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The partitioning of the energy in ab initio quantum mechanical calculations into its chemical origins (e.g., electrostatics,
exchange–repulsion, polarization, and charge transfer) is a relatively recent development; such concepts of isolating chemically
meaningful energy components from the interaction energy have been demonstrated by variational and perturbation based energy
decomposition analysis approaches. The variational methods are typically derived from the early energy decomposition analysis
of Morokuma [Morokuma, J. Chem. Phys., 1971, 55, 1236], and the perturbation approaches from the popular symmetry–
adapted perturbation theory scheme [Jeziorski et al., Methods and Techniques in Computational Chemistry: METECC–94, 1993,
13, 79]. Since these early works, many developments have taken place aiming to overcome limitations of the original schemes
and provide more chemical significance to the energy components, which are not uniquely defined. In this review, after a brief
overview of the origins of these methods we examine the theory behind the currently popular variational and perturbation based
methods from the point of view of biochemical applications. We also compare and discuss the chemical relevance of energy com-
ponents produced by these methods on six test sets that comprise model systems that display interactions typical of biomolecules
(such as hydrogen bonding and π–π stacking interactions) including various treatments of the dispersion energy.

1 Introduction

Intermolecular interactions govern the formation of many sys-
tems of interest, and their study is therefore of particular im-
portance within many fields such as materials and medicinal
chemistry, catalysis and biochemistry. Physical experimenta-
tion alone is unable to provide readily identifiable values for
the chemical phenomena that give rise to the interactions, and
no quantum mechanical (QM) operators exist that we may use
to compute interaction energies or chemical/physical compo-
nents of these. However, the development of energy decom-
position analysis (EDA) presents a novel approach to quan-
tifying these chemical effects. EDA is a valuable analytical
tool that partitions the intermolecular interaction energy into
energy components such as electrostatic, polarization, charge
transfer, exchange and correlation contributions and related
chemical phenomena. A significant number of recent devel-
opments have been made in the field of EDA, and with such
diversity it is not unexpected that certain schemes should pos-
sess a greater suitability for application to one field of chem-
istry above another (e.g. application to transition metal sys-
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tems or hydrogen bonded model systems). It is for this reason
that we have decided to limit our review of EDA schemes in
this work specifically to those of interest in biomolecular ap-
plications.

There exist many possible ways in which to decompose
the interaction energy. The different approaches are the re-
sult of the essentially arbitrary definitions of the interaction
energy components that originate from the desired chemical
concepts. It is important to note a number of problems that re-
late to this arbitrary nature. For example, at close intermolec-
ular distances and especially with large basis sets the separa-
tion of charge transfer and polarization becomes increasingly
ill–defined. At greater intermolecular distances charge trans-
fer becomes more easily separable from polarization, eventu-
ally reaching the limit of transferring integer charges between
molecules. From the more distant perspective of considering
the theoretical grounding from which the energy components
are obtained, it may also be argued that there are only classical
electrostatic interactions that can be decomposed.

In order to compare the effectiveness of particular EDA
schemes it is important to highlight their key distinguishing
features and compare these with others. Measures of EDA
scheme effectiveness include the physical relevance of the en-
ergy component magnitudes and the agreement of energy term
characteristics through a series of changing chemical environ-
ments. Also, the ability to express correlation effects such as
dispersion may also be beneficial for example in the case of
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weakly interacting systems. Often consideration of the com-
putational expense of executing a decomposition, particularly
in the case of biological systems analyses which are typically
of larger size, is also important. Special features of schemes
may also prove to be of merit for certain applications. Such
features include the ability to further decompose terms into
their monomeric contributions, as well as the measurement
of forward and back-donation of electron density between
molecules. Corrections for basis set superposition error are
also included in many EDA schemes, and the theory of these
will also be discussed within this work.

One picture we may use to determine the expressive power
of the terms is through consideration of the exploratory
depth of the decomposition at hand. For example, the ab-
solutely localized molecular orbital1 (ALMO) and similar
block-localized wavefunction2 (BLW) EDA schemes define
a frozen density term at the Hartree–Fock (HF) level of the-
ory. This term can be represented as the addition of the elec-
trostatic and exchange interaction terms. On the other hand,
a separation of terms is seen within the earlier implementa-
tion of the natural EDA (NEDA) approach of Glendening et
al.3–6. The original ‘electrostatic’ component of the scheme3

incorporated the polarization and exchange contributions to
the interaction energy in addition to the more commonly un-
derstood electrostatic component. An early extension of the
scheme4 separates these terms into their isolated components.
The compounding and separation of terms may in cases hinder
the depth of analysis available to the chemist. Equally, how-
ever, such groupings may be of benefit for other applications.
In reviewing the various EDA schemes, it is also important to
be aware of complications that arise due to term inequivalen-
cies between the schemes despite sharing term names. Sim-
ilarly, it is important to also note term dependencies within
schemes that may be present. This includes consideration, for
example, of issues surrounding the so-called ‘mixing’ term of
the Kitaura–Morokuma (KM) EDA scheme7. This is a resid-
ual energy term that describes a contribution to the interaction
energy that is unascribable to any particular chemical energy
component.

The application of a scheme to a particular system may be
limited by the level of theory at which a scheme is imple-
mented. Schemes implemented at the higher levels of theory
often include dispersion and other correlation components not
available at the HF level of theory. For example, we may con-
sider the case of the localized molecular orbital (LMO) EDA
scheme of Su and Li8 that is implemented for restricted closed
shell HF (RHF), restricted open shell HF (ROHF), and unre-
stricted open shell HF (UHF) monomer wavefunctions and the
density functional theory (DFT) equivalents of these. Treat-
ment of intramolecular bond splitting interactions is possible
within this scheme in addition to intermolecular interactions.
A number of the schemes have been re-expressed at the cou-

pled cluster (CC) level of theory, offering the possibility of
highly accurate theoretical study of systems.8–10

This review is structured as follows: firstly we introduce
the various self–consistent field (SCF) theories and charge–
localized molecular orbital (MO) descriptions used within the
EDA formalisms, and also describe a common wavefunction
form used for the expression of the various EDA methods’
theoretical descriptions. Following this, we discuss a number
of common EDA schemes of potential interest for biomolec-
ular system investigations, and finally evaluate these schemes
using a study of a test set of small model systems that ex-
press key interactions commonly found within biomolecular
systems.

2 Previous Applications of Energy Decomposi-
tion Analysis

EDA has been used in a wide range of applications in quan-
tum chemistry. Investigations using EDA approaches are nat-
urally well suited to evaluations of molecular bonding forces.
The EDA studies in literature typically feature systems of rel-
atively small size (up to tens of atoms) for both the vari-
ational1–6,8,11–17 and perturbation approaches18–21, and for
biomolecular systems approaches such as molecular mechan-
ics (MM) are sometimes combined with the QM region22,23.
Here we discuss a number of these applications in literature.

EDA calculations in the literature have typically been per-
formed to evaluate newly developed EDA methodologies, to
quantify the driving forces of association in the studied sys-
tems, or for both reasons. The water dimer has been frequently
adopted as a theoretical test model for the purpose of evaluat-
ing new EDA approaches1,3,5,6,11–13,24 as this system is exem-
plary of a typical hydrogen bonding interaction. Other small
interacting systems also studied include the benzene dimer
system8,17,21, the water – alkali metal cation series1,4,5,11 and
the ammonia – hydrogen fluoride12,15,18 system.

EDA calculations of drug – water clusters have also been
performed. For example, investigations were performed by
Esrafili and Behzadi25 on the hydrogen bonding interaction of
aspirin (and fluorine–substituted aspirin) with (water)n=1−3.
This work included symmetry–adapted perturbation theory
(SAPT) and natural bond orbital (NBO) second–order pertur-
bation theory analyses, as well as density partitioning using
Bader’s quantum theory of atoms in molecules (QTAIM)26

approach.
Investigations of larger biomolecules are also noted in the

EDA literature. These are typically performed by EDA cal-
culations on smaller derived truncated systems, rather than on
the whole biomolecular system itself. Truncated active–site
systems of a Cl−/H+ exchange transporter protein (EcClC)
were studied with KM EDA and NEDA by Church et al.27
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for example. A number of EDA investigations of cytochrome
P450 have also been performed22,23,28. Thellamurege inves-
tigated the interaction of a water molecule with cytochrome
P450, specifically with the ferric heme group and compound
I intermediate of this biomolecule28. This investigation was
performed using the LMO EDA8 and the extended transition
state (ETS) EDA developed by Ziegler and Rauk29–31. The re-
sults revealed electrostatic and polarization effects to be dom-
inant in the interactions within these systems.

The possibility of EDA on larger systems also has
been evidenced. Hirao performed an EDA of the
ONIOM(B3LYP:AMBER) QM/MM interaction energy of the
compound I intermediate of cytochrome P450cam to investi-
gate the effect of the protein environment on this state23. This
work found electrostatics to be the most dominant contribu-
tion to the interaction energy, followed by van der Waals and
polarization contributions. The calculations of this investiga-
tion involved thousands of atoms present in the protein en-
vironment, and even though this involved a QM/MM–based
variant of EDA, this study offers an example of EDA appli-
cation to an entire protein. An earlier investigation by Hirao
using this method was also performed on the non–heme diiron
enzyme myo–inositol oxygenase22. The aim of this investiga-
tion was to assess the effects of the protein environment and
intracluster dispersion in the process of oxygen binding to this
enzyme. This found dispersion to be the most dominant con-
tribution to the interaction energy, which was enhanced to a
lesser degree by electrostatic, van der Waals, and polarization
effects. This work notes that because entropic effects do not
favour the bonding of oxygen, overall this process is almost
thermoneutral. This demonstrates a limitation of pure interac-
tion energy investigations: the interaction energy (or enthalpy)
itself is also one of the components that control the thermody-
namics of binding, the other being the entropy of binding.

