	catalysts, which indicates that MnO_x is necessary for the selective catalytic reduction
14	of $[-NO_3]_s$ by $[NH_3]_a$ to N_2 . Additionally, considerable amount of H_2O was also
15	detected over Mn/HZ and AgMn/HZ catalysts at 218 °C, as shown in Fig. 4e, which is
16	almost at the same temperature as the evolution of N_2 (at 208 ${}^\circ\!\! C$ and 213 ${}^\circ\!\! C$ for
17	Mn/HZ and AgMn/HZ catalysts, respectively, as shown in Figs. 4c and 4d) and is
18	attributed as the co-product of the reduction of $[-NO_3]_s$ by $[NH_3]_a$ to N_2 .

19

3.2. OZCO of adsorbed NH₃

In order to explore the reaction mechanisms for OZCO of gaseous NH₃, OZCO of adsorbed NH₃ was then comparatively performed over HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts at room temperature. The surface adsorption sites on the catalysts

16

1 towards NH₃ were first investigated by NH₃-TPD technique.

2 3.2.1 NH₃-TPD results

Fig. 5 shows the NH₃ profiles of HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts 3 during NH₃-TPD measurements. Over the HZ support, three NH₃ desorption peaks 4 could be resolved, centered at 116, 161 and 345 °C, respectively, as displayed in Fig. 5 5a. It is commonly recognized that there are three types of NH_3 adsorption sites over 6 7 H-form zeolite. Brønsted acid (B-acid) sites are formed by the so-called "bridging hydroxyl", which connects the aluminum and silicon atoms in the framework of 8 zeolite;⁵¹ Lewis acid (L-acid) sites are usually composed of aluminum species with 9 low coordination;⁵¹ hydrogen-bonded-physisorption (H-bond) sites are formed by the 10 preceding adsorption of NH₃ on the B-acid sites and this type of sites is non-acidic.⁵² 11 Ma et al.⁵³ have assigned the peak at 150 °C to the H-bonded NH₃, the peak at 223 °C 12 to NH₃ adsorbed on acid sites (L- and B- acid sites) and the peak at 428 °C to NH₃ 13 strongly adsorbed on B-acid sites. Similar assignments were also reported by Wang et 14 al.⁵⁴ in which it is demonstrated that the NH₃ desorption peaks at 150, 250 and 385 15 ^oC are due to weakly adsorbed NH₃, NH₃ adsorbed on L-acid sites and B-acid sites, 16 17 respectively. Additionally, two NH₃ desorption peaks were observed by Al-Dughaither and co-authors⁵⁵ and it is indicated that the nature of the weak site was a mixture of 18 L-acid and H-bond sites while the strong site is of predominantly of B-acid sites. 19 According to these results, in this study, the desorption peak at 116 °C is assigned to 20 NH₃ on H-bond sites and the peaks at 161 °C and 345 °C corresponded to the 21 desorption of NH₃ on L-acid and B-acid sites, respectively. Compared with the bare 22

HZ support, the loading of Ag or (and) MnO_x created new adsorption sites for NH₃. 1 2 Besides NH₃ desorption from the HZ support (desorption peaks at 116, 181 and 355 3 °C, respectively), a new peak at 445 °C was observed on Ag/HZ catalyst, as shown in Fig. 5b, which is due to NH₃ adsorbed on Ag sites. For the Mn/HZ catalyst (Fig. 5c), 4 5 the NH₃ peak at 260 $^{\circ}$ C is attributed to the desorption of NH₃ adsorbed on MnO_x. Based on the results of Ag/HZ and Mn/HZ catalysts, it can be seen that the addition of 6 7 Ag caused an even stronger interaction with NH_3 than MnO_x did. As revealed in Fig. 8 5d, the NH₃ adsorbed on Ag and MnO_x sites over AgMn/HZ catalyst desorbed at 447 9 ^oC and 215 ^oC, respectively.

