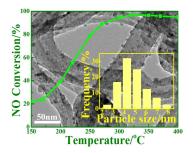

Catalysis Science & Technology

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.


Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/catalysis

The Fe_2O_3 nanoparticles *in situ* anchored on carbon nanotubes via an ethanol-thermal strategy present an excellent $DeNO_x$ performance.

Journal Name

Page 2 of 10

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

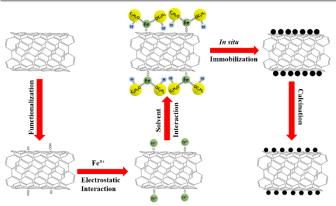
Fe₂O₃ Nanoparticles *in situ* Anchored on Carbon Nanotubes via an Ethanol-thermal Strategy for Selective Catalytic Reduction of NO with NH₃

Jin Han, Dengsong Zhang*, Phornphimon Maitarad, Liyi Shi, Sixiang Cai, Hongrui Li, Lei Huang, Jianping Zhang

 Fe_2O_3 nanoparticles were *in situ* anchored on carbon nanotubes (CNTs) via an ethanol-thermal route for selective catalytic reduction (SCR) of NO with NH₃. The structure and surface characteristics of the obtained catalysts were measured by transmission electron microscope, X-ray diffraction, N₂ adsorption-desorption isotherms, Raman, X-ray photoelectron spectroscopy, H₂-temperature programmed reduction, and NH₃-temperature programmed desorption. Compared with the catalysts prepared via impregnation or co-precipitation methods, the synthesized catalyst showed the better catalytic activity and the more extensive operating-temperature window. The TEM and XRD results suggested that the iron species was uniformly anchored on the surface of CNTs. The Raman and XPS results indicated that the catalyst has a relatively higher defects and atomic concentration of Fe existed on the surface of CNTs and the higher content of chemisorbed oxygen species. The H₂-TPR and NH₃-TPD results demonstrated that the catalysts. Based on the above mentioned physicochemical properties, the obtained catalysts showed an excellent performance in the SCR of NO to N₂ with NH₃. Besides, the catalysts also presented outstanding stability, H₂O resistance and SO₂ tolerance.

1. Introduction

Nitrogen oxides (NO_x), which comes from the combustion of fossil fuels in the industrial, can result in some environmental contamination, such as acid rain, photochemical smog and air haze.¹⁻⁴ Nowadays, a certain of processes have been employed to remission these environmental problems.⁴⁻¹⁰ Among these methods, the selective catalytic reduction (SCR) technology has been one of the state-of-the-art processes through the reductant-NH₃ selective chemical reaction with NO_x to form the environmental products N2 and H2O.5, 6 The commercial catalysts, V₂O₅-WO₃ (MoO₃) /TiO₂, have been widely used for NO_x elimination.⁴⁻⁶ However, there still remains some inevitable problems unsolved, such as low N2 selectivity while at high temperature, the volatility and toxicity of V_2O_5 .^{5, 11-13} What's more, the notable oxidation of SO₂ to SO₃ could cause the etching of the equipment and blocking the pores of the catalysts.5, 11, 12 So it is meaningful to design and develop a suitable non-vanadium catalyst with a relative low working temperature and a great resistance of SO₂ toxicity.^{11, 14, 15}


Iron, as an ordinary element of the transition-metal block, has been widely investigated either as an active ingredient or promoter for DeNO_x catalysts according to its inherently environmentally character, the prominent thermal stability and the outstanding performance of SO₂ resistance, such as Fe₂O₃,¹⁶ Fe/ZSM-5,^{11, 17-22} Fe/HBEA,^{23, 24} Au/Fe₂O₃,²⁵ Fe₂O₃-TiO₂,²⁶ and Fe₂O₃-CeO₂/TiO₂.²⁷ Catalytic performance and mechanism of Fe zeolites in the NH₃-SCR have been studied systematically,^{11, 17-24} as well as the ferric oxides applied as additive agent.^{13, 14, 27} However, as the NH₃-SCR of NO applications are always in downstream after the desulfurizer and electrostatic precipitator, so it is still necessary to improve the low temperature activity of ferric oxides catalysts.

Recently, carbon nanotubes (CNTs) were demonstrated to possess the outstanding features of adsorption of ammonia, nitric oxides and other gaseous substances.²⁸⁻³¹ Besides, CNTs could decompose and directly reduce NO,^{32, 33} and improve the SO₂ resistance with downing the decomposition temperature of sulfates and bisulfates.^{34, 35} Hence, CNTs have attracted great attention towards NH₃-SCR of NO.³⁶⁻³⁹ It is considered that the good dispersion of active ingredients on the support could be in favor of the activity during the NH₃-SCR reaction,^{40, 41} and thus it is significant to realize the active species with smaller size highly dispersed on the support. Normally, the CNTs-carried

ARTICLE

catalysts were synthesized by an impregnation method^{36, 42} or sol-gel method.^{26, 35, 43, 44} However, the active nanoparticles couldn't be uniformly dispersed on the surface of the CNTs by using these routes. Therefore, there still remains a great challenge to uniformly disperse the active species on the CNTs. Recently, we *in situ* accomplished MnO_x-CeO_x nanoparticles supported on CNTs via a surfactant assisted reflux route⁴¹ and pyridine-thermal route,⁴⁵ and found that they all displayed enhanced NH₃-SCR activity and improved resistance of SO₂ and H₂O than the same catalyst synthesized by an impregnation method.

Herein, we rationally designed and originally prepared highly dispersed Fe₂O₃ nanoparticles on CNTs. As illustrated in Scheme 1, Fe₂O₃ nanoparticles were *in situ* anchored on CNTs by an ethanol-thermal strategy. Firstly, the Fe³⁺ interacts with the hydroxyl and carboxyl groups on the surface of the pretreated CNTs due to the electrostatic effect. Secondly, the ethonal might bond with the Fe³⁺ through the strongly electronegative end to finish the Fe³⁺ electric neutrality. After the solvothermal process and calcination, the Fe₂O₃ nanoparticles were in situ anchored on the CNTs. In this synthetic process, the steric hindrance of ethanol can effectively separate each of the Fe³⁺, and thus highly dispersed Fe₂O₃ nanoparticles were in situ formed on CNTs. The obtained catalysts were characterized systematically, and their NH₃-SCR activity, stability, H₂O resistance and SO₂ tolerance were also investigated.