Another established approach to large scale energy calcula-
tions is the fragment molecular orbital (FMO) framework of
Kitaura et al.32–35. This approach involves the partitioning of
a system into a number of smaller fragments, with the total
system energy calculated using the FMOs of these fragments.
This fragmentation reduces computational cost whilst main-
taining accuracy and a number of studies have been performed
on important protein–receptor systems using the FMO ap-
proach investigating binding affinities and the interaction ener-
gies of fragments. Examples of these studies include calcula-
tions performed on the human immunodeficiency virus type 1
(HIV-1) protease complexed with lopinavir36,37, the HIV-1 an-
tibody 2G1238,39, the influenza virus surface protein hemag-
glutinin40–50 , prion protein51–53, the estrogen receptor54–56,
the vitamin D receptor57–60, and the retinoid X receptor61–63.
The pair interaction EDA (PIEDA) scheme24 has been devel-
oped in the FMO framework, and a discussion of the PIEDA
approach is included later in this review. The PIEDA scheme

has been used to investigate contributions to stabilization in
various conformers in the evolution of amide stacking in larger
γ-peptides64, and to investigate DNA recognition modulation
in artificial zinc–finger proteins using PIEDA maps65.

Investigations are not limited to low atomic mass composi-
tions. EDA calculations of the bonding in more exotic systems
have been published, such as in the transition metal–oxime
bond66 and the transition metal–imine bond67 by Bayat et al.,
and work by Marjolin et al.68 has sought to seek the compo-
nents of interactions within mono aqua complexes of various
lanthanide and actinide cations. This work investigating lan-
thanide and actinide cation interactions was achieved using
a modified constrained space orbital variation (CSOV) EDA
scheme69,70 with small and large core pseudopotentials.

Overall, the current work shows EDA to be a rapidly ex-
panding field of quantum chemistry. Calculations on ever
larger systems have been made possible, and many different
EDA approaches now exist. So far no systematic approach has
been made to evaluating these many approaches. It is the aim
of this review to summarize the current methods with focus on
their application to biomolecular structures. It is also often the
case that the EDA approaches under study are applied to dis-
tinctly different chemical compositions in literature. We have
therefore decided to evaluate the methods using test sets each
containing a series of compounds (e.g. of increasing hydro-
gen bonding interaction character) to facilitate the translation
of chemical expectations into the various energy contributions.

3 Theory of Self-Consistent Field Calculations

We now describe the term symbols used in this review.

Energies

EHF Hartree-Fock energy
EKS Kohn-Sham energy
T electronic kinetic energy
Ts non-interacting electronic kinetic energy
Vee electron–electron interaction energy
J Coulombic interaction energy
Exc exchange and correlation energy
εi molecular orbital energy
∆E interaction energy

Operators

F̂ Fock operator
K̂ exchange operator
Â antisymmetrizer operator

Potentials

υeff(r) effective potential
υext(r) external potential
υxc(r) exchange–correlation potential
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System Parameters and Constants

Nfrag number of fragments in the fragment
molecular orbital system

Ns number of doubly-occupied spatial orbitals
r,r′ electronic coordinate
Rα coordinate of nucleus α

Zα charge of nucleus α

Ab Initio Theory

f [n] functional
n(r) density
Ψ(r, R), |Ψ〉 total electron–nuclear wavefunction
ψi(r), |ψi〉 molecular orbital
φi(r), |φi〉 basis function/atomic orbital

Matrices and Integrals

F Fock matrix
C orbital coefficient matrix
Dx fragment molecular orbital density matrix

for fragment(s) x
Vx electrostatic potential of the other frag-

ments acting upon the fragment(s) x
Ki j exchange integral
〈µγ|νδ 〉 two-electron integral

Natural Bond Orbitals
oφi(r), |oφi〉 natural atomic orbital
wi orbital occupancy
oai natural atomic orbital expansion coeffi-

cient
aX polarization coefficient of natural hybrid

orbital hX
ϕX (r), |ϕX 〉 natural bond orbital

Fragment Molecular Orbitals

EFMO2 fragment molecular orbital system energy
EI energy of fragment I
E ′I internal energy of fragment I
∆E int

IJ pair interaction energy of fragments I and J

Symmetry-Adapted Perturbation Theory

Ŵ Møller-Plesset fluctuation operator
ξ ,η ,ζ perturbation parameters
V̂ intermolecular Coulomb operator
v̂A(b) Coulombic potential of the nuclei of frag-

ment A on electron b
V0 nuclear interaction energy between the frag-

ments of a system

In order to provide a unified review of EDA techniques it is
helpful to first discuss Hartree-Fock and Kohn-Sham density

functional theory with reference to EDA approaches. In this,
we have expressed the equations of the theories in terms of
doubly-occupied spatial orbitals Ns. This allow for the facile
expression of the NBO theory of Weinhold et al.71,72with ex-
tension of the EDA theory equations to open-shell systems re-
maining a relatively straightforward task. In the same vein,
expression of the EDA theory is limited to two-body systems
in order to prevent unwieldy mathematical descriptions. Also,
the presentation of EDA schemes typically assumes the super-
molecular approach to treat monomers at infinite separation
to have fragment nuclear geometries identical to that within
complex.

3.1 Density Functional Theory

In Kohn–Sham (KS)73 DFT74, the total electronic energy is
calculated using the KS energy functional,

EKS[n] =Ts[n]+
∫

n(r)υext(r)dr

+
1
2

∫∫ n(r)n(r′)
|r− r′|

drdr′+Exc[n] (1)

where the electron density has the form,

n(r) =2
Ns

∑
i=1
|ψi(r)|2 (2)

where ψi(r) are the one-electron KS orbitals of a fictitious sys-
tem of non-interacting electrons which is constructed in such
a way that its density is the same as the exact density of the
system of interest which has interacting electrons, and where
Ts[n] is the kinetic energy of the non-interacting reference sys-
tem, Exc[n] is the exchange–correlation energy functional and
is approximated in practice and υext is the external poten-
tial. The KS orbitals are obtained by solving a one-electron
Schrödinger equation,

ĥKSψi(r) = εiψi(r) (3)

with the KS Hamiltonian,

ĥKS =− 1
2

∇
2 +υeff(r) (4)

which contains an effective potential υeff. KS-DFT theory is
formally an exact theory providing the total energy of the in-
teracting system.

The KS effective potential has the form,

υeff(r) =υext(r)+
∫ n(r′)
|r− r′|

dr′+υxc(r) (5)

with the exchange–correlation potential given by,

υxc(r) =
δExc[n]
δn(r)

. (6)
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On calculating υeff(r) from a guessed density n(r) using
eq. 5, a new density is found using eqs. 3 and 2. These equa-
tions are solved in a self-consistent manner until energy con-
vergence is achieved.

3.2 Hartree–Fock Theory

The HF75,76 approach unlike DFT is not formally an exact the-
ory but can be considered as a special case of the KS equations
with ĥKS of eq. 3 replaced with the Fock operator F̂ ,

F̂ψi(r) = εiψi(r) (7)

where,

F̂ =− 1
2

∇
2 +υext(r)+

∫ n(r′)
|r− r′|

dr′− K̂ (8)

with the exchange operator given by,

K̂(r) f (r)≡
Ns

∑
i=1

∫
ψ∗i (r′) f (r′)
|r− r′|

dr′ ψi(r) (9)

where f (r) represents an arbitrary function.
The HF equations are also solved in a self-consistent man-

ner. A set of guess orbitals are used to construct the Fock
operator using eq. 8 which is then solved to find the orbitals
that minimize the HF energy,

EHF =Ts[n]+
∫

n(r)υext(r)dr

+
1
2

∫∫ n(r)n(r′)
|r− r′|

−
Ns

∑
i, j=1

Ki j (10)

where the exchange integral Ki j is given by,

Ki j =
∫∫

ψ∗i (r)ψ j(r)ψi(r′)ψ∗j (r′)
|r− r′|

drdr′

=〈i j| ji〉 . (11)

3.3 The Localized Molecular Orbital Description

Within the variational EDA approaches, the interaction en-
ergy is partitioned by constructing a number of intermedi-
ate wavefunctions that express chemical phenomena between
the monomer units and calculating the energy difference be-
tween these wavefunctions. For example, in the case of the
polarization contribution this would be calculated as the en-
ergy difference between the non–polarized state and polar-
ized state, where the description of the polarized state nec-
essarily excludes any charge transfer interaction. There is a
multitude of approaches which have been followed for the
needed wavefunction restriction in order to construct these

polarized but charge transfer restricted intermediate wave-
functions and so these approaches are a defining feature of
each EDA. Similarly, unique basis set frameworks in which
the EDAs are performed are required specifically for the
NEDA3–6 (NBO71,72 framework) and PIEDA24 (FMO32–35

framework) approaches. The key theoretical frameworks em-
ploying localized MOs and polarized wavefunction construc-
tions are briefly summarized here.

3.3.1 The Block–Localized Wavefunction/Absolutely
Localized Molecular Orbital. A description of a charge
transfer restricted intermediate wavefunction is given by the
ALMO EDA scheme77 and similar BLW EDA scheme of Mo
et al.2,11 by restricted expansion of the MOs in terms of only
atomic orbitals (AOs) localized to a particular fragment. This
yields MOs that are localized to each fragment and that are
non–orthogonal between the fragments. The following pro-
vides a description of the construction of a set of ALMOs for
an arbitrary number of fragments, with the procedure for the
construction of BLW orbitals very similar.

For the subset of AOs localized to each fragment, where x
denotes a subset belonging to a fragment and µ denotes the
basis function index within a given subset, the occupied MOs
of each fragment are expanded in terms of their respective lo-
calized AOs,

|ψxi〉= |φxµ〉Cxµ •
• xi (12)

where Cxµ •
• yi represents the MO coefficients which are con-

strained to equal zero for x 6= y, and where |ψxi〉 represents
a MO localized on fragment x.77 This orbital expansion con-
straint ensures a localized MO description on the fragments in
a similar fashion to the localization of AOs on atoms. This
expansion also ensures no borrowing of AOs from other frag-
ments to compensate for basis set incompleteness, therefore
following this description does not result in basis set super-
position error (BSSE) and consequential artificial lowering of
interaction energy.

The theory underlying the construction of ALMOs is
closely related to that of the block–localized MOs of Mo et
al.2,11 (the BLW method). The ALMO and BLW wavefunc-
tions may be considered almost identical in their construction,
differing by the method of orbital optimization within the the-
ories. The procedure by which the ALMOs are variationally
optimized is known as SCF for molecular interactions (SCF
MI).77–79 Orbital optimization within the BLW approach may
follow a similar procedure78,80–82, or may be achieved by suc-
cessive Jacobi rotation83. Despite the similarities that exist
in the construction of these wavefunctions, a number of small
differences are observed in the EDA schemes they are used
within as we discuss in the sections dedicated to each method.