10 **3.2.2 OZCO of adsorbed NH₃ and studies on the surface species after OZCO**

11 Fig. 6a exhibits the variations of N₂O and N₂ concentrations with TOS during 12 OZCO of adsorbed NH₃ on HZ, Ag/HZ, Mn/HZ and AgMn/HZ catalysts. It should be noted that, except for N₂O and N₂, no other gaseous products were detected over the 13 four catalysts. From Fig. 6a, it can be seen that N₂O was detected in a noticeable 14 amount with respect to $N_{\rm 2}$ in gaseous products over HZ and Ag/HZ catalysts and the 15 16 $N_2O/(N_2 + N_2O)$ ratios are 43% and 38% for HZ and Ag/HZ catalysts, respectively. It 17 can also be seen from Fig. 6a that more N2 and N2O were detected over Ag/HZ than HZ, which indicates that the addition of Ag enhanced the OZCO reaction of adsorbed 18 NH3. However, only small amount of N2O was detected and no N2 was formed over 19 Mn/HZ and AgMn/HZ catalysts during OZCO of adsorbed NH₃. 20

Time course for O₃ conversion during OZCO of adsorbed NH₃ is shown in Fig.
6b. On HZ and Ag/HZ catalysts, O₃ conversion decreased quickly and finally

maintained around 10% and 30%, respectively. On Mn/HZ and AgMn/HZ catalysts, 1 O₃ conversion remained high, but gradual decrease was observed after 20-min and 2 13-min TOS, respectively. Again, MnO_x is necessary to maintain high and consistent 3 conversion of O₃ in OZCO processes. 4 5 In addition, ATR and TPD techniques were also adopted to characterize the surface species after OZCO of adsorbed NH₃. 6 7 In order to clearly reflect the changes taking place on the catalyst surface after OZCO of adsorbed NH₃, ATR spectra of fresh samples after adsorption of NH₃ are 8 shown in Fig. 7a. A new band at 1459 cm⁻¹ was observed with respect to the fresh 9 10 samples (Fig. 3a), which is attributed to the bending vibration of NH⁺₄ indicating adsorbed NH₃ on B-acid sites.^{7,53,54} After OZCO of adsorbed NH₃, the band attributed 11 12 to NH₃ adsorbed on B-acid sites disappeared, which implies the oxidation of adsorbed NH₃ by O₃, and new bands at 1443 cm⁻¹, 3100 cm⁻¹ and 3219 cm⁻¹ appeared (Fig. 7b). 13 According to the assignments in **Section 3.1.3**, bands at 3100 cm⁻¹ and 3219 cm⁻¹ are 14 due to the symmetric and asymmetric stretching of N-H,⁴⁹ respectively. Moreover, 15 Hadjiivanov⁴⁸ reported that the stretching vibration of N=O in nitrates also occurred 16 at 1380 cm⁻¹. Therefore, the band at 1443 cm⁻¹ is assigned to the stretching vibration 17 of N=O of [-NO₃]_s. Therefore, [-NO₃]_s and [NH₃]_a were deposited on the used catalyst 18 surfaces after OZCO of adsorbed NH₃. 19 During TPD measurements, the evolution of NH₃ was detected only on HZ and

During TPD measurements, the evolution of NH_3 was detected only on HZ and Ag/HZ catalysts, but not on Mn/HZ and AgMn/HZ as shown in Fig. S4. N₂O was detected as main product (at 210 $^{\circ}$ C and 246 $^{\circ}$ C for HZ and Ag/HZ catalysts,

1	respectively) with negligible amount of NO_2 over HZ and Ag/HZ catalysts during
2	TPD measurements, as shown in Figs. 8a and 8b, respectively, and N_2 was not
3	detected on either of these two samples, as shown in Figs. S5a and S5b. Similar to the
4	TPD measurements after OZCO of gaseous NH ₃ , N ₂ O could also come from the
5	decomposition of ammonia-nitrates complex. $^{50}\ \mathrm{H_2O}$ was not produced on HZ and
6	Ag/HZ catalysts, as shown in Fig. 8e, which might be due to its low concentration.
7	However, in the cases of Mn/HZ and AgMn/HZ catalysts, $N_{\rm 2}$ was detected by the
8	mass spectrometer (Figs. S5c and S5d) at 201 °C and 211 °C, respectively, and in a
9	considerable amount (Figs. 8c and 8d) during TPD measurements, which came from
10	the reduction of $[-NO_3]_s$ by $[NH_3]_a$. ⁵⁰ N ₂ O was also formed on Mn/HZ and AgMn/HZ
11	catalysts, as shown in Figs. 8c and 8d, which was derived from the decomposition of
12	ammonia-nitrates complex. Large amount of H_2O was also detected over Mn/HZ and
13	AgMn/HZ catalysts at 250 °C, as shown in Fig. 8e and is attributed to the
14	decomposition of ammonia-nitrates complex and the reduction of $[-NO_3]_s$ by $[NH_3]_a$.
15	No NH_3 was evolved over Mn/HZ and AgMn/HZ catalysts (Fig. S4) during TPD
16	measurements since all the residual NH_3 after OZCO of adsorbed NH_3 reacted with
17	nitrates in TPD processes.