Scheme 1 Schematic illustration of the in situ synthetic process of the $Fe_2O_3/CNTs$ -ET catalyst.

2. Experimental

2.1 Catalyst preparation

The multiwall carbon nanotubes (CNTs) were furnished by Qinhuangdao Tai Chi Ring nano products Co. Ltd (China). All the other chemicals were purchased from Sinopharm Chemical Regent Company and used without any further purification. The raw CNTs were 1-10 μ m in length and 10-30 nm in diameter. The CNTs were pretreated with refluxed in dilute HNO₃ (6 mol/L) under stirring for 6 h at 120 °C to remove metal species and impurities that existed in the surface of raw CNTs; and then washed with abundance deionized water till pH neutral, and dried at 100 $^{\circ}$ C in oven overnight.

In a typical synthesis, 0.23 g of pretreated CNTs, 0.03 g of iron (III) nitrate nonahydrate and 80 mL of ethanol were mixed with the subsequent ultrasonic treatment at room temperature for 0.5 h. Then the mixture was poured into a stainless steel autoclave with PTFE lining (100 mL) and maintained at 120 °C for 24 h. After the autoclave was cooled to ambient temperature, the suspension was filtered and washed, and then dried at 100 °C for 12 h. Finally, it was calcined in N₂ stream at 450 °C for 4 h with the heating rate of 2 °C/min. The obtained catalyst was denoted as Fe₂O₃/CNTs-ET.

For comparison, the catalysts were also prepared by impregnation and co-precipitation methods, respectively. In the impregnation procedure, 0.69 g of pretreated CNTs were added in the solution of iron (III) nitrate nonahydrate (0.09 g) and H₂O (80 mL) with stirring till the solution dried at 80 °C, and then calcined in N2 stream at 450 °C for 4 h with the heating rate of 2 °C/min. The catalyst synthesized by this method was denoted as Fe₂O₃/CNTs-IM. In the co-precipitation procedure, 0.23 g of pretreated CNTs, 0.03 g of iron (III) nitrate nonahydrate, 0.5 g of urea and 80 mL of H₂O were mixed in a beaker with the subsequent ultrasonic treatment for 0.5 h. Then the mixture was transferred into a stainless steel autoclave with PTFE lining (100 mL) and maintained at 120 °C for 24 h. After the autoclave was cooled to room temperature, the suspension was filtered and washed with abundant water, and then dried at 100 °C for 12 h. Finally, it was calcined in N₂ stream at 450 °C for 4 h with the heating rate of 2 °C/min. The obtained catalyst was denoted as Fe₂O₃/CNTs-CP. The Fe₂O₃ supported on TiO₂ was synthesized by an impregnation method with the iron content unchanged and denoted as Fe₂O₃/TiO₂.

2.2 Characterization

The morphologies and surface structure of the catalysts were observed by transmission electron microscope (TEM, JEOL JEM-200CX) and field emission high resolution transmission electron microscope (HRTEM, JEOL JEM-2100F). The energy dispersive X-ray spectroscopy (EDS) was carried out on a TEM (JEOL JEM-2100F). Powder X-ray diffraction (XRD) was performed with a Rigaku D/MAX-2200 X-ray diffractometer using Cu Ka (40 kV, 40 mA) radiation and a secondary beam graphite monochromater. Nitrogen adsorption-desorption isotherms of the samples were measured at 77 K using an ASAP 2020 volumetric adsorption analyzer. Before the measurements, all the samples were degassed overnight at 573 K in a vacuum line. The specific surface area and the pore volume of the samples were calculated by the Brunauer-Emmett-Teller (BET) method and the pore size distributions were derived from the adsorption branches of the isotherms using the Barrett-Joyner-Halenda (BJH) model. The Raman spectra were recorded on a spectrometer (JY H800UV) equipped with an optical microscope at room temperature. X-Ray photoelectron spectroscopy (XPS) was recorded on a Perkin-Elmer PHI-5000C ESCA system equipped with a dual X-ray source, using an Mg Ka (1253.6 eV) anode and a

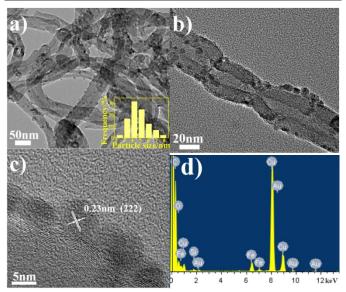


Fig. 1 (a, b) TEM images of Fe₂O₃/CNTs-ET; (c) HRTEM image of Fe₂O₃/CNTs-ET; (d) EDS spectrum of Fe₂O₃/CNTs-ET; size distribution of ferric oxide nanoparticles of Fe₂O₃/CNTs-ET (inlet).

hemispherical energy analyzer. The background pressure during data acquisition was kept below 10⁻⁶ Pa. The XPS species of the elements in these catalysts were recorded and fitted by XPS PEAK 4.1 software, which had been calibrated against the standardized C 1s peak at 284.6 eV. Temperatureprogrammed reduction by hydrogen (H2-TPR) was obtained on a Tianjin XQ tp5080 auto-adsorption apparatus. 50 mg of the catalyst was outgassed at 300 °C under N2 atmosphere. After cooling to room temperature under N2 atmosphere. The flowing gas was switched to 5 % H_2/N_2 and the sample was heated to 840 °C at a heating rate of 10 °C/min. The H₂ consumption was monitored by a thermal conductivity detector (TCD). Temperature-programmed desorption experiments of ammonia (NH₃-TPD) were conducted on a Tianjin XQ tp5080 autoadsorption apparatus. Before the TPD, each sample was pretreated with high-purity (99.999 %) He (35 mL min⁻¹) at 300 °C for 0.5 h and then saturated with high-purity anhydrous ammonia at 100 °C for 1 h and subsequently flushed at the same temperature for 1 h to remove physical-adsorbed ammonium. Finally, the TPD operation was carried out from 100 °C to 525 °C at a heating rate of 10 °C/min. The amount of NH₃ desorbed was monitored by a TCD.