3.3.2 The Natural Bond Orbital. The NBO basis of
Weinhold et al.71,72 adopted within the NEDA scheme3–6
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describes a set of almost doubly occupied localized orbitals
formed by transformation of the full set of MOs. In this way
an optimal Lewis description of the electronic wavefunction
under study is produced. The vast majority of total charge
density is accounted for by the bonding NBOs, with the re-
mainder described by Rydberg and antibonding NBOs.

Construction of the NBO basis involves the progressive
transformation of the atomic orbital basis into localized func-
tions. This begins with the initial transformation of the atomic
orbital basis set into natural atomic orbitals (NAOs) of opti-
mized occupancy by occupancy–weighted symmetric orthog-
onalization (OWSO)72,84,85. For a set of atomic orbitals
{|φi〉}, a set of NAOs {|oφi〉} is constructed as,

{|oφi〉}= {|φi〉}COWSO (13)

where COWSO is a coefficient matrix that orthogonalizes the
initial basis whilst variationally minimizing the square root
deviation

∑
i

wi|oφi−φi|2 (14)

between this basis and the orthogonalized basis in an
occupancy–weighted manner, where wi ≥ O is the occupancy
of orbital φi. The process ensures that low occupancy orbitals
are able to freely distort in the orthogonalization transforma-
tion whilst high occupancy orbitals maintain their shape.72

This set of high-occupancy core and valence orbitals and
low-occupancy Rydberg orbitals are then linearly combined
to form an optimal orthonormal set of natural hybrid orbitals
(NHOs) {hX} which are directional and point along chemical
bonds,

hX(r) = ∑
i∈X

oai
o
φi(r) (15)

where oai are the expansion coefficients of the NAOs and
where the expansion spans all NAOs on the atom X .

Linear combination of the NHOs results in construction of
a set of 2–centre bonding NBOs,

ϕXY(r) = aXhX(r)+aYhY(r) (16)

where the polarization coefficients aX and aY satisfy a2
X +

a2
Y = 1. Construction of similar antibonding NBOs to orthog-

onally complement the bonding NBOs is achieved as,

ϕXY∗(r) = aXhX(r)−aYhY(r) . (17)

The polarization coefficients describe the polarization of the
NBO, and it is possible for one–centre NBOs to exist where
aX = 1 and aY = 0.

3.3.3 The Fragment Molecular Orbital and the Pair
Interaction Energy. The FMO32–35 framework is adopted
within the PIEDA approach of Fedorov and Kitaura24. There
are two different approaches to the construction of the frag-
ments within FMO theory: an approach based upon the use
of hybrid orbital projection (HOP) operators32 known as the
HOP method, and an alternative approach using the adaptive
frozen orbitals (AFO)86 scheme. The FMO approach we de-
scribe here is the HOP method which is used in PIEDA and
serves as an introduction to the FMO formalism.

In the FMO approach, selected chemical bonds are detached
at an atom with the two bonding electrons assigned to one of
the fragments. Ideally, this detachment should avoid regions
of delocalized charge such as C–N amide bonds in order to
maintain the localized nature of the fragments. The atom re-
taining this bond is named the bond attached atom (BAA), and
the atom from which this bond is detached is named the bond
detached atom (BDA)86. Essentially, the HOP technique is
used in order to prevent the BDA electron density from oc-
cupying the region of the bond that is now occupied by the
BAA.

On the BAA fragment, a pseudoatom replaces the BDA
to provide the basis functions used to describe the bond and
a proton from the BDA is formally transferred to this pseu-
doatom. This transfer does not affect the electrostatic field
surrounding the fragment, and so the total properties of the
system remain unaltered.

A brief description of the general FMO formalism and FMO
system energy calculation is as follows87 :

1. The system is partitioned as determined by the user into
a number of fragments with BDAs and BAAs.

2. Initial monomer electron densities are constructed for op-
timization.

3. Monomer Fock operators are subsequently constructed
using these densities, and the monomer energies eval-
uated in the electrostatic field of the surrounding frag-
ments.

4. These energies are self–consistently minimized to a con-
verged electrostatic potential.

5. Two–fragment energy calculations (FMO2) are per-
formed in this potential and used to evaluate the total en-
ergy of the system. These dimer energies are calculated
using the converged fragment densities.

6. Three-fragment calculations (FMO3) may also be per-
formed and used to calculate the total system energy in-
cluding three-body effects. Similarly, these trimer ener-
gies are calculated using the converged fragment densi-
ties.
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The FMO2 total system energy is expressed as a many–body
expansion up to second–order as,

EFMO2 =
Nfrag

∑
I

EI +
Nfrag

∑
I>J

(EIJ−EI−EJ) (18)

where Nfrag is the number of fragments comprising the FMO
system, EI and EJ refer to the monomer energies of step 4,
and EIJ refers to the (non self–consistently obtained) dimer
energies of step 5. We can re–express this equation in terms of
pair interaction energies (PIEs) of the fragments by separating
out the electrostatic potential term as,

EFMO2 =
Nfrag

∑
I

E ′I +
Nfrag

∑
I>J

(E ′IJ−E ′I−E ′J)

+
Nfrag

∑
I>J

Tr(∆DIJVIJ) (19)

where E ′I and E ′J are the monomer internal energies and E ′IJ
are the dimer internal energies which exclude the electrostatic
interaction energy of the surrounding fragments, and where
Tr(∆DIJVIJ) is the interaction energy on density relaxation in
the electrostatic potential of the surrounding fragments, with
the density matrix difference ∆DIJ given by,

∆DIJ = DIJ−DI⊕DJ (20)

where DI , DJ , and DIJ are the monomer and dimer density
matrices respectively and VIJ is the electrostatic potential ma-
trix of the other fragments acting upon the dimer IJ.88 The
monomer and dimer internal energies are obtained by subtract-
ing the electrostatic interaction energy due to the surround-
ing fragments from the monomer and dimer energies EI , EJ
and EIJ respectively. For example in the case of the fragment
dimer,

E ′IJ = EIJ−Tr(DIJVIJ) (21)

where Tr(DIJVIJ) is the electrostatic interaction of the sur-
rounding fragments given by their electron density and nuclei.

The FMO2 energy form of eq. 19 can be re–expressed in
terms of internal monomer energies and PIEs, ∆E int

IJ , as,

EFMO2 =
Nfrag

∑
I

E ′I +
Nfrag

∑
I>J

∆E int
IJ . (22)

The PIE of any arbitrary fragment pair IJ is given by,

∆E int
IJ = (E ′IJ−E ′I−E ′J)+Tr(∆DIJVIJ) (23)

and it is these interaction energies that are decomposed within
the PIEDA scheme.

3.4 Common EDA Wave Functions

It is useful to adopt a unified notation of the wavefunc-
tions (and their derived charge densities) shared between the
EDA schemes we consider in this review. Starting with the
direct calculation of the interaction energy, we define the
commonly used electronic Slater determinant wavefunctions
Ψ

0,AB
A , Ψ

0,AB
B and ΨAB and other related intermediate wave-

functions used to express the EDA theory. We denote the
lower index as distinguishing the fragment(s) described by the
wavefunction, and the upper index as distinguishing the ba-
sis in which the MOs of the wavefunction are expanded. The
upper index zero describes wavefunctions constructed using
the optimized MOs of fragments in isolation. The Boys and
Bernardi89 counterpoise (CP) corrected binding energy calcu-
lation may be expressed as,

∆E = E[ΨAB]−E[Ψ0,AB
A ]−E[Ψ0,AB

B ] (24)

where ΨAB, Ψ
0,AB
A , and Ψ

0,AB
B are the variationally optimized

wavefunctions for the AB complex and the isolated monomers
A and B calculated in the full AB basis. Furthermore, two
similar sets of wavefunctions Ψ

0,ABocc
A , Ψ

0,AoccB
B and Ψ

0,ABvir
A ,

Ψ
0,AvirB
B may be derived to facilitate the partitioning of the CP

correction into a contribution from ghost occupied orbitals of
the adjacent fragments and from ghost virtual orbitals of the
adjacent fragments. These wavefunctions are constructed in
the same manner as Ψ

0,AB
A , and Ψ

0,AB
B , but using either the oc-

cupied or virtual orbitals of the adjacent fragments as given
by the upper index. We define the wavefunctions for the
monomers calculated in their own basis as,

Ψ
0,A
A = Â

(
onA

∏
a

ψ
′
a

)
(25a)

Ψ
0,B
B = Â

(
onB

∏
b

ψ
′
b

)
(25b)

where Â is the antisymmetrizer and {ψ ′a} and {ψ ′b} represent
the optimized MOs of the isolated monomers A and B respec-
tively.

A number of many–electron intermediate wavefunctions
are defined for the complex AB using combinations of the
MOs of the monomers A and B. The first set of wavefunctions
of this type, Ψ

0,A/B,Hartree
AB and Ψ

0,AB,Hartree
AB , are constructed as

the Hartree product of the individual monomer Slater deter-
minant wavefunctions. This means that interfragmental ex-
change is not included in the energies of these two wavefunc-
tions. As before, a key feature of these wavefunctions is the
basis in which the individual monomer MOs are optimized.
The wavefunction Ψ

0,A/B,Hartree
AB is constructed using the MOs

of the individual monomers A and B optimized in isolation
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in their own basis, and the wavefunction Ψ
0,AB,Hartree
AB is con-

structed using the monomer MOs optimized in isolation in the
full AB basis:

Ψ
0,A/B,Hartree
AB =

[
Ψ

0,A
A ·Ψ

0,B
B

]
(26a)

Ψ
0,AB,Hartree
AB =

[
Ψ

0,AB
A ·Ψ0,AB

B

]
. (26b)

The second set of wavefunctions of this type are Ψ
0,A/B
AB

and Ψ
0,AB
AB which are constructed in the same manner as

Ψ
0,A/B,Hartree
AB and Ψ

0,AB,Hartree
AB but taking the antisymmetric

product of the monomer MOs as,

Ψ
0,A/B
AB = Â

(
Ψ

0,A
A ·Ψ

0,B
B

)
(27a)

Ψ
0,AB
AB = Â

(
Ψ

0,AB
A ·Ψ0,AB

B

)
. (27b)

These wavefunctions do not obey the Pauli exclusion principle
due to lack of orthogonality of the MOs between the different
fragments. This presents a source of difficulty when attempt-
ing to rigorously ascribe physical meaningfulness to energy
components that are calculated using these wavefunctions.