18

3.3. Proposed reaction pathways for OZCO of gaseous NH₃

In the cases of HZ and Ag/HZ catalysts, the same gaseous products (N₂O and N₂) as those of OZCO of gaseous NH₃ (Fig. 1c) were also detected during OZCO of adsorbed NH₃, as shown in Fig. 6a. Although the N₂O/(N₂ + N₂O) ratios were 43% and 38% for HZ and Ag/HZ catalysts, respectively, which are higher than those of

1	OZCO of gaseous NH_3 (The N_2O selectivities were less than 10% over HZ and
2	Ag/HZ catalysts, as shown in Fig. 1c), N ₂ was still the main product during OZCO of
3	adsorbed NH ₃ . The reasonable explanation to the higher ratios of $N_2O / (N_2 + N_2O)$
4	during OZCO of adsorbed NH ₃ is as follows: during OZCO of adsorbed NH ₃ , O ₃ was
5	continuously fed into catalyst bed after NH3 adsorption. Therefore, O species,
6	including $O_3(g)$ and adsorbed atomic oxygen $[O^*]_a$, were excessive with respect to the
7	decreasing amount of adsorbed NH ₃ . As a result, the adsorbed NH ₃ was more likely to
8	be further oxidized by O species to produce N_2O in contrast to OZCO of gaseous
9	NH ₃ .
10	In addition, as shown in Fig. 6b, O_3 conversion during OZCO of adsorbed NH_3
11	also exhibited similar stability as that of OZCO of gaseous NH_3 (Fig. 1b). O_3
12	conversions of HZ and Ag/HZ catalysts were comparable to those of Mn/HZ and
13	AgMn/HZ catalysts in the initial several minutes due to O3 consumption by the
14	pre-adsorbed NH_3 and thereafter stabilized at around 10% and 30% (Fig. 6b),
15	respectively. These values of the O_3 conversion were much lower than those in OZCO
16	of gaseous NH_3 (60% and 80% for HZ and Ag/HZ, respectively, as shown in Fig. 1b),
17	which can be ascribed to that HZ and Ag/HZ are intrinsically less active for O_3
18	decomposition in the absence of NH ₃ .
19	Moreover, the surface species on the used HZ and Ag/HZ catalysts after OZCO
20	of gaseous and adsorbed NH_3 were all composed of $[-NO_3]_s$ and $[NH_3]_a$, as indicated
21	by the ATR characterization in Figs. 3b and 7b. TPD results of the used catalysts after
22	OZCO of adsorbed NH ₃ were also very similar to those after OZCO of gaseous NH ₃ :

only NH₃ and N₂O were detected, besides the negligible amount of NO₂, and no N₂ 1 was observed. Based on the similarities of ATR and TPD results of the used catalysts 2 3 between OZCO of gaseous and adsorbed NH₃ and the low activity of HZ and Ag/HZ catalysts in O₃ decomposition, it is reasonable to deduce that OZCO of gaseous NH₃ 4 5 over HZ and Ag/HZ catalysts proceeds through Pathway (A) in Fig. 9, which means that NH₃(g) is first adsorbed on the catalyst surface to form [NH₃]_a and then the 6 7 [NH₃]_a is oxidized by O species to final product N₂. Besides [NH₃]_a oxidation in 8 Pathway (A), O₃ could also be consumed via catalytic decomposition (Pathway (C) in 9 Fig. 9) over HZ and Ag/HZ catalysts.