2.3 Catalytic tests

The NH₃-Selective Catalytic Reduction activity tests were completed in a fixed-bed quartz reactor by using 0.2 g catalyst (40-60 mesh). The mixture gases were composed of 500 ppm NO, 500 ppm NH₃, 3 vol.% O₂, the balance N₂, 200 ppm SO₂ (when used) and 4 vol.% H₂O (when used). The gas hourly space velocity (GHSV) was about 18, 000 h⁻¹ with the total flow rate of the feed gas was approximately 220 mL min⁻¹. The reaction temperature was starting from 150 °C to 400 °C. All the concentration of the feed gas and the tail gases were

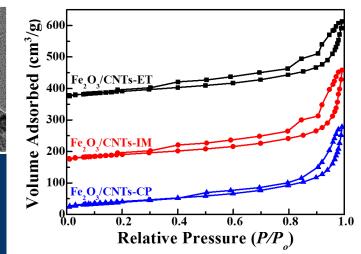


Fig. 2 N_2 adsorption-desorption isotherms of $Fe_2O_3/CNTs\text{-}ET,\ Fe_2O_3/CNTs\text{-}IM$ and $Fe_2O_3/CNTs\text{-}CP.$

detected by a KM9106 flue gas analyzer with the reaction reached 15 min.

3. Results & discussion

3.1 Characteristics of the catalysts

The microstructures of the catalysts and the size distribution of ferric oxide nanoparticles supported on the surface of CNTs were investigated by TEM. As shown in Fig. 1a and 1b, the TEM images of Fe₂O₃/CNTs-ET exhibited a homogeneously dispersion of ferric oxide nanoparticles supported on the surface of CNTs and the particle size is uniform. The HRTEM image in Fig. 1c shows the inter-planar distance is 0.23 nm, which is related to (222) plane of Fe₂O₃. Fig. 1d presents the EDS spectrum of Fe₂O₃/CNTs and confirms the presence of iron elements, which suggests the Fe species support on the surface of CNTs. As can be seen in Fig. 1 inlet, it was observed that the sizes of ferric oxides nanoparticles on the CNTs were in the range of 2.5-8.0 nm and the average size of nanoparticles was 4.8 nm. However, for Fe₂O₃/CNTs-IM, the particles aggregated to some extent (Fig. S1a, ESI); and for Fe₂O₃/CNTs-CP and Fe₂O₃/TiO₂, Fe₂O₃ nanoparticles display a distinct agglomeration (Fig. S1b and c, ESI). These indicate that the active components are uniformly anchored on the surface of CNTs by the ethanol-thermal method. Moreover, for Fe₂O₃/CNT-ET, the XRD peaks assigned to Fe₂O₃ were negligible, which suggested the good dispersion of Fe species (Fig. S2, ESI). It is confirmed that the Fe₂O₃ nanoparticles can be highly dispersed on CNTs by the ethanol-thermal method.

The specific surface area, pore volume and pore size of the catalysts were analyzed by N₂ adsorption-desorption isotherms. As displayed in Fig. 2, the Fe₂O₃ nanoparticles supported on CNTs by three different methods imply the IV isotherm with the relative pressure ($P/P_o=0.15$), indicating that the existence of mesoporous structure, and Fe₂O₃/TiO₂ also presents the mesoporous structure due to the stack of particles (Fig. S3, ESI). In addition, the specific surface area, pore volume and pore size

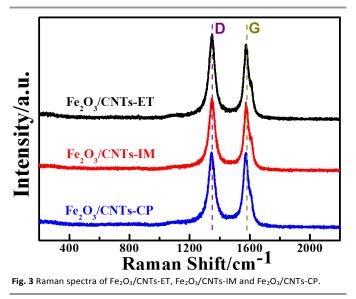

ARTICLE

Table 1 BET	surface area	and nore	characterization of	f catalysts
Table I DEI	surface area	and pore	characterization 0.	catarysts.

	Fe ₂ O ₃ /CNTs- ET	Fe ₂ O ₃ /CNTs- IM	Fe ₂ O ₃ /CNTs- CP	Fe ₂ O ₃ /TiO ₂
BET surface area (m ² /g)	147	144	146	55
Pore volume (cm ³ /g)	0.41	0.48	0.43	0.33
Pore size (Å)	95	110	101	199

of the catalysts are summarized in Table 1. As shown directly in Table 1, there is no obvious difference among the three catalysts. Moreover, the BET surface area of Fe₂O₃/CNTs catalysts is about 145 m²/g, which is higher than that of Fe₂O₃/TiO₂.

The Raman spectroscopy is a powerful tool in probing the lattice vibrational states and dynamics of CNTs, under the variation of the layer number in respect to the CNTs surface plane.⁴⁶⁻⁴⁹ The Raman spectra of Fe₂O₃/CNTs prepared by three routes are displayed in Fig. 3. The G-band, which at around 1580 cm⁻¹, is associated with an E_{2g} mode of graphite and is related to the vibration of sp² bonded carbon atoms in a 2dimensional hexagonal lattice. The D-band, which centred around 1360 cm⁻¹, is corresponding to the vibrations of carbon atoms with dangling bonds in plane terminations of disordered graphite or glassy carbon.⁵⁰⁻⁵² The I_D/I_G (the ratio of the intensities of the D and G bands) over Fe₂O₃/CNTs-ET, Fe₂O₃/CNTs-IM, Fe₂O₃/CNTs-CP and CNTs is around 1.02, 0.99, 0.89 and 0.81 (Fig. 3 and S4, ESI), respectively. Compared with the value of I_D/I_G over CNTs, Fe₂O₃/CNTs-ET are larger than the others, which suggest that more defects were created by introducing the active species.⁵² Furthermore, the increased ratio of I_D/I_G indicates the increase of surface defects in the $Fe_2O_3/CNTs\text{-}ET,\ ^{53}$ which should be favorable to the NH₃-SCR of NO. The Raman results of Fe₂O₃/CNTs and CNTs demonstrated that the structure of multi-wall CNTs can be retained after loaded with Fe₂O₃ nanoparticles.⁵⁰