3.5 Common EDA Charge Densities

In this section we describe the charge densities correspond-
ing to the intermediate wavefunctions above which are used to
provide a description of the NEDA scheme theory3–6. Similar
to the wavefunction indices’ definitions, we use the lower in-
dex to denote the fragment(s) described by the charge density
and the upper index to denote the basis in which the density
is constructed. The construction of charge densities within the
NEDA scheme proceeds by decomposition of the charge den-
sity of the AB supermolecule rather than by construction from
the monomer charge densities, and all charge densities of this
scheme are calculated in the full AB basis. We also distinguish
densities optimized in isolation by an upper index zero.

The charge densities nAB
AB, n0,AB

A and n0,AB
B describe the

charge densities of the fully optimized AB supermolecule and
the isolated monomers A and B respectively. The descrip-
tions of these charge densities complement the commonly
used wavefunctions ΨAB, Ψ

0,AB
A and Ψ

0,AB
B respectively. The

charge density of the AB supermolecule, nAB
AB, is given by,

nAB
AB(r) =

onA

∑
α

Zα δ (r−Rα)−2
onA

∑
a
|ψa(r)|2

+
onB

∑
β

Zβ δ (r−Rβ )−2
onB

∑
a
|ψb(r)|2 (28)

where the nuclei of A and B are located at coordinates Rα

and Rβ with charge Zα and Zβ respectively, and where {ψa}

and {ψb} are the MOs of A and B respectively. The iso-
lated monomer charge densities n0,AB

A (r) and n0,AB
B (r) are con-

structed in a similar manner as,

n0,AB
A (r) =

onA

∑
α

Zα δ (r−Rα)−2
onB

∑
a
|ψ ′a(r)|2 (29a)

n0,AB
B (r) =

onB

∑
β

Zβ δ (r−Rβ )−2
onB

∑
b
|ψ ′b(r)|2 (29b)

where a and b span the MOs {ψ ′a} and {ψ ′b} of the isolated
monomers A and B, and where these MOs have been varia-
tionally optimized in the full AB basis.

4 Variational Based EDA Methods

4.1 Kitaura–Morokuma EDA

The KM scheme7,90, extended from the scheme of Mo-
rokuma91, is one of the earliest energy decomposition anal-
ysis schemes developed. This scheme is a widely used vari-
ational scheme limited to the RHF level of theory and which
therefore excludes electronic correlation terms within the de-
composition.

4.1.1 Theory. The decomposition of the interaction en-
ergy within the KM EDA consists of the following terms7,90:

∆E = ∆EES +∆EEX +∆EPOL +∆ECT +∆EMIX (30)

where ∆EES is the electrostatic interaction between the
monomers with their charge distributions undistorted, ∆EEX
is the exchange repulsion contribution that describes the inter-
action of exchange between the undistorted monomer charge
distributions (and includes the short–range repulsion resulting
from orbital overlap between the two fragments), ∆EPOL is
the polarization interaction on distorting the charge distribu-
tions of the monomers in the presence of their neighbouring
monomer, ∆ECT is the charge transfer energy that results from
electron transfer from the occupied MOs of one monomer into
the virtual MOs of its neighbouring monomer, and where the
term ∆EMIX describes contributions to the interaction energy
that are not ascribable to a particular component.

We express the components of the KM EDA scheme except
the charge transfer component in terms of energy functionals
of the common wavefunctions described above. The electro-
static energy, ∆EES, is evaluated as the Coulomb energy on
taking the relaxed charge densities of the monomers in isola-
tion to complex geometry,

∆EES = E[Ψ0,A/B,Hartree
AB ]−E[Ψ0,A

A ]−E[Ψ0,B
B ] . (31)

The exchange energy, ∆EEX, is taken as the energy on form-
ing the fully antisymmetrized wavefunction from the Hartree
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product intermediate wavefunction,

∆EEX = E[Ψ0,A/B
AB ]−E[Ψ0,A/B,Hartree

AB ] . (32)

The definitions of the electrostatic and exchange terms take
this general form in the majority of EDA schemes we discuss.
After calculating these two components, the energy change on
restricted variational optimization of the Hartree product inter-
mediate wavefunction leads to calculation of the polarization
energy component ∆EPOL,

∆EPOL = E[ΨA/B,Hartree
AB ]−E[Ψ0,A/B,Hartree

AB ] (33)

where the intermediate wavefunction Ψ
A/B,Hartree
AB is con-

structed by relaxation of the fragment orbitals of the Hartree
product intermediate wavefunction Ψ

0,A/B,Hartree
AB in the field of

the neighbouring monomer. This term is denoted ∆EPL within
the original KM EDA, but to ensure continuity with the other
schemes of this review we term this component ∆EPOL. A di-
agram of the KM EDA scheme electrostatics, exchange and
polarization components is given within Fig. 1.

Fig. 1 The Kitaura–Morokuma electrostatics, exchange and
polarization EDA components for the AB complex. 7,90

The charge transfer component is calculated as the energy
resulting from charge transfer from the occupied MOs of one
monomer to the virtual MOs of the other and vice versa. The
calculation of this component may be described as the energy
difference between two intermediate wavefunctions: one that
includes this interfragmental interaction, and one that does
not. The calculation of this energy component is more clearly
demonstrated by use of modified overlap and Fock matrices
for the AB complex. The charge transfer energy component of
this scheme is calculated by setting to zero certain blocks of
the complex Fock and overlap matrices that express specific
chemical effects during the iteration cycles. The matrices of
the complex are partitioned into blocks that involve the occu-
pied and virtual orbitals of each monomer. The contribution of

charge transfer effects to the interaction energy may be calcu-
lated as the difference between the energy of an intermediate
set of matrices that have non–zero diagonal blocks which we
name ‘ESX’ blocks that give an energy EESX, and another set
of intermediate matrices that involve both the diagonal ‘ESX’
blocks and those blocks required to describe charge transfer
effects which we name ‘CT’ blocks with energy EESX+CT.
These matrices are shown diagrammatically within Fig. 2.

∆ECT = EESX+CT−EESX . (34)

(a) (b)

Fig. 2 The partitioning of the Fock and overlap matrices for the KM
EDA scheme for the evaluation of the charge transfer
component7,13. The set of matrices (a) that involve only the
diagonal exchange and electrostatics interactions produces the
energy EESX and the set of matrices (b) that involve these diagonal
blocks and also the charge transfer blocks produces the energy
EESX+CT. The labels ‘occ’ and ‘vir’ denote the sets of orbitals that
are occupied and virtual on the monomers A and B.

A remainder ‘mixing’ term is defined to describe the contri-
bution to the interaction energy not ascribable to any particular
component of the scheme,

∆EMIX = ∆E− (∆EES +∆EPOL

+∆ECT +∆EEX) . (35)

The KM theory described herein follows the implementa-
tion of Chen and Gordon13. Treatment of BSSE in this scheme
applies the CP correction to the ∆EEX and ∆ECT terms only
and the components ∆EES, ∆EPOL and ∆EMIX remain as in
the original KM EDA scheme. This treatment splits the CP
correction to the interaction energy into two: one correction
for the exchange component calculated by including the set
of occupied orbitals of the adjacent fragments, and a second
correction for the charge transfer component calculated by in-
cluding the set of virtual orbitals of the adjacent fragments.
The CP corrections to the ∆EEX term are given as,

∆EBSSE,EX(A) = E[Ψ0,A
A ]−E[Ψ0,ABocc

A ] (36a)

∆EBSSE,EX(B) = E[Ψ0,B
B ]−E[Ψ0,AoccB

B ] (36b)

∆EBSSE,EX = ∆EBSSE(A) +∆EBSSE(B) (36c)
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and the correction to ∆ECT is given as,

∆EBSSE,CT(A) = E[Ψ0,A
A ]−E[Ψ0,ABvir

A ] (37a)

∆EBSSE,CT(B) = E[Ψ0,B
B ]−E[Ψ0,AvirB

B ] (37b)

∆EBSSE,CT = ∆EBSSE(A) +∆EBSSE(B) . (37c)

The calculations of these BSSE components are further de-
scribed within Fig. 3 and 4.

Fig. 3 The treatment of BSSE13 for the exchange term within the
KM EDA scheme 7,90. A BSSE correction due to the presence of the
occupied orbitals of adjacent monomers is introduced to the
exchange term.

4.1.2 The Extended Transition State Approach. It is
relevant at this point to mention Ziegler and Rauk’s equally
important ETS EDA scheme29–31 which was developed in-
dependently but around the time of the KM EDA and which
share a number of similarities. This scheme approaches the
problem of decomposing the interaction energy by describing
an electrostatic energy component (identical to the ∆EES en-
ergy component of the KM EDA), a Pauli exchange repulsion
energy term ∆EPauli, and an orbital interaction term ∆Eorb:

∆E = ∆EES +∆EPauli +∆Eorb . (38)

This decomposition also includes a geometric deformation en-
ergy term to distort the fragment equilibrium geometries to
their geometries when in complex. To maintain a consis-
tent definition of ∆E in this review, and due to the simple
evaluation of this component, we do not include this term
within eq. 38. The Pauli exchange repulsion term is related
to the exchange energy component of the KM EDA scheme

Fig. 4 The treatment of BSSE13 for the charge transfer term within
the KM EDA scheme7,90. A BSSE correction due to the presence of
the virtual orbitals of adjacent monomers is introduced to the charge
transfer term.

(see eq. 32), with its evaluation at the DFT level calculated
as the exchange–correlation energy difference between a ver-
sion of the wavefunction Ψ

0,A/B,Hartree
AB in which all the orbitals

are Löwdin orthogonalized92 and the fragment wavefunctions
Ψ

0,A
A and Ψ

0,B
B ,93

∆EPauli =Exc[Ψ
0,A/B,Hartree
AB ]−

(
Exc[Ψ

0,A
A ]+Exc[Ψ

0,B
B ]
)

.

(39)

The final orbital interaction term contains interaction energy
information relating to the charge transfer and polarization
interaction components and other orbital mixing interactions.
This term is somewhat similar to the mixing term of the KM
EDA as it is calculated as a remainder term that is required for
the energy components to add up to the full interaction energy.