10 On the other hand, for Mn/HZ and AgMn/HZ catalysts, gaseous products were 11 barely detected during OZCO of adsorbed NH₃ (Fig. 6a), which is totally different 12 from the result of OZCO of gaseous NH₃ (N₂ was detected as the major gaseous product during OZCO of gaseous NH₃, as shown in Fig. 1c). In addition, O₃ 13 14 conversion also showed different stability in OZCO of gaseous (Fig. 1b) and adsorbed 15 (Fig. 6b) NH₃. It could be attributed to the fast accumulation of nitrates on the surface 16 of Mn/HZ and AgMn/HZ catalysts during OZCO of adsorbed NH₃, which would 17 occupy the active sites for O_3 decomposition. Moreover, the surface species accumulated on the catalyst surface after OZCO of adsorbed NH₃ were different from 18 19 those after OZCO of gaseous NH₃, which can be deduced from the huge difference in the ratios of N₂ to N₂O formed in TPD measurements after OZCO processes (The 20 ratios of N_2 to N_2O were 1 for the former case (Figs. 8c and 8d) and 8 for the latter 21 22 case (Figs. 4c and 4d)). Based on the differences between OZCO of gaseous and adsorbed NH₃ and the high activity of Mn/HZ and AgMn/HZ catalysts in O₃ decomposition, it is reasonable to deduce that OZCO of gaseous NH₃ over Mn/HZ and AgMn/HZ catalysts proceeds through Pathway (B) in Fig. 9, in which O₃(g) is first catalytically decomposed to form adsorbed atomic oxygen $[O^*]_a$ on the catalyst surface and then the NH_x species are oxidized by $[O^*]_a$ to final product N₂.

Based on the proposed reaction mechanism, the results of OZCO of gaseous NH_3 6 in Fig. 1 could be explained as follows. For HZ and Ag/HZ catalysts, the NH₃ 7 8 adsorption rate is much higher than the [NH₃]_a oxidation rate by O species in Pathway 9 (A), so the latter is the rate-controlling step in OZCO of gaseous NH₃ over HZ and Ag/HZ catalysts. However, as the reaction proceeded, more active sites on HZ and 10 11 Ag/HZ catalysts would be occupied by [NH₃]_a resulting in the decrease in NH₃ 12 conversion with TOS, as shown in Fig. 1a. In addition, O₃ could be consumed through both Pathways (A) and (C) over HZ and Ag/HZ catalysts. At the initial stage of the 13 14 OZCO reaction, O_3 was consumed mainly by Pathway (A) due to the large amount of 15 active sites on the catalyst surface. However, as the reaction went on, Pathway (A) 16 was gradually inhibited by the adsorbed NH_3 molecules, so Pathway (C) became the 17 main path responsible for O_3 consumption. Therefore, the O_3 conversion remained almost constant in general with TOS over HZ and Ag/HZ catalysts during OZCO of 18 gaseous NH₃, as shown in Fig. 1b. This is also supported by the $n_{O_3}^{Conv.} / n_{NH_3}^{Conv.}$ ratios of 19 the reactions. As shown in Fig 1d, the initial $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratios of reactions over HZ 20 and Ag/HZ were around 1.4 and 1.3, respectively, which are lower than the 21 stoichiometric ratio of 1.5 in eqn. (8). This is likely due to the fact that more than one 22

Catalysis Science & Technology Accepted Manuscript

oxygen atoms per O₃ molecule are involved in NH₃ oxidation to N₂ in Pathway (A).
As the OZCO reaction went on, the n^{Conv.}_{O₃} / n^{Conv.}_{NH₃} ratios of HZ and Ag/HZ catalysts
increased and were more than the stoichiometric ratio of 1.5 (Fig. 1d) in eqn. (8),
which indicates that Pathway (C) had become the main route for O₃ consumption over
HZ and Ag/HZ catalysts.