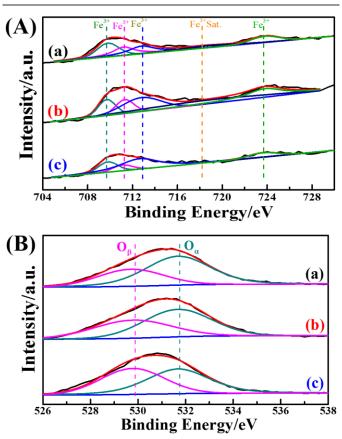


Fig. 4 (A) Fe 2p spectra and (B) O 1s spectra of the catalysts: (a) Fe₂O₃/CNTs-ET, (b) Fe₂O₃/CNTs-IM and (c) Fe₂O₃/CNTs-CP, respectively.

In order to acquire the information of the atomic concentrations and element chemical state of each catalyst's surface, the XPS spectra of the Fe 2p and O 1s in these catalysts were recorded. Fig. 4A shows the Fe peaks assigned to Fe species (Fe 2p_{3/2} and Fe 2p_{1/2}). The Fe peaks of Fe₂O₃/CNTs were assigned to oxidized Fe species, more likely Fe³⁺ type species.^{13, 54} The binding energies centered at about 709.8 eV and 711.2 eV may be assigned to Fe³⁺ in the spinel structure, and the binding energy centered at about 712.4 eV may be ascribed to Fe³⁺ bonded with hydroxyl group.⁵⁵ It is interesting that the surface atomic concentration of Fe over Fe₂O₃/CNTs-ET is higher than Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP as shown in Table 2. It has been demonstrated that the accessible Fe³⁺ can participate the reversible redox cycle which is beneficial for the SCR activity.¹³ Based on the above results, it is reasonable that Fe₂O₃/CNTs-ET can display the best capacity for NH₃-SCR performance among the three catalysts.

The XPS spectra of O 1s of three catalysts are presented in Fig. 4B. All of three catalysts show two overlapping peaks of the O 1s. The overlapping peaks of O 1s at binding energy of 529.8 eV could be assigned to lattice oxygen (donated as O_{β}), and the overlapping peaks of O 1s at binding energies of about 531.7 eV could attributed to chemisorbed oxygen (donated as O_{α}), which could belong to defect oxide or hydroxyl-like groups.^{27, 56-58} Table 2 summaries the binding energies of O 1s and the atomic ratio of $O_{\alpha}/(O_{\alpha}+O_{\beta})$ of the three catalysts. As

Journal Name

Page 6 of 10

ARTICLE

		Surface atomic concentration/%		Binding Energy/eV		The relative concentration ratios/%	
Catalysts	С	Fe	0	O_{β}	O_{α}	O_{β} / ($O_{\alpha}+O_{\beta}$)	Ο _α / (Ο _α +Ο _β)
Fe ₂ O ₃ / CNTs-ET	92.93	0.43	7.64	529.8	531.7	34.45	65.55
Fe ₂ O ₃ / CNTs-IM	92.01	0.42	7.57	529.8	531.7	42.41	57.59
Fe ₂ O ₃ / CNTs-CP	92.19	0.23	7.59	529.8	531.7	47.81	52.19

Table 2 The Binding Energy and surface atomic concentration of catalysts.

seen clearly in Fig. 4B and Table 2, the Fe₂O₃/CNTs-ET owns a higher ratio of $O_{\alpha}/(O_{\alpha}+O_{\beta})$ than the Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP, mainly on account of the increased chemisorbed oxygen species on the surface of catalyst by iron species.²⁷ The surface chemisorbed oxygen O_{α} has been reported to be the most active oxygen and highly active in the oxidation reaction due to its higher mobility. Besides, the high relative concentration ratio of $O_{\alpha}/(O_{\alpha}+O_{\beta})$ on the surface of the catalyst could be correlated with the high NH₃-SCR activity.⁵⁹ The loading of Fe₂O₃ nanoparticles on CNTs by ethanolthermal route could create more vacancies on the catalyst surface, and lead to the increase of chemisorbed oxygen on the surface. It is reported that the NO₂ would enhance the NH₃-SCR reaction with participating in the "fast SCR" reaction route on the catalysts.¹⁵ It has been demonstrated that the chemisorbed oxygen plays an important role in oxidation reactions.⁵⁹ Therefore, the O_a plays a crucial role in NH₃selective catalytic reduction process for promoting the oxidation of NO to NO2.60 Thus, the Fe2O3/CNTs-ET which possess the highest O_{α} content could be beneficial to improve the low-temperature NH₃-SCR catalytic activity, as expected.

The H_2 -TPR measurements were extensively performed to investigate the reducibility of iron species in different catalysts. Fig. 5 presents the H_2 -TPR profiles of different samples. In the

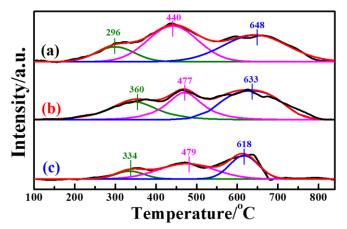


Fig. 5 $H_2\text{-}TPR$ profiles of the catalysts: (a) $Fe_2O_3/CNTs\text{-}ET$, (b) $Fe_2O_3/CNTs\text{-}IM$ and (c) $Fe_2O_3/CNTs\text{-}CP.$

Table 3 H2 consumptions of catalysts.