4.1.3 Assessment. A number of issues are observed that
relate to the KM EDA scheme. The definition of the mix-
ing term has no physical equivalent and has the potential to
be even greater in magnitude than the total interaction energy
itself.94 The components of this decomposition are also ob-
served to be highly basis set dependent and the charge trans-
fer and polarization energies are numerically unstable with
large basis sets and at short intermolecular distance.95–97 This
is a result of the improper antisymmetrization of the inter-
mediate wavefunctions used in evaluating these terms: elec-
trons from one fragment are permitted to occupy space already
occupied by the electrons of the other fragment and so the
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Pauli exclusion principle remains unenforced.98 Later EDA
schemes such as the reduced variational space (RVS) analy-
sis13,99, CSOV69,70, and NEDA3–6 schemes have been devel-
oped which attempt to overcome these limitations.

As seen within other schemes, the description of ∆EES
and ∆EEX as individual terms remains problematic due to
their wavefunction definitions not obeying the Pauli principle.
These terms are often combined in schemes derived from the
KM EDA to produce a new term that is defined by the addi-
tion of the electrostatic and exchange terms. This combined
term avoids the problem of using improperly antisymmetrized
wavefunctions in the decomposition. The ∆ECT and ∆EPOL
KM EDA components are also observed to share the problem
of using improperly antisymmetrized wavefunctions in their
calculation. These terms may be combined as a new ∆ECTPLX
term which is defined by the addition of the polarization and
charge transfer components with inclusion of the exchange in-
tegral: this is performed in an alternative scheme100 intended
for the analysis of strong transition metal – ligand interactions.

The ETS scheme has been coupled in recent years with the
natural orbitals for chemical valence (NOCV) approach101–104

in what is termed ETS–NOCV93. This method allows the or-
bital interaction energy ∆Eorb to be divided into its orbital ori-
gins and visualised. In this approach, a deformation density
matrix describing the change in density of the ∆Eorb interac-
tion is constructed and diagonalised to yield NOCVs93. Com-
plementary pairs of NOCVs are used to visualise the inter-
actions, with energetic estimations of these interactions com-
puted from the KS matrix of a transition state density (mid-
way between the supermolecule and fragment densities). This
approach therefore provides both a qualitative and quantita-
tive analysis of chemical bonding. The ETS–NOCV scheme
has been applied to organometallic105–108 and coordination
compounds105,107–109, as well as metal–metal bonding93,108

and boronic110,111 systems. More unusual organometallic
analyses have also been performed using the ETS–NOCV
approach, including systems involving gold112 and silver113

interactions for example. The ETS EDA scheme has also
been applied to purely organic molecules, for example in in-
vestigating conjugation and hyperconjugation stabilizations
in conjugated molecules114, heterobenzene molecules115,116,
benzene116, five–membered aromatic compounds116, cyclic
and acyclic conjugated carbenes116, and hetero– and anti–
aromatic compounds116. Additionally, a number of review ar-
ticles have been published on applications of the ETS scheme
to both inorganic117,118 and organic systems14,119. Other ap-
proaches that seek to provide a measure of the electron den-
sity delocalization between molecules include the NBO ap-
proach71,72,84,120,121, Bader’s QTAIM26,122, the electron local-
ization function123,124, and the Hirshfeld analysis125, as well
as the various population analysis schemes72,92,126.

4.2 Reduced Variational Space

The RVS scheme13,99 corrects a number of the unsatisfactory
tendencies of the KM scheme that result as a consequence of
the terms not correctly satisfying the Pauli exclusion principle
in their calculation.98 The CSOV analysis69,70 is similar to the
RVS scheme and differs subtly in its treatment of charge trans-
fer and polarization. By ensuring proper antisymmetrization
of the wavefunctions of the decomposition, the Pauli exclu-
sion principle within the RVS scheme is enforced correctly.
Effectively, this scheme combines the electrostatics and ex-
change terms of the KM EDA and modifies the evaluations of
the polarization and charge transfer components.

4.2.1 Theory. The RVS EDA method is closely related
to the KM scheme but has a small number of distinct differ-
ences. The first is the inclusion of the electrostatic and ex-
change terms as a single ESX contribution (due to the fact that
the wavefunctions corresponding the the isolated ∆EES and
∆EEX not obeying the Pauli principle)13. The second is the
different restrictions of variational space available for orbital
optimization to the KM EDA scheme. Lastly, the treatment of
BSSE in the RVS EDA is slightly more complicated than in
the KM EDA scheme. Notably, the equivalent mixing term,
∆EMIX, to that in the KM EDA scheme has a much greater
tendency to become so small that it becomes insignificant in
the RVS scheme.

The form of the RVS EDA interaction energy partitioning
is,

∆E = ∆EESX +∆EPOL +∆ECT +∆EMIX (40)

where the ∆EESX term is equal to the sum of the ∆EES and
∆EEX components of the KM EDA,

∆EESX = E[Ψ0,A/B
AB ]−E[Ψ0,A

A ]−E[Ψ0,B
B ] (41)

and where the construction of the intermediate wavefunc-
tion Ψ

0,A/B
AB ensures orthogonality between the monomers by

Gram–Schmidt orthogonalization13,99. A number of other
schemes apply this reduction of terms, including the ALMO
and BLW EDA schemes discussed within this review.

The remaining components are modifications to their KM
EDA equivalents. The polarization energy component dif-
fers from the KM EDA evaluation by variational optimiza-
tion of the fully antisymmetrized wavefunction Ψ

0,A/B
AB (rather

than the non–antisymmetrized wavefunction Ψ
0,A/B,Hartree
AB ).

The subspace available for variational optimization of the
orbitals is reduced by freezing the occupied orbitals of the
neighbouring monomer and omitting its virtual orbital sub-
space to prevent charge transfer. For the two–fragment sys-
tem AB, orbital optimization in the field of the neighbouring
monomer produces two wavefunctions Ψ

RVS−POL(A),A/B
AB and
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Ψ
RVS−POL(B),A/B
AB relating to the polarized states of fragments

A and B respectively. The polarization energies for these two
wavefunctions are then calculated by subtraction of the en-
ergy of the non–polarized state wavefunction Ψ

0,A/B
AB from the

energies of these polarized state wavefunctions. Addition of
these two polarization energies produces the total polarization
energy EPOL.

∆EPOL(A) = E[ΨRVS−POL(A),A/B
AB ]−E[Ψ0,A/B

AB ] (42a)

∆EPOL(B) = E[ΨRVS−POL(B),A/B
AB ]−E[Ψ0,A/B

AB ] (42b)

∆EPOL = ∆EPOL(A) +∆EPOL(B) (42c)

This is formally a similar process to that within the KM EDA.
Within the KM scheme however, this interaction instead effec-
tively involves the simultaneous polarization of the orbitals of
each fragment in the field of their neighbouring fragment and
also excludes an interfragmental exchange contribution.

Repeating a similar process of orbital optimization but with
extension of the variational space to include the virtual or-
bitals of the neighbouring fragment allows charge transfer
to occur, producing the two wavefunctions Ψ

RVS−CT(A),A/B
AB

and Ψ
RVS−CT(B),A/B
AB relating to the polarized and charge

transferred states of fragments A and B respectively. The
difference between the energies of these wavefunctions
and their polarized–only counterparts, Ψ

RVS−POL(A),A/B
AB and

Ψ
RVS−POL(B),A/B
AB , provides the charge transfer energies of

fragments A and B. The BSSE contributions from each frag-
ment for charge transfer are introduced at this point in the
decomposition. We denote the CP corrected charge transfer
energies EBSSE,CT(A) and EBSSE,CT(B) for the CP correction to
charge transfer originating from monomers A and B respec-
tively, and the total of these two energies as ∆EBSSE,CT. The
BSSE contributions from each fragment are introduced in a
form similar to eqs. 37a and 37b. This CP correction is re-
ferred to as the CP correction with virtual orbitals (VCP) in lit-
erature13. Addition of the BSSE contributions from the frag-
ments produces the total charge transfer energy ECT+BSSE.

∆ECT+BSSE(A) =E[ΨRVS−CT(A),A/B
AB ]

−E[ΨRVS−POL(A),A/B
AB ]

+∆EBSSE,CT(A) (43a)

∆ECT+BSSE(B) =E[ΨRVS−CT(B),A/B
AB ]

−E[ΨRVS−POL(B),A/B
AB ]

+∆EBSSE,CT(B) (43b)

∆ECT+BSSE =∆ECT(A) +∆ECT(B) (43c)

In the RVS EDA literature13, the charge transfer component
is labelled simply ECT. To reinforce that this component in-

cludes a BSSE correction contribution we have relabelled this
component as ∆ECT+BSSE.

The mixing component, ∆EMIX, of the RVS EDA is calcu-
lated as the difference between the CP corrected interaction
energy and the total of the energy components. The form of
the RVS EDA residual energy is given as,

∆EMIX = ∆ERVS− (∆EESX +∆EPOL

+∆ECT) . (44)

In the RVS literature13, this residual energy component is
termed ∆ERES. To maintain consistency with the naming con-
vention of the mixing term of the KM EDA, in this paper we
refer to this component as ∆EMIX.

The CP correction applied to the interaction energy is not
the full CP correction, and its calculation involves use of the
virtual orbitals of the partner monomer rather than its full set
of orbitals. The form of the RVS EDA CP corrected interac-
tion energy is therefore,

∆ERVS =E[ΨAB]−E[Ψ0,A
A ]−E[Ψ0,B

B ]
+∆EBSSE,CT (45)

=E[ΨAB]−E[Ψ0,ABvir
A ]−E[Ψ0,AvirB

B ] (46)

where ∆EBSSE,CT is the CP correction to the charge transfer
component. As the interaction energy is defined with a partial
CP correction, the interaction energy obtained from the RVS
EDA differs to the interaction energy calculated from the KM
EDA (in which the full CP correction is applied).

4.2.2 Assessment. This approach partially remedies the
shortcomings of the KM EDA by use of fully antisymmetrized
intermediate wavefunctions, and the Pauli exclusion principle
is fully enforced within this scheme. However, by reducing
the electrostatics and exchange contributions to one term the
level of information provided by the scheme is decreased. This
advantage and disadvantage is present in all KM EDA derived
schemes in which the electrostatic and exchange terms may be
combined. Also the theoretical description of polarization is
extended to include some exchange, and this may be useful or
not depending on the chemical interpretation attributed to this
term.