However, for Mn/HZ and AgMn/HZ catalysts, since the O₃ decomposition and 6 $NH_3(g)$ oxidation by $[O^*]_a$ are both at high reaction rate, NH_3 and O_3 conversions 7 8 were almost constant during OZCO of gaseous NH₃ over Mn/HZ and AgMn/HZ, as 9 shown in Figs. 1a and 1b, respectively. Based on the two parallel reactions in eqns. (8) and (9), it is possible to calculate the theoretical $n_{O_3}^{Conv.} / n_{NH_3}^{Conv.}$ ratio of the reaction 10 according to N_2O and N_2 selectivities. Since the selectivities of N_2O & N_2 were 20% 11 12 & 80% and 13% & 87% for Mn/HZ and AgMn/HZ catalysts (Fig. 1c), respectively, the theoretical $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratios can be calculated $(1.5 \times S_{N_2} + 2 \times S_{N_2O})$ to be about 13 1.60 and 1.57 for Mn/HZ and AgMn/HZ, respectively, which are consistent with the 14 15 experimental results, ~1.7 for Mn/HZ and ~1.65 for AgMn/HZ.

There also exists another possible mechanism where the reaction pathway might be the same over the four catalysts but the reaction rates of Mn/HZ and AgMn/HZ catalysts are much faster than those of HZ and Ag/HZ catalysts, which results from the high ability of Mn/HZ and AgMn/HZ catalysts to activate ozone. The mechanism will be further studied in the future work.

21

22 Conclusions

OZCO for removing ammonia from simulated air at room temperature was 1 studied in this paper. Compared with HZ, Ag/HZ and Mn/HZ catalysts, AgMn/HZ 2 3 catalyst exhibited high activity, good stability and high N2 selectivity, which could be attributed to the outstanding ability of MnO_x to decompose O_3 and the promoting 4 5 effect of Ag. The NH₃ conversion and N₂ selectivity were as high as 99% and 94%, respectively, over AgMn/HZ catalyst at room temperature, GHSV of 150,000 6 ml'g⁻¹'h⁻¹ and $C_{O_3}^{in}/C_{NH_3}^{in}$ ratio of 1.73 that is slightly higher than the stoichiometric ratio 7 of OZCO of NH₃ to N₂. The possible pathway for OZCO of NH₃ over AgMn/HZ 8 catalyst was proposed as follows: $O_3(g)$ is first adsorbed and decomposed into $[O^*]_a$ 9 and then NH_x species are oxidized by $[O^*]_a$ to form N₂. This was supported by the 10 11 results of comparison between OZCO of adsorbed and gaseous NH₃. 12 Acknowledgements 13 This work is supported by National Natural Science Foundation of China 14 15 (11079013, U1201231) and by the Welch Foundation in US (#T-0014). 16 [‡]Notes 17 1 GHSV (Gas Hourly Space Velocity) represents the amount of gas mixture flowing 18 over catalysts per unit gram of catalyst per unit time and can be calculated by the 19 following equation: 20 $\text{GHSV} = \frac{F}{m_{\text{cat}}}$ 21

22 where F and m_{cat} represent the total volume flow rate of reaction gas and mass of