	Catalysts				
	Fe ₂ O ₃ /CNTs-ET	Fe ₂ O ₃ /CNTs-IM	Fe ₂ O ₃ /CNTs-CP		
Consumed hydrogen (mmol/g)	0.072	0.056	0.034		

temperature scope of 100-840 °C, all of the three catalysts present three distinct H₂ consumption peaks, which were assigned to the three-stepwise reduction of $Fe_2O_3 \rightarrow Fe_3O_4$, $Fe_3O_4 \rightarrow FeO$, and $FeO \rightarrow Fe^{25}$ For Fe_2O_3/TiO_2 , the H₂-TPR profile showed the sequential reduction of Fe₂O₃ to Fe (Fig. S5a, ESI). Compared with Fe₂O₃/CNTs by each method, the corresponding reduction peaks of Fe₂O₃/CNTs-ET shifted to a relative low temperature. It should be pointed out that the area of the reduction peak has a direct relationship with the consumed content of H₂. It can be seen clearly that the area of the reduction peak over Fe₂O₃/CNTs-ET is the largest among the three catalysts. The H₂ consumption values of all the three Fe₂O₃/CNTs are given in Table 3. As shown in Table 3, Fe₂O₃/CNTs-ET gave the largest H₂ consumption among the three catalysts. In addition, the content of the reductive species related to the degree of dispersion, which suggest that Fe₂O₃ nanoparticles were highly dispersed on CNTs by the ethanolthermal method. Thus, the Fe₂O₃/CNTs-ET can offer more active species, which can be in accordance with the results of the XPS results. Since more reductive species could enhance the NH₃-SCR reaction, the Fe₂O₃/CNTs synthesized by the ethanol-thermal route expose more reductive species which should be beneficial to the low-temperature NH3-SCR performance.

The NH₃-TPD technique has been extensively used to characterize the adsorption of ammonia on the surface active sites of catalysts which acts a significant role in NH₃-SCR reaction. To investigate the surface acid amount and strength of the catalysts, the NH₃-TPD was performed. Fig. 6 shows the temperature-programmed desorption after ammonia adsorption over the three catalysts. It is clear that all of the three catalysts present three desorption peaks in the desorption temperature in the range of 100-525 °C. The peaks around 150-160 °C were caused by the desorption of weak acid sites; the peaks around 200-220 °C were caused by the medium acid sites; and the peaks around 390-420 °C were caused by the strong acid sites.35 It is generally accepted that Lewis acid attributed to coordinated NH₃ molecules are thermally stable than Brønsted acid sites attributed to NH4⁺, so it can be inferred that the desorption peak at low temperature is assigned to physisorbed NH₃, and the desorption peak at high temperature is assigned to chemisorbed NH₃.^{26, 59} It is demonstrated that the position and area of desorption peaks are correlated with the acid strength and acid amount, respectively.41 The desorption peak of Fe₂O₃/CNTs by different methods locates at a relative same temperature, indicating that the acid site is similar among them.

ARTICLE

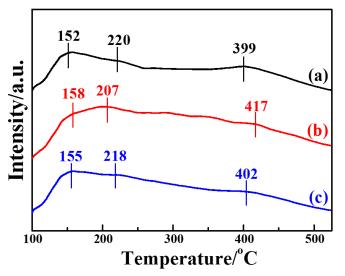


Fig. 6 NH₃-TPD profiles of the catalysts: (a) Fe₂O₃/CNTs-ET, (b) Fe₂O₃/CNTs-IM and (c) Fe₂O₃/CNTs-CP.

It is clear that the amount of adsorbed NH₃ of Fe₂O₃/CNTs-ET and Fe₂O₃/CNTs-IM is greater than that of Fe₂O₃/CNTs-CP. However, it is noteworthy that Fe₂O₃/CNTs-ET shows the higher Lewis acid sites than the other two Fe₂O₃/CNTs catalysts. For Fe₂O₃/TiO₂, the intensity of the desorption peaks adsorbed NH₃ is very weak and mainly concentrate at low temperature (Fig. S5b, ESI). It has been demonstrated that the CNTs themselves presented both weak acid sites and strong acid sites as a catalyst support.^{28, 29} Besides, the results of NH₃-TPD imply that the synthesis route have a crucial effect on the amount of the acidic sites over the catalysts. As have been reported, the highly dispersed active species on the support could offer a large number of acidic sites and perform the best catalytic activity.28 Therefore, the more amounts of the strongest acid sites over Fe₂O₃/CNTs-ET could be attributed to highly dispersed Fe₂O₃ nanoparticles and CNTs themselves.

3.2 Catalytic performance

Fig. 7 shows the NO conversion curves of the catalysts with reaction temperature ranging from 150 °C to 400 °C. It is clearly observed that the reaction temperature has a remarkable influence on the NO reduction efficiency over different catalysts. A negligible NO reduction efficiency was noticed for Fe₂O₃/CNTs-CP till the temperature reached 400 °C, whereas highly dispersed Fe₂O₃ nanoparticles on CNTs fabricated by the ethanol-thermal route displayed a favorable NH₃-SCR performance. The light-off temperature (at which the conversion of NO reaches 50 %, T₅₀) of Fe₂O₃/CNTs-ET is 220 °C, and the 96 % NO conversion is achieved at 320 °C. The Fe₂O₃/CNTs-ET shows the best low-temperature NO conversion among three catalysts and displays an excellent NH₃-SCR activity over a broad temperature window varying from 250 °C to 400 °C with the NO conversion higher than 80 %. It is noted that the Fe₂O₃/CNTs-ET also shows better performance at low temperature than Fe₂O₃/TiO₂ (Fig. S6, ESI). The difference of three catalysts could own to the different

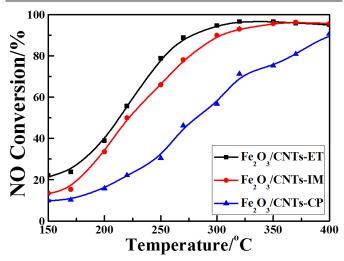
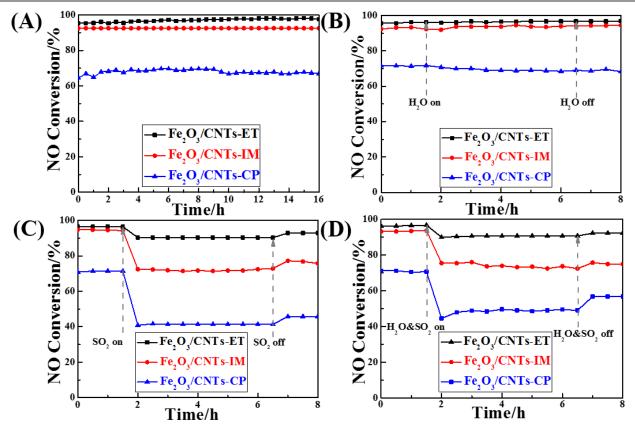