Despite its improvements upon the KM EDA, this scheme
is however currently limited to the HF level of theory.
The closely related CSOV scheme typically used in the in-
vestigation of metallic systems has been used with multi–
configurational SCF (MCSCF) wavefunctions127, and has
been extended from its original HF implementation69,70 to
the DFT level128,129 by simply using the KS orbitals in the
EDA procedure. Subtle difference in the CSOV analysis the-
ory cause the polarization and charge transfer energies to be
slightly dependent on their order of evaluation. Two CSOV
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analyses are therefore possible for any one system, and in
some cases it is convenient to perform both calculations to
validate results70.

4.3 Absolutely Localized Molecular Orbital / Block–
Localized Wavefunction EDA

4.3.1 Theory. In the ALMO EDA decomposition, the to-
tal binding energy ∆E is expressed by addition of the individ-
ual decomposition components1,

∆E = ∆EFRZ +∆EPOL +∆ECT (47)

where the frozen density component ∆EFRZ describes the ex-
change and electrostatic interaction of the frozen charge den-
sities when taken to complex geometry and is retermed the
Heitler–London energy ∆EHL within the BLW EDA2. We re-
fer to this component as ∆EFRZ within this review.

In order to evaluate the polarization and charge transfer
components, intermediate wavefunctions ΨALMO

AB and ΨBLW
AB

are constructed for the system. This construction given earlier
within eq. 12 follows similar processes within both the ALMO
and BLW approaches. Relaxation of the MOs of the common
wavefunction Ψ

0,A/B
AB ensuring conformity to the restricted MO

expansion requirement of these ALMO and BLW descriptions
when applied to each fragment results in construction of the
new intermediate wavefunctions ΨALMO

AB and ΨBLW
AB respec-

tively.
Both the ALMO and BLW EDA schemes include a geo-

metric distortion energy term associated with the distortion of
the monomer nuclear geometries at infinite separation to that
found when in complex which provides an additional energy
contribution to ∆E. Within the ALMO EDA scheme this en-
ergy component is referred to as the geometric distortion term,
∆EGD, and as the deformation energy ∆Edef within the BLW
EDA scheme (of significantly different physical interpretation
to that of the term of the same name in the NEDA scheme).
Including such an important term has obvious implications on
the evaluation of the interaction energy. As this term may be
considered a simple additional component to our standardized
description of the interaction energy, we will not include these
terms within our discussion of the theory of the schemes.

Similarly, a dispersion contribution ∆Edisp obtainable as a
simple ad-hoc procedure is introduced within the BLW EDA
scheme and therefore is also not included within our theory
review. This term is simply evaluated as the difference in en-
ergy obtained on performing higher level QM calculations that
account for correlation effects above the HF and DFT theory
EDA level of theory.

We may express the components of the ALMO and BLW
EDA schemes in terms of energy functionals of the common
wavefunctions and the wavefunctions ΨALMO

AB and ΨBLW
AB de-

scribed above. The frozen density component, ∆EFRZ, is de-

fined simply as the energy change on complexation of the
monomers without allowing for orbital relaxation,

∆EFRZ = E[Ψ0,A/B
AB ]−E[Ψ0,A

A ]−E[Ψ0,B
B ] . (48)

The frozen density term may also be expressed also as
a sum of a Coulomb (∆EES) term and an exchange term
within HF theory or an exchange-correlation term within DFT
(∆EEX/XC) as,

∆EFRZ = ∆EES +∆EEX/XC (49)

where these components are not computed explicitly in the
ALMO implementation1 but are within the BLW implemen-
tation2. The BLW EDA descriptions of these electrostatic and
exchange contributions are noted as being identical in their
evaluation to that of their KM EDA counterparts given within
eqs. 31 and 32. The exchange–correlation analogue to the
Hartree product is adopted at the DFT level to evaluate ∆EXC.
Within the ALMO and BLW literatures, this electrostatic com-
ponent is termed ∆ELS and ∆ele respectively.

The use of ALMOs in the expression of E[ΨALMO
AB ] con-

strains the variations to intramolecular contributions. Charge
transfer is prevented through use of this intermediate wave-
function description whilst allowing polarization of the MOs.
The energy lowering from Ψ

0,A/B
AB to ΨALMO

AB is therefore equal
to the energy stabilization on orbital polarization,

∆EPOL = E[ΨALMO
AB ]−E[Ψ0,A/B

AB ] . (50)

The final energy component of the decomposition is the
charge transfer energy. The contribution of charge transfer is
calculated as,

∆ECT = E[ΨAB]−E[ΨALMO
AB ]+∆EBSSE . (51)

This term includes the CP correction accounting for the BSSE.
The introduction of the BSSE at this stage in the decomposi-
tion is justified by the fact that this error needs to be corrected
for and that it can be considered as an artificial type of charge
transfer. The BSSE associated with this interaction is defined
as,

∆EBSSE(A) = E[Ψ0,A
A ]−E[Ψ0,AB

A ] (52a)

∆EBSSE(B) = E[Ψ0,B
B ]−E[Ψ0,AB

B ] (52b)
∆EBSSE = ∆EBSSE(A)+∆EBSSE(B) . (52c)

Similar approaches are also taken to evaluate the ∆EPOL and
∆ECT components of the BLW scheme, instead using the in-
termediate wavefunction E[ΨBLW

AB ] rather than E[ΨALMO
AB ].

The decomposition of ∆E into these three energy compo-
nents is shown within Fig. 5 and 6.
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Fig. 5 The ALMO EDA1 and BLW EDA2 scheme for a complex
AB.

4.3.2 Assessment. The ALMO EDA scheme relies solely
on the use of fully antisymmetrized wavefunctions, there-
fore obeying the Pauli exclusion principle and avoiding re-
lated issues that are observed within the KM EDA and similar
schemes. The wavefunction Ψ

0,A/B,Hartree
AB adopted within the

BLW EDA scheme does not satisfy the Pauli exclusion princi-
ple and so the electrostatic and exchange components (which
this wavefunction is used to calculate) are often combined to
form one single energy component as within the ALMO EDA
to avoid its use. It is however noted that the combining of
these terms by the ALMO EDA and other schemes may limit
the information provided, with schemes that make this sepa-
ration such as the BLW EDA scheme providing greater parti-
tioning ability at the cost of less well defined electrostatic and
exchange energy components.

A relatively recent extension to the ALMO EDA130 has
been developed that allows the isolation of forward and back
charge donation quantities using the concept of chemically
significant complementary occupied–virtual orbital pairs. The
original ALMO EDA scheme also provides a treatment for the

Fig. 6 The treatment of charge transfer within the ALMO EDA1

and BLW EDA2 schemes. The (positive) BSSE is introduced to the
charge transfer term because both BSSE and charge transfer are
effects resulting from the delocalization of monomer MOs, caused
by including basis functions from the neighbouring fragments.

charge transfer back and forward donation energies. This in-
volves performing a single non-iterative Roothaan step correc-
tion to estimate charge transfer between the fragments of the
system, with a higher order correction included to ensure the
fragment charge transfer energies add up to the full ALMO
EDA charge transfer energy.1 Charge transfer has also been
quantified in BLW EDA studies by Mulliken, Löwdin and nat-
ural population analyses131–133. The ability to evaluate charge
transfer quantities in addition to energies further enhances the
picture of chemical bonding these methods provide.

4.4 Natural EDA

The NBO approach of Weinhold et al.71,72 is used as the basis
in the NEDA3–6 scheme. The use of the NBO basis results in
a wavefunction which follows the classic Lewis interpretation
of bonds and lone-pairs. Although a number of the compo-
nents of this scheme are similar to those within the KM EDA
scheme, NEDA does not variationally optimize any of its in-
termediate wavefunctions and this results in a number of arte-
facts in the values observed when using the NEDA scheme
that will be discussed later.

4.4.1 Theory. In its latest implementation NEDA takes
the form of both a five-term energy decomposition4 and a
three-term energy decomposition5 by reformulation of the
components of the five-term energy decomposition.
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4.4.1.1 The Five–Term NEDA. In the five-term NEDA
scheme, the decomposition of the interaction energy is of the
form,

∆E = ∆EES +∆EPOL +∆ECT +∆EEX/XC +∆EDEF (53)

where ∆EEX/XC is the exchange or exchange–correlation con-
tribution in the HF and DFT cases respectively.

From the common charge densities described earlier, the
(CP corrected) interaction energy may be expressed using en-
ergy functionals as,

∆E = E[nAB
AB]−E[n0,AB

A ]−E[n0,AB
B ] (54)

where E[n] denotes a KS energy functional of charge density
n(r) and where n0,AB

A (r) and n0,AB
B (r) represent the charge den-

sities of the unperturbed monomers A and B.
The intermediate charge densities used in the evaluation of

the NEDA components are calculated after transforming the
KS matrix of the supermolecule to the NBO basis. The charge
density associated with the monomer A perturbed in the field
of the other monomer B, nAB

A (r), is calculated from the vari-
ationally optimized AB supermolecule state and is expressed
as,

nAB
A (r) =

onA

∑
α

Zα δ (r−Rα)−2
onA

∑
a
|ψa(r)|2 (55)

where summations occur over all nuclei and orbitals compris-
ing monomer A only and where ψa are the eigenvectors of the
(diagonal) monomer A block of the full NBO KS matrix with
these orbitals mutually orthogonal across each of the individ-
ual monomers5,6. The equivalent charge density for monomer
B, nAB

B (r), is constructed in a similar fashion.
The localized (CT-restricted) charge density nloc,AB

AB (r) is
calculated from the charge densities associated with the in-
dividual perturbed monomers as,

nloc,AB
AB (r) = nAB

A (r)+nAB
B (r) . (56)

This differs from the total charge density of the fully inter-
acting state as the AB NBO KS matrix is observed to be
block non-diagonal, with the presence of off-diagonal ele-
ments representing interfragmental delocalization interactions
(as shown in Fig. 7).