1	catalyst, respectively.
2	2 BET surface area is calculated using the theory of adsorption of polymolecular layer
3	defined by Brunauer, Emmett and Teller.
4	3 SCCM is an abbreviation of Standard Cubic Centimeters per Minute indicating
5	ml ⁻¹ at a standard temperature of zero °C and pressure of 101.325 kPa.
6	
7	References
8	1 J.R. Kastner, J. Miller, P. Kolar and K.C. Das, Chemosphere, 2009, 75, 739.
9	2 Y. Li and J.N. Armor, Appl. Catal. B: Environ., 1997, 13, 131.
10	3 L. Lietti, G. Ramis, G. Busca, F. Bregani and P. Forzatti, Catal. Today, 2000, 61, 187.
11	4 R.Q. Long and R.T. Yang, J. Catal., 2001, 201, 145.
12	5 R.Q. Long and R.T. Yang, J. Catal., 2002, 207, 158.
13 14	6 L. Gang, B.G. Anderson, J. van Grondelle and R.A. van Santen, <i>Appl. Catal. B: Environ.</i> , 2003, 40 , 101.
15	7 G. Qi, J.E. Gatt and R.T. Yang, J. Catal., 2004, 226, 120.
16 17	8 L. Chmielarz, P. Kuśtrowski, A. Rafalska-Łasocha and R. Dziembaj, <i>Appl. Catal. B: Environ.</i> , 2005, 58 , 235.
18	9 A.C. Akah, G. Nkeng and A.A. Garforth, Appl. Catal. B: Environ., 2007, 74, 34.
19	10 M.J. Lippits, A.C. Gluhoi and B.E. Nieuwenhuys, Catal. Today, 2008, 137, 446.
20 21	11 M.S. Kim, D.W. Lee, S.H. Chung, Y.K. Hong, S.H. Lee, S.H. Oh, I.H. Cho and K.Y. Lee, <i>J. Hazard.</i> <i>Mater</i> , 2012, 237-238 , 153
21	12 C Liang X Li Z Ou M Tade and S Liu Appl Surf Sci 2012 258 3738
23	13 A. Navdenov and D. Mehandijev. Appl. Catal. A: Gen., 1993. 97, 17.
24	14 D Mehandijev K Cheshkova A Navdenov and V Georgesku <i>Reac Kinet Catal Lett</i> 2002 76
25	287.
26	15 S. Dimitrova, G. Ivanov and D. Mehandijev, Appl. Catal. A: Gen., 2004, 266, 81.
27	16 P. Konova, M. Stovanova, A. Navdenov, St. Christoskova and D. Mehandijev, Appl. Catal. A: Gen.,
28	2006, 298 , 109.
29	17 H. Einaga and S. Futamura, J. Catal., 2004, 227, 304.
30	18 H. Einaga and A. Ogata, J. Hazard. Mater., 2009, 164, 1236.
31	19 H. Einaga and A. Ogata, <i>Environ. Sci. Technol.</i> , 2010, 44 , 2612.
32	20 H. Einaga, N. Maeda and Y. Teraoka, Appl. Catal. B: Environ., 2013, 142-143, 406.
33	21 H. Einaga, Y. Teraoka and A. Ogata, J. Catal., 2013, 305 , 227.
34	22 C.R. Lee, J. Jurng, G.N. Bae, J.K. Jeon, S.C. Kim, J.M. Kim, M. Jin and Y.K. Park, J. Nanosci.
35	Nanotechno., 2011, 11 , 7303.
36	23 J.H. Park, J.M. Kim, M. Jin, J.K. Jeon, S.S. Kim, S.H. Park, S.C. Kim and Y.K. Park, Nanoscale Res.
37	Lett., 2012, 7, 14.