Fig. 7 NO conversion vs. temperature over the catalysts. Reaction conditions: [NO] = [NH₃] = 500ppm, $[O_2]$ = 3 vol.%, N₂ balance, and GHSV= 18, 000 h⁻¹.


physical chemical characterizations of them. The results of TEM and XRD demonstrated that the Fe₂O₃ nanoparticles were uniformly anchored on the surface of CNTs over Fe2O3/CNTs-ET, which could be beneficial to the outstanding NH₃-SCR activity. Based on the results of Raman and XPS, for Fe₂O₃/CNTs-ET, it is clear that more defects Fe atoms exist on the catalyst surface, which indicates that more active sites are provided for SCR reaction. Besides, the highest content of chemisorbed oxygen would enhance the low-temperature NH₃-SCR reduction activity with accelerating the oxidation of NO to NO_2 during the "fast SCR" reaction. The results of the H₂-TPR indicated that the reducibility of Fe2O3/CNTs-ET was the strongest among the three catalysts, which could promote the NH₃-SCR reaction. Therefore, the robust reciprocities between ferric oxide and CNTs could cause the improvement of NH₃-SCR activity over Fe₂O₃/CNTs-ET.

The catalytic activity with time on stream is a significant item to estimate the catalysts' properties. Fig. 8A displays the catalytic activity of different catalysts with time on stream at 320 °C. All the catalysts are maintained unchanged and keep their highest conversion values during the whole test periods, and the Fe₂O₃/CNTs-ET shows the highest activity. It is noted that the oxidation of carbon nanotubes doesn't occur at this temperature during the SCR process, which has also been confirmed in our previous work 41, 61 As is well-known, there still exists some residual H₂O and SO₂ in the exhaust gas after the desulphurization process, which can poison and devitalize the catalysts in NH₃-SCR reaction.³ Thus, it is worth noting that the NO conversion of the catalysts with the attendance of H₂O and SO₂. The influence of H₂O on the NH₃-SCR activity over the Fe₂O₃ supported on CNTs by three different methods as a function of time at 320 °C was investigated as shown in Fig. 8B. While introducing 4 vol.% H₂O to the feed gas, the NO conversion of all catalysts maintains unchanged during the whole test periods whether introducing H₂O or not. It is confirmed that the competitive adsorption between H₂O and NH₃ on the active sites of the catalyst surface could lead to the

Journal Name

RSCPublishing

ARTICLE

Fig. 8 (A) NO conversion *vs.* time on stream of the catalysts; (B) NO conversion *vs.* time on stream of the catalysts in the presence of H₂O; (C) NO conversion *vs.* time on stream of the catalysts in the presence of SO₂; (D) NO conversion *vs.* time on stream of the catalysts in the presence of H₂O and SO₂. *Reaction conditions:* [NO] = [NH₃] = 500 ppm, [O₂] = 3 vol.%, [SO₂] = 200 ppm (when used), [H₂O] = 4 vol.% (when used), N₂ balance, T = 320 °C and GHSV=18, 000 h⁻¹.

inhibition of H₂O. Combining with the NH₃-TPD results (Fig. 6), the Fe₂O₃/CNTs-ET could preferentially adsorb NH₃ other than H₂O in the feed gas, which shows a sum of the acid sites over Fe₂O₃/CNTs-ET, and then lead to an excellent H₂O resistance ability.¹⁶ The above results suggested that the Fe₂O₃/CNTs-ET could be an appropriate candidate for H₂O resistance. Fig. 8C shows the results of SO₂ on the NO conversion of catalysts at the typical temperature of 320 °C. The total flow rate of the feed gas is 220 mL min⁻¹. As shown in Fig. 8C, the NO conversion of Fe₂O₃/CNTs-ET is 97 % in the absence of SO₂, and decreases to 91 % while inletting SO₂ (200 ppm) in the feed gas. With persistently adding 200 ppm SO₂, the NO conversion of Fe₂O₃/CNTs-ET keeps stable. By contrast, the adding of SO₂ in the reaction condition induces a significant decrease of NO conversion over the Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP by 22 % and 30 %, respectively. After cutting off SO₂ from the feed gas, the conversion of NO of

Fe₂O₃/CNTs-ET is restored to 92 % without any fluctuations during the test periods. However, for Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP, while eliminating the SO₂ stream the NO conversion of them is restored to a certain extent and finally returned to 77 % and 46 %, respectively. The above results indicate that the Fe₂O₃/CNTs-ET showed the best resistance to SO_2 among the three catalysts. It is well known that the SO_2 stream can poison and deactivate the catalyst with the formation and deposition of sulfates and bisulfates on the surface of the catalyst in NH₃-SCR reduction.^{34, 35} At the same time, NH₃ is reacting with SO₂ instead of reacting with NO which could decrease the reaction between NH₃ and NO. Compared with the Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP, the Fe₂O₃/CNTs-ET presents a better resistance of SO₂. The results of NH₃-SCR activity under the reaction condition with the coexistence of H₂O and SO₂ over the catalysts were also investigated as shown in Fig. 8D. As can be seen clearly, the

Page 9 of 10

ARTICLE

activity of Fe₂O₃/CNTs-ET decrease only about 6 % after introducing 4 vol.% H₂O and 200 ppm SO₂ together, but the volume raised to 92 % while eliminating the mixture of H₂O and SO₂. By contrast, the NO conversions of Fe₂O₃/CNTs-IM and Fe₂O₃/CNTs-CP presented radically decrease by 18 % and 26 % under the mixture of 4 vol.% H₂O and 200 ppm SO₂, respectively; and then recovered to 75 % and 57 %, respectively after cutting off H₂O and SO₂. The above results shows that the Fe₂O₃/CNTs-ET possess a good capacity for the resistance of water and sulfur dioxide.