From the charge densities described we can define the
charge transfer (∆ECT) and deformation (∆EDEF) components
of the NEDA scheme as,

∆ECT = E[nAB
AB]−E[nloc,AB

AB ] (57)

∆EDEF(A) = E[nAB
A ]−E[n0,AB

A ] (58a)

∆EDEF(B) = E[nAB
B ]−E[n0,AB

B ] (58b)

∆EDEF = ∆EDEF(A) +∆EDEF(B) . (58c)

Fig. 7 The partitioning of the NBO Fock matrix for the AB complex
involved in the construction of the nloc,AB

AB (r) charge density.4

Delocalizing interactions described by the hashed blocks of the Fock
matrix are not included in this charge density construction, where
the labels ‘occ’ and ‘vir’ denote the sets of orbitals that are occupied
and virtual on the monomers A and B.

Fig. 8 The evaluation of ∆EDEF for a complex AB. Non–classical
effects of polarization are captured within the ∆EDEF component
along with intrafragmental electrostatic energy effects.6

Whilst the charge transfer and deformation components of
the NEDA scheme implemented at the DFT and HF levels of
theory are identical, differences exist in the interpretation of
the remaining contribution to the interaction energy6. The re-
maining contribution to the interaction energy given by eq. 54
is shown to be that of the interaction of the perturbed monomer
charge densities,

∆E−∆ECT−∆EDEF =

E[nloc,AB
AB ]−

(
E[nAB

A ]+E[nAB
B ]
)

. (59)

We can consider this to represent both the classical Coulom-
bic interaction of the permanent and induced multipoles of
the monomer units (i.e. a combination of the electrostatic
(∆EES) and polarization (∆EPOL) contributions), and the quan-
tum exchange-correlation (∆EXC) contribution,

∆E−∆ECT−∆EDEF =
∆EES +∆EPOL +∆EXC . (60)
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The classical contribution to this remainder of the interac-
tion energy can be expressed simply as,

∆EES +∆EPOL =
∫∫ nAB

A (r)nAB
B (r′)

|r− r′|
drdr′ (61)

The electrostatic (∆EES) contribution is isolated from this con-
tribution as,

∆EES =
∫∫ n0,AB

A (r)n0,AB
B (r′)

|r− r′|
drdr′ (62)

where ∆EES describes the interaction of the unperturbed
monomer charge densities and therefore the interaction of the
permanent multipoles of the monomer units.5 The ∆EPOL con-
tribution may similarly be partitioned and expressed as,

∆EPOL =
∫∫ nAB

A (r)nAB
B (r′)

|r− r′|
drdr′

−
∫∫ n0,AB

A (r)n0,AB
B (r′)

|r− r′|
drdr′ (63)

where ∆EPOL describes the extra electrostatic interaction on
polarizing the charge densities of the separated fragments in
the field of the other fragments when in complex.4 In this re-
gard, we can consider ∆EPOL to be an interfragmental inter-
action and ∆EDEF to be an intrafragmental interaction. The
remaining ∆EXC term accounts for the intermolecular electron
exchange–correlation interactions,

∆EXC =Exc[n
loc,AB
AB ]−

(
Exc[nAB

A ]+Exc[nAB
B ]
)

(64)

where within the HF/NEDA scheme this term is substituted
with the term ∆EEX of HF exchange origin,

∆EEX =−2
onA

∑
a

onB

∑
b
〈ab|ba〉 (65)

which neglects the electron correlation contribution.4,6

4.4.1.2 The Self Polarization Energy Term and the Three–
Term NEDA. A penalty term associated with the energy cost to
polarize the unperturbed monomers to their perturbed charge
densities is also included within the NEDA scheme named
the self (polarization) energy, (∆ESE).5 Interpretation of the
∆EDEF component is somewhat problematic as this compo-
nent includes both the contribution of Pauli repulsions to the
interaction energy, as well as the contribution from the self
energy penalty. It is sometimes useful to separate these contri-
butions as the isolation of this penalty energy from the ∆EDEF
component allows the reduction of the interaction energy ex-
pression of eq. 53 into three components: an electrical in-
teraction (∆EEL), charge transfer (∆ECT), and core repulsions
(∆ECORE).

The induced monomer charge density on monomer A,
∆nA(r), is defined as the difference in the charge densities as-
sociated with the perturbed and unperturbed monomer A,

∆nAB
A (r) =nAB

A (r)−n0,AB
A (r) . (66)

From this we define the self energy as the energy cost in form-
ing the induced monomer charge density in the presence of the
other monomers,5

∆ESE(A) =− 1
2

∫∫
∆nAB

A (r)nAB
B (r′)

|r− r′|
drdr′ (67a)

∆ESE =∆ESE(A) +∆ESE(B) (67b)

where the self energy for monomer B is evaluated in a com-
plementary manner to that for monomer A. The calculation of
this interaction is also shown within Fig. 9. The reformulation

Fig. 9 The evaluation of self energy component for a monomer A in
the field of monomer B. This component is a portion of the
deformation component that is electrical in origin, with the
remainder of the deformation component resulting from Pauli
repulsion contributions.5

of the energy decomposition in terms of electrical interaction
(∆EEL), charge transfer (∆ECT) and core repulsions (∆ECORE)
is achieved by collection of terms as,5

∆EEL = ∆EES +∆EPOL +∆ESE (68a)
∆ECORE = ∆EDEF +∆EXC−∆ESE (68b)

∆E = ∆EEL +∆ECT +∆ECORE . (68c)

The five–term NEDA scheme can also be described
schematically as within Fig. 10.

4.4.2 Assessment. A number of notable differences exist
between the NEDA and KM derived schemes. One key differ-
ence is that the NEDA scheme undertakes the decomposition
using only wavefunctions originating from the complex and
fragment Fock matrix, avoiding use of variationally optimized
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Fig. 10 The NEDA scheme for a complex AB.

intermediate wavefunctions. Lack of variational relaxation of
the intermediate wavefunctions leads to a general overestima-
tion of charge transfer values and underestimation of polar-
ization values1,11: variational optimization of the equivalent
localized state used to evaluate the charge transfer and polar-
ization terms of the ALMO and BLW EDA schemes avoids
this problem for example.

Significantly, the polarization term of the NEDA scheme
is purely electrostatic in origin, while intramolecular electron
exchange (or exchange–correlation) effects of polarization are
captured within the deformation component ∆EDEF (Fig. 8),
and the remaining intermolecular exchange contribution con-
tained within a portion of the exchange component ∆EEX/XC.

4.5 Pair Interaction EDA

The PIEDA24 scheme is a reformulation of the original KM
EDA approach in the FMO description of Kitaura et al.32–35.
The PIEs referred to by PIEDA are the interaction energies

of the fragments produced, and for this reason PIEs are also
known as interfragment interaction energies (IFIEs).87 The
FMO prescription is one that is also naturally well suited to
the analyses of large systems (such as proteins) and hence is
of interest for the study of biomolecular systems.

The FMO framework is implemented at many levels of the-
ory, namely the RHF, DFT, second–order Møller–Plesset per-
turbation theory (MP2), CC, MCSCF, time–dependent DFT
(TDDFT), and configuration interaction (CI) theories.88 This
is also partially inherited within the PIEDA approach and the
ability to access the MP2 and CC correlated levels of theo-
ries34,88 is of merit to the approach. The KM EDA–type en-
ergy components are however limited to evaluation at the RHF
level of theory, with the addition of a dispersion term ∆EDI
to ensure a correct representation of the interaction energy at
these correlated levels of theories.

4.5.1 Theory The PIEDA approach divides the interac-
tion in a manner derived from the KM EDA approach, with
the addition of a dispersion term for analyses at levels of the-
ory above RHF.

PIEDA is available in two types. The first type begins using
the densities obtained by an FMO calculation. The FMO den-
sities are already polarized by construction, and so PIEDA fol-
lows using the KM EDA components described within eq. 30
but without inclusion of the polarization component.35 Within
PIEDA, the charge transfer component is also combined with
the mixing component to produce the component ∆ECT+MIX.
An additional dispersion component ∆EDI is also included in
the PIEDA decomposition. This is added in a straightforward
manner when running a PIEDA calculation at the MP2 or CC
levels of theory, and describes the correlation energy of these
theories.88 PIEDA has also been developed for system cal-
culations in solution.134 A solvation contribution ∆ESOLV is
calculated using an approach combining the polarizable con-
tinuum model (PCM) with the FMO framework known as
PIEDA/PCM. This contribution describes the solvent screen-
ing of the PIEs and is important for obtaining meaningful in-
teraction analyses.135 The full form of this PIEDA type is

∆E int
IJ = ∆EES +∆EEX +∆ECT+MIX +∆EDI +∆ESOLV (69)

where the interaction energy definition used by PIEDA is the
pair interaction ∆E int

IJ described in eq. 23.
The second (full) type of PIEDA adds a polarization com-

ponent ∆EPOL to the EDA components.88 The calculation of
polarization requires an additional description of the free state
of the fragments. For molecular clusters this is simply ob-
tained as the molecules in isolation, however for systems that
involve bond partitioning the description is ambiguous. The
state for these bond partitioned fragments uses minimally pos-
sible caps, for example in the case of a C–C bond a methyl cap
would be used.
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The polarization energy is separated into a destabilizing
contribution from the monomer internal energies E ′I , and a sta-
bilizing contribution from the electrostatic energy component
∆EES of the first PIEDA.24 A number of polarization cou-
pling terms are included in this EDA, namely polarization–
exchange, polarization–dispersion, polarization–charge trans-
fer and many–body polarization terms.

4.5.2 Assessment As well as the advantage the use of the
FMO framework within PIEDA provides by enabling EDA of
larger systems, the use of FMO also allows the evaluation of
EDA components for select regions of molecules through the
localized description of the FMOs. This is a particular bene-
fit of the PIEDA method. The PIEDA method also includes a
number of mixing and coupling terms which may be problem-
atic to interpret as within the KM EDA. BSSE within the PIEs
is also not treated in the original PIEDA scheme. However,
attempts have been made to reduce the BSSE within the PIEs
for example through using model core potentials136 and by us-
ing a CP approach51,137. A limitation of using a CP approach
to estimate BSSE in fragment based calculations is that many
extra calculations are required to evaluate this. A novel ap-
proach that uses a statistical model has also been proposed138

to estimate fragment BSSE contributions, thereby reducing the
number of additional calculations required.