- 1 24 M. Jin, J.W. Kim, J.M. Kim, J. Jurng, G.N. Bae, J.K. Jeon and Y.K. Park, Powder Technol., 2011, 2 214, 458. 3 25 Y. Liu, X.S. Li, C. Shi, J.L. Liu, A.M. Zhu and Ben W.-L. Jang, Catal. Sci. Technol., 2014, 4, 2589. 4 26 Y. Liu, X.S. Li, J.L. Liu, C. Shi and A.M. Zhu, Chin. J. Catal., 2014, 35, 1465. 5 27 E. Rezaei and J. Soltan, Chem. Eng. J., 2012, 198-199, 482. 6 28 E. Rezaei, J. Soltan, N. Chen and J. Lin, Chem. Eng. J., 2013, 214, 219. 7 29 E. Rezaei, J. Soltan and N. Chen, Appl. Catal. B: Environ., 2013, 136-137, 239. 8 30 C.Y.H. Chao, C.W. Kwong and K.S. Hui, J. Hazard. Mater., 2007, 143, 118. 9 31 M. Li, K.N. Hui, K.S. Hui, S.K. Lee, Y.R. Cho, H. Lee, W. Zhou, S. Cho, C.Y.H. Chao and Y. Li, 10 Appl. Catal. B: Environ., 2011, 107, 245. 11 32 E. Park, S. Chin, J. Kim, G.N. Bae and J. Jurng, Powder Technol., 2011, 208, 740.
- 33 H.H. Kim, M. Sugasawa, H. Hirata, Y. Teramoto, K. Kosuge, N. Negishi and A. Ogata, *Plasma Chem. Plasma Process*, 2013, 33, 1083.
- 14 34 H.C. Wang, H.S. Liang and M.B. Chang, J. Hazard. Mater., 2011, 186, 1781.
- 15 35 H.S. Liang, H.C. Wang and M.B. Chang, *Ind. Eng. Chem. Res.*, 2011, **50**, 13322.
- 16 36 D.Z. Zhao, T.Y. Ding, X.S. Li, J.L. Liu, C. Shi and A.M. Zhu, *Chin. J. Catal.*, 2012, **33**, 396.
- 17 37 D.Z. Zhao, C. Shi, X.S. Li, A.M. Zhu and Ben W.-L. Jang, J. Hazard. Mater., 2012, 239-240, 362.
- 38 M. Stoyanova, P. Konova, P. Nikolov, A. Naydenov, St. Christoskova and D. Mehandjiev, *Chem. Eng. J.*, 2006, **122**, 41.
- 20 39 Z. Hao, D. Cheng, Y. Guo and Y. Liang, Appl. Catal. B: Environ., 2001, 33, 217.
- 21 40 M. Petersson, D. Jonsson, H. Persson, N. Cruise and B. Andersson, J. Catal., 2006, 238, 321.
- 41 S. Ichikawa, L. Mahardiani and Y. Kamiya, *Catal. Today*, 2014, 232, 192.
- 23 42 S.T. Oyama, Catal. Rev.: Sci. Eng., 2000, 42, 279.
- 43 K.J. Olszyna and J. Heicklen, in *Photochemical Smog and Ozone Reactions*, ed. R.F. Gould,
 American Chemical Society, Washington, DC, 1972, vol. 113, ch. 6, pp. 191-210.
- 44 E.M. Slavinskaya, S.A. Veniaminov, P. Nott é, A.S. Ivanova, A.I. Boronin, Yu.A. Chesalov, I.A.
 Polukhina and A.S. Noskov, *J. Catal.*, 2004, 222, 129.
- 28 45 W. Li, G.V. Gibbs and S.T. Oyama, J. Am. Chem. Soc., 1998, 120, 9041.
- 46 A. Savara, W.M.H. Sachtler and E. Weitz, Appl. Catal. B: Environ., 2009, 90, 120.
- 30 47 S. Tamm, N. Vallim, M. Skoglundh and L. Olsson, J. Catal., 2013, 307, 153.
- 31 48 K.I. Hadjiivanov, Catal. Rev.: Sci. Eng., 2000, 42, 71.
- 32 49 The Sadtler Handbooks of Infrared Spectra, Bio-Rad Laboratories, Inc., Informatics Division.
- 33 50 M. Colombo, I. Nova and E. Tronconi, *Catal. Today*, 2012, **197**, 243.
- 51 L. Rodr guez-Gonz alez, F. Hermes, M. Bertmer, E. Rodr guez-Castellón, A. Jim énez-López and U.
 Simon, *Appl. Catal. A: Gen.*, 2007, 328, 174.
- 36 52 N. Katada and M. Niwa, *Cataly. Surv. Asia*, 2004, **8**, 161.
- 53 L. Ma, Y. Cheng, G. Cavataio, R.W. McCabe, L. Fu and J. Li, *Appl. Catal. B: Environ.*, 2014,
 156-157, 428.
- 39 54 D. Wang, L. Zhang, J. Li, K. Kamasamudram and W.S. Epling, Catal. Today, 2014, 231, 64.
- 40 55 A.S. Al-Dughaither and H. de Lasa, *Ind. Eng. Chem. Res.*, 2014, **53**, 15303.
- 41

1 Figure Captions

Page 27 of 41

2	Fig. 1. Time courses for (a) NH_3 conversion, (b) O_3 conversion, (c) N_2O and N_2
3	selectivities and (d) $n_{O_3}^{\text{Conv.}} / n_{\text{NH}_3}^{\text{Conv.}}$ ratio during OZCO of gaseous NH ₃ over HZ,
4	Mn/HZ, Ag/HZ and AgMn/HZ catalysts. Conditions: 0.1 g of catalysts, feed
5	gas of 250 SCCM containing 530 ppmv of NH ₃ , 450 ppmv of O ₃ , 20 vol.% of
6	O_2 and balanced by N_2 .