4. Conclusions

In summary, Fe_2O_3 nanoparticles anchored on CNTs were *in situ* prepared via an ethanol-thermal route for selective catalytic reduction of NO with NH₃. The Fe₂O₃/CNT-ET presented better NH₃-SCR performance, higher H₂O-resistance and SO₂ tolerance than the catalysts synthesized by impregnation or coprecipitation routes. Besides, it also presents a better NH₃-SCR activity compared with Fe₂O₃/TiO₂. The outstanding NH₃-SCR activity over Fe₂O₃/CNT-ET could be attributed to the high dispersion of Fe₂O₃ nanoparticles on CNTs, most defects of the surface, the robust reducibility and the larger amount of stronger acid strength and chemisorbed oxygen. According to the above excellent properties, the Fe₂O₃/CNT-ET catalyst might be a proper candidate for NH₃-SCR of NO with NH₃.

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (51108258) and the Shanghai Municipal Education Commission (14ZZ097). We thank Prof. W. J. Yu and Prof. B. Lu from the Analysis and Test Centre of SHU for help with the TEM and Raman measurements. The authors would like to thank Dr. K. Zhang from the Analysis and Test Centre of NERCN for help with the HRTEM measurements.

Notes and references

Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China. E-mail: dszhang@shu.edu.cn; Fax: +86 021 66136079; Tel: +86 021 66136081.

†Electronic Supplementary Information (ESI) available: TEM images of Fe₂O₃/CNTs-IM, Fe₂O₃/CNTs-CP, Fe₂O₃/TiO₂; XRD patterns of the samples; Nitrogen adsorption–desorption isotherm, H₂-TPR, NH₃-TPD profiles and NO conversion *vs.* temperature over the Fe₂O₃/TiO₂, and Raman spectrum of CNTs. See DOI: 10.1039/b000000x/

- 1. H. Bosch and F. Janssen., Catal. Today, 1988, 2, 369-379.
- 2. W. C. Wang and N. D. Sze, Nature, 1980, 286, 589-590.
- J. M. Hao, H. Z. Tian and Y. Q. Lu, *Environ. Sci. Technol.*, 2002, 36, 552-560.
- P. Forzatti, I. Nova and E. Tronconi, Angew. Chem. Int. Ed., 2009, 121, 8516-8518.
- P. G. Smirniotis, D. A. Pena and B. S. Uphade, *Angew. Chen. Int. Ed.*, 2001, 40, 2479-2482.

- P. G. W. A. Kompioa, A. Brückner, F. Hipler, G. Auer, E. Löffler and W. Grünert, J. Catal., 2012, 286, 237-247.
- M. H. Groothaert, K. Lievens, H. Leeman, B. M. Weckhuysen and R. A. Schoonheydt, J. Catal., 2003, 220, 500-512.
- P. J. Smeets, M. H. Groothaert, R. M. Teeffelen, H. Leeman, E. J.M. Hensen and R. A. Schoonheydt, J. Catal., 2007, 245, 358-368.
- C. Shi, Y. Y. Ji, U. M. Graham, G. Jacobs, M. Crocker, Z. S. Zhang, Y. Wang and T. J. Toops, *Appl. Catal.*, *B*, 2012, **119-120**, 183-196.
- D. H. Lee, K. T. Kim, H. S. Kang, Y. H. Song and J. E. Park, *Environ. Sci. Technol.*, 2013, 47, 10964-10970.
- R. Q. Long and R. T. Yang, J. Am. Chem. Soc., 1999, 121, 5595-5596.
- 12. G. S. Qi and R. T. Yang, Appl. Catal., B, 2003, 44, 217-225.
- R. H. Gao, D. S. Zhang, X. G. Liu, L. Y. Shi, P. Maitarad, H. R. Li, J. P. Zhang and W. G. Cao, *Catal. Sci. Technol.*, 2013, 3, 191-199.
- H. L. Li, D. S. Zhang, P. Maitarad, L. Y. Shi, R. H. Gao, J. P. Zhang and W. G. Cao, *Chem. Commun.*, 2012, 48, 10645-10647.
- L. Zhang, L. Y. Shi, L. Huang, J. P. Zhang, R. H. Gao and D. S. Zhang, ACS Catalysis, 2014, 4, 1753-1763.
- X. L. Mou, B. S. Zhang, Y. Li, L. D. Yao, X. J. Wei, D. S. Su and W. J. Shen, *Angew. Chem. Int. Ed.*, 2012, **51**, 2989-2993.
- 17. R. Q. Long and R. T. Yang, J. Catal., 1999, 188, 332-339.
- 18. A. Z. Ma and W. Grunert, Chem. Commun., 1999, 71-72.
- 19. G. S. Qi and R. T. Yang, Catal. Lett., 2005, 100, 243-246.
- M. Schwidder, M. S. Kumar, K. Klementiev, M. M. Pohl, A. Bruckner and W. Grunert, *J. Catal.*, 2005, 231, 314-330.
- S. Brandenberger, O. Krocher, A. Tissler and R. Althoff, *Appl. Catal.*, *B*, 2010, **95**, 348-357.
- 22. T. Zhang, J. Liu, D. X. Wang, Z. Zhao, Y. C. Wei, K. Cheng, G. Y. Jiang and A. J. Duan, *Appl. Catal.*, *B*, 2014, **148-149**, 520-531.
- 23. P. Balle, B. Geiger and S. Kureti, Appl. Catal., B, 2009, 85, 109-119.
- P. Balle, B. Geiger, D. Klukowski, M. Pignatelli, S. Wohnrau, M. Menzel, I. Zirkwa, G. Brunklaus and S. Kureti, *Appl. Catal.*, *B*, 2009, 91, 587-595.
- 25. G. Neri, A. M. Visco, S. Galvagno, A. Dunato and M. Panzalorto, *Thermochim. Acta*, 1999, **329**, 39-46.
- 26. R. Q. Long and R. T. Yang, J. Catal., 2002, 207, 158-165.
- Y. Shu, H. Sun, X. Quan and S. Chen, J. Phys. Chem. C, 2012, 116, 25319-25327.
- 28. C. Fang, D. Zhang, L. Shi, R. Gao, H. Li, L. Ye and J. Zhang, *Catal. Sci. Technol.*, 2013, 3, 803-811.
- H. Chang, J. D. Lee, S. M. Lee and Y. H. Lee, *Appl. Phys. Lett.*, 2001, 79, 3863-3865.
- R. Q. Long and R. T. Yang, Ind. Eng. Chem. Res., 2001, 40, 4288-4291.
- S. Santucci, S. Picozzi, F. D. Gregorio, L. Lozzi, C. Cantalini, L. Valentini, J. M. Kenny and B. Delley, *J. Chem. Phys.*, 2003, **119**, 10904-10910.
- 32. J. Z. Luo, L. Z. Gao, Y. L. Leung and C. T. Au, *Catal. Lett.*, 2000, 66, 91–97.
- Z. Zeng, P. Lu, C. T. Li, L. Mai, Z. Li and Y. S. Zhang, *Catal. Sci. Technol.*, 2012, 2, 2188-2199.
- S. L. Bai, J. H. Zhao, W. Li and Z. P. Zhu, *Catal. Today*, 2010, 158, 393-400.
- 35. Z. X. Ma, H. S. Yang, Q. Li, J. W. Zheng and X. B. Zhang, *Appl. Catal.*, A, 2012, **427-428**, 43-48.