5 Perturbation Based Energy Decomposition
Analysis

The EDA schemes can be categorized by the nature of their
underlying theory. The character of the schemes may be de-
scribed as either variational in which the interaction energy is
decomposed by use of intermediate wavefunctions, or alterna-
tively as perturbation based in which the interaction between
the fragments is seen as a perturbation to the non–interacting
description, and the interaction is constructed as corrections
resulting from different physical effects. In this section, we
describe the SAPT and NBO second–order perturbation the-
ory approaches for interaction energy analysis.

5.1 Symmetry-Adapted Perturbation Theory

5.1.1 Theory. In contrast to the intermediate wavefunc-
tion approach of the variational based EDA schemes, SAPT
is presented as a perturbative expression of the interaction en-
ergy in terms of components of chemical interest.139,140

The description of SAPT here will focus upon what is usu-
ally termed the SAPT(0) approach. The approach assumes the
Møller-Plesset fluctuation operators, ŴA and ŴB, to not con-
tribute to the interaction energy and provides a concise intro-
ductory description of the SAPT formalism.

The SAPT expression for the Hamiltonian of a complex AB
is,

Ĥ = ĤA + ĤB +ξŴA +ηŴB +ζV̂ (70)

where the intermolecular Coulomb operator is expressed as,

V̂ =
onA

∑
a

onB

∑
b

1
|ra− rb|

+
onB

∑
b

v̂A(b)+
onA

∑
a

v̂B(a)+V0 (71)

v̂A(b) =−
onA

∑
α

Zα

|rb−Rα |
(72a)

v̂B(a) =−
onB

∑
β

Zβ

|ra−Rβ |
(72b)

and V0 is the nucleus–nucleus interaction energy between frag-
ments A and B.141

A symmetrized Rayleigh-Schrödinger (SRS) perturbative
expansion with respect to the perturbation parameters ξ , η ,
and ζ defines the SAPT approach with the interaction energy
expressed as,

∆E =
∞

∑
i=0

∞

∑
j=0

(E(i j)
ind +E(i j)

exch) (73)

where the E(i j)
ind are the polarization expansion terms and j is

the monomer fluctuation potential index and i the intermolec-
ular perturbation index. The SRS expansion results in each
E(i j)

ind term having an associated exchange term, E(i j)
exch, to force

antisymmetrization in order to project away Pauli–forbidden
components from the interaction energy.140

Within the SAPT(0) approach, the conditions of ξ = η = 0
are enforced. This results in an interaction energy SRS expan-
sion of the form,

∆E(ζ ) =

〈
Ψ0
∣∣ζV̂ ÂAB

∣∣Ψ(ζ )
〉〈

Ψ0
∣∣ÂAB

∣∣Ψ(ζ )
〉 (74)

where Ψ is the Hartree product of the monomer wavefunctions
and Ψ0 is equal to Ψ evaluated with the restriction ζ = 0. The
antisymmetrizer ÂAB is introduced to project away the Pauli–
forbidden components of the wavefunction Ψ.

The SAPT(0) interaction energy up to the second–order
with renaming of terms (cf. eq. 73) may be expressed as,

∆ESAPT(0) = E(1)
elst +E(1)

exch +E(2)
ind +E(2)

exch . (75)

The second–order energy correction polarization term, E(2)
ind ,

is formed of an induction and a dispersion contribution,

E(2)
ind = E(2)

ind +E(2)
disp (76)
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where E(2)
ind is the energy of polarizing each monomer in the

field of the frozen charge density of the other monomer, and
where E(2)

disp is the dispersion correction of the MP2 correlation
energy–like form. The induction energy may be expressed as,

E(2)
ind = E(2)

ind (A← B)+E(2)
ind (B← A) (77)

where A←B represents polarization of the charge density of A
in the field of the frozen charge density of B and B← A repre-
sents polarization of the charge density of B in the field of the
frozen charge density of A.139 Specifically for the polarization
of A in the field of the frozen charge density of B,

E(2)
ind (A← B) = 2∑

ar
tar(ωB)ar (78)

where,

(ωB)ar =(υ̂B)ar +∑
b
〈ab|rb〉 (79a)

tar =
(ωB)ar

εa− εr
. (79b)

The case of the polarization of B in the field of the frozen
charge density of A is of similar but opposite form. The
second–order correction for dispersion is given by,

E(2)
disp = 4

onA

∑
ar

onB

∑
bs

〈ab|rs〉〈rs|ab〉
εa + εb− εr− εs

. (80)

The second–order exchange correction similarly contains dis-
persion and induction components E(2)

exch−ind and E(2)
exch−disp re-

spectively, and the forms of these may be found in the litera-
ture139,140.

Substituting the SAPT(0) MOs with KS MOs in the
above equations results in a method named SAPT(KS).142

The SAPT(KS) approach is noted however as failing to
properly reproduce the dispersion energies of the origi-
nal SAPT scheme.143–146 This scheme differs from the
SAPT(DFT)143–146 approach in which the dispersion interac-
tion of eq. 80 are obtained from frequency–dependent density
susceptibility (FDDS) functions from TD-DFT calculations.

5.1.2 SAPT Treatment of Polarization and Charge
Transfer. Normally, the polarization and charge transfer con-
tributions to the interaction energy are described within the
induction energy. These components may be isolated in an
ALMO–like approach that considers the induction energy as
representing solely the polarization contribution when evalu-
ated with the basis set of each fragment limited to its own basis
functions.18,147 This basis is termed the monomer–centered
basis set (MCBS) and the basis with each fragment able to
use all basis functions of the full supermolecule is termed
the dimer–centered basis set (DCBS). The partitioning of the

charge transfer, Ect, and polarization, Epol of SAPT is calcu-
lated as,

Epol = E(2)
ind,MCBS (81a)

Ect = E(2)
ind,DCBS−E(2)

ind,MCBS (81b)

where E(2)
ind,MCBS and E(2)

ind,DCBS are the induction energies E(2)
ind

calculated in the MCBS and DCBS respectively. Exchange
parts of the polarization and charge transfer terms are calcu-
lated in a similar manner from the exchange induction correc-
tion E(2)

exch−ind in the MCBS and DCBS also.

5.1.3 Assessment. With recent developments permitting
SAPT at the DFT level of theory, this method is becoming a
viable alternative to the variational based approaches.143,145

As a perturbative treatment of the interaction energy, SAPT
inherently differs from the variational approaches in a num-
ber of ways. Notably, the SAPT descriptions of polariza-
tion and charge transfer differ from the variational methods
we have discussed by implicitly including dispersion contri-
butions within this term.1

5.2 Natural Bond Orbital Second–Order Perturbation
Theory Analysis

A notable asset of the NBO package (of which NEDA be-
longs) is its ability to calculate second–order perturbation the-
ory energies for a particular donor-acceptor NBO pair85,120.
This low–order perturbative correction provides an estimate
for the charge transfer contribution of an NBO pair (from a
bonding to an anti–bonding NBO) to the total interaction en-
ergy. This energy is expressed by the equation,

∆E(2)
i j =

−wi|Fi j|2

ε
(NL)
j − ε

(L)
i

(82)

where wi is the donor orbital occupancy (approximately 2),
Fi j is Fock matrix element for the donor-acceptor orbital in-
teraction, and ε

(L)
i and ε

(NL)
j are the energies of the donor and

acceptor orbitals respectively. In this manner, the chemist is
able to gain useful insight into the non-Lewis interaction of an
atom within a molecule with neighbouring functional groups,
and therefore allows the study of particular functional groups
of chemical interest.

6 Applications of Energy Decomposition Anal-
ysis

We have investigated a number of systems of interest within
the field of drug design. These model systems express key
interactions typically found within ligand–host systems, such
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as hydrogen bonding, π–π and halogen interactions. The test
systems we have included for study have been selected based
on their relevance to biomolecular studies whilst maintaining
small size. The chosen series are important to understanding
trends in the EDA results and to correlate these with chemi-
cal common sense. Of key consideration in drug design are
effects resulting from hydrogen bonding and dispersion inter-
actions148,149. We have included a number of systems in our
work that express these interactions. We have arranged these
systems into 6 congeneric series test sets that are expected to
follow key trends in bonding character.

We aim to identify the EDA approaches which are most
suitable for biomolecular applications by considering a num-
ber of criteria. These criteria include the schemes’ abilities to
describe the interaction energy with chemically useful energy
components, physically reasonable energy values, and with
minimal basis set dependence. The EDA schemes investigated
in the present study were the ALMO EDA, NEDA, KM EDA,
RVS EDA and SAPT(KS) schemes. The PIEDA scheme was
deemed inappropriate for the study of our test systems as this
scheme is essentially identical to the KM EDA for molecular
fragments. Also, because the NBO second–order perturbation
theory is a charge transfer analysis tool and not a variational
or perturbation EDA scheme we have not included results of
this approach in our work.

6.1 Calculation Set-up

Starting geometries were chosen with the expectation that the
test sets would ideally follow a congeneric trend on geom-
etry optimization. Geometry optimization was performed at
the BLYP-D3/6-311G* level of theory on all structures using
the NWChem ab initio package150. The –D3 correction for
dispersion of Grimme et al.151 was used in order to properly
model the dispersion interactions especially observed in the
case of the π–π interacting systems. The BLYP functional was
chosen due to its minimal mean absolute deviation (MAD)151

for the S22 benchmark dataset152 when using the –D3 correc-
tion.

EDA was subsequently performed on the geometry opti-
mized structures at the same BLYP-D3/6-311G* level of the-
ory at which the geometries were optimized for the ALMO
EDA, NEDA and SAPT(KS) schemes, and at the HF/6-311G*
level for the KM EDA and RVS EDA schemes. The KM EDA
polarization component does not obey the Pauli principle and
it is possible for valence electrons to collapse into the part-
ner fragment’s core orbitals95–97. To prevent this and to al-
low energy convergence, the calculations of the KM EDA and
RVS EDA components for the benzene – Li+ system were per-
formed without d polarization functions on the lithium atom.
The optimized geometries of the systems studied using EDA
are shown within Table 1, and further information of prepara-

Table 1 The BLYP-D3/6-311G* geometry optimized systems for
EDA (intermolecular distances are given in Å)

System Figure

Test Set 1: Hydrogen bonding interactions

Water – Water

Water – Methanol

Methanol – Methanol

Water – Ammonia

Test Set 2: Water–cations

Water – Ammonium

Water – Li+

Water – Na+

Water – K+
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System Figure

Test Set 3: Ammonium–π systems

Ammonium – Benzene(a)

Ammonium