7	Fig. 2. Effects of $C_{O_3}^{in} / C_{NH_3}^{in}$ ratio on OZCO of gaseous NH ₃ over AgMn/HZ catalyst at
8	TOS = 60 min. Conditions: 0.1 g of AgMn/HZ catalyst, 250 SCCM of flow
9	rate with 530 ppmv ($C_{O_3}^{in} / C_{NH_3}^{in} = 0.85$), 517 ppmv ($C_{O_3}^{in} / C_{NH_3}^{in} = 1.32$) and 521
10	ppmv ($C_{O_2}^{in} / C_{NH_2}^{in}$ =1.73) of NH ₃ , respectively, in 20 vol.% O ₂ / 80 vol.% N ₂ .

Fig. 3. ATR spectra of the catalysts: (a) fresh samples and (b) used catalysts after
OZCO of gaseous NH₃ for 90 min. OZCO conditions are the same as those in
Fig. 1. NH₄NO₃-impregnated HZ (NH₄NO₃-HZ) was prepared for reference.
Preparation of the NH₄NO₃-HZ sample involves impregnation of HZ with
NH₄NO₃ solution and then drying at 50 °C for 12 h.

16	Fig. 4. TPD profiles of the used catalysts after 90-min OZCO of gaseous NH ₃ : the
17	concentrations of N_2O and NO_2 on (a) HZ and (b) Ag/HZ catalysts; the
18	concentrations of N_2 , N_2O and NO_2 on (c) Mn/HZ and (d) AgMn/HZ catalysts;
19	(e) the strongest FT-IR peak height of water in the range of 3500 to 4000 cm^{-1} .
20	OZCO conditions are the same as those in Fig. 1. TPD conditions: 0.03 g of
21	the used catalysts, 100 SCCM of He, 10 °C min ⁻¹ .

22 Fig. 5. NH₃ profiles of (a) HZ, (b) Ag/HZ, (c) Mn/HZ and (d) AgMn/HZ catalysts

1	during NH ₂ -TPD measurements. NH ₂ adsorption conditions: 0.1 g of catalysts
1	during 1113-11 D incastrements. 1113 adsorption conditions. 0.1 g of catalysis,
2	540 ppmv of NH_3 for 25-min adsorption; TPD conditions: 100 SCCM of Ar,
3	10 °C·min ⁻¹ .
4	Fig. 6. Time courses for (a) N_2O and N_2 concentrations and (b) O_3 conversion during
5	OZCO of adsorbed NH_3 over HZ, Mn/HZ, Ag/HZ and AgMn/HZ catalysts.
6	NH_3 adsorption conditions: 0.1 g of catalysts, 540 ppmv of NH_3 for 25-min
7	adsorption; OZCO conditions: a feed gas of 250 SCCM containing 450 ppmv
8	of O_3 , 20 vol.% of O_2 and balanced by He.
9	Fig. 7. ATR spectra of the catalysts (a) after their exposure to certain amount of NH_3
10	and (b) after 30-min OZCO of adsorbed NH_3 . NH_3 adsorption and OZCO
11	conditions are the same as those in Fig. 6 .
12	Fig. 8. TPD profiles of the used catalysts after 30-min OZCO of adsorbed NH ₃ : the
13	concentrations of N_2O and NO_2 on (a) HZ and (b) Ag/HZ catalysts; the
14	concentrations of N_2 , N_2O and NO_2 on (c) Mn/HZ and (d) AgMn/HZ catalysts;
15	(e) the strongest FT-IR peak height of water in the range of 3500 to 4000 cm^{-1} .
16	OZCO conditions are the same as those in Fig. 6. TPD conditions: 0.03 g of
17	the used catalysts, 100 SCCM of He, 10 °C min ⁻¹ .
18	Fig. 9. Proposed reaction pathways for OZCO of gaseous NH ₃ over HZ, Ag/HZ,
19	Mn/HZ and AgMn/HZ catalysts.

 $\frac{1.32}{C_{0_3}^{in} / C_{NH_3}^{in}}$

1.73

20

0

0.85

4

1 Fig. 4

1 Fig. 8

Catalysis Science & Technology Accepted Manuscript