- B. C. Huang, R. Huang, D. J. Jin and D. Q. Ye, *Catal. Today*, 2007, 126, 279-283.
- 37. J. Z. S. Bai, L. Wang and Z. Zhu, J. Fuel Chem. and Technol., 2009, 37, 583-587.
- E. C. Vermisoglou, G. E. Romanos, G. N. Karanikolos and N. K. Kanellopoulos, J. Hazard. Mater., 2011, 194, 144-155.
- 39. X. Y. Fan, F. M. Qiu, H. S. Yang, W. Tian, T. F. Hou and X. B. Zhang, *Catal. Commun.*, 2011, **12**, 1298-1301.
- 40. S. Q. Song and S. J. Jiang, Appl. Catal., B, 2012, 117-118, 346-350.
- D. S. Zhang, L. Zhang, L. Y. Shi, C. Fang, H. R. Li, R. H. Gao, L. Huang and J. P. Zhang, *Nanoscale*, 2013, 5, 1127-1136.
- J. D. Xu, K. T. Zhu, X. F. Weng, W. Z. Weng, C. J. Huang and H. L. Wan, *Catal. Today*, 2013, **215**, 86-94.
- 43. Q. Li, H. S. Yang, F. M. Qiu and X. B. Zhang, J. Hazard. Mater., 2011, **192**, 915-921.
- 44. Z. X. Ma, H. S. Yang, F. Liu and X. B. Zhang, *Appl. Catal.*, A, 2013, 467, 450-455.
- 45. D. S. Zhang, L. Zhang, L. Y. Shi, C. Fang, H. R. Li, R. H. Gao, L. Huang and J. P. Zhang, *RSC Adv.*, 2013, **3**, 8811-8819.
- 46. B. Tang, G. X. Hu and H. Y. Gao., Appl. Spectrosc. Rev., 2010, 45, 369-407.
- 47. L. M. Malard, M. A. Pimenta, G. Dresselhaus and M. S. Dresselhaus., *Phys. Rep.*, 2009, **473**, 51-87.
- Y. F. Hao, Y. Y. Wang, L. Wang, Z. H. Ni, Z. Q. Wang, R. Wang, C. K. Koo, Z. X. Shen and J. T. L. Thong., *Small*, 2010, 6, 195-200.
- A. Gupta, G. Chen, P. Joshi, S. Tadigadapa and P. C. Eklund., *Nano Lett.*, 2006, 6, 2667-2673.
- X. J. Wang, J. Lu, Y. Xie, G. A. Du, Q. X. Guo and S. Y. Zhang, J. Phys. Chem. B, 2002, 106, 933-937.
- L. Zhang, Z. Jia, L. M. Huang, S. O'Brien and Z. H. Yu, J. Phys. Chem. C, 2007, 111, 11240-11245.
- M. S. Dresselhaus, G. Dresselhaus and A. Jorio, J. Phys. Chem. C, 2007, 111, 17887-17893.
- S. L. Chou, J. Z. Wang, Z. X. Chen, H. K. Liu and S. X. Dou, Nanotechnology, 2011, 22, 265401.
- 54. T. Yamashita and P. Hayes, Appl. Surf. Sci., 2008, 254, 2441-2449.
- 55. S. J. Yang, C. Z. Wang, L. Ma, Y. Peng, Z. Qu, N. Q. Yan, J. H. Chen, H. Z. Chang and J. H. Li, *Catal. Sci. Technol.*, 2013, **3**, 161-168.
- M. Kang, E. D. Park, J. M. Kim and J. E. Yie, *Appl. Catal.*, A, 2007, 327, 261-269.
- 57. P. Maitarad, D. S. Zhang, R. H. Gao, L. Y. Shi, H. R. Li, L. Huang, T. Rungrotmongkol and J. P. Zhang, *The Journal of Physical Chemistry C*, 2013, **117**, 9999-10006.
- 58. S. X. Cai, D. S. Zhang, L.Y. Shi, J. X., L. Zhang, L. Huang, H. R. Li and a. J. P. Zhang, *Nanoscale*, 2014, 6, 7346-7353.
- B. Guan, H. Lin, L. Zhu and Z. Huang, J. Phys. Chem. C, 2011, 115, 12850-12863.
- S. X. Cai, D. S. Zhang, L.Y. Shi, J. Xu, L. Zhang, L. Huang, H. R. Li and J. P. Zhang, *Catal. Sci. Technol.*, 2014, 4, 93-101.
- L. Zhang, D. S. Zhang, J. P. Zhang, S. X. Cai, C. Fang, L. Huang, H. R. Li, R. H. Gao and L. Y. Shi, *Nanoscale*, 2013, 5, 9821-9829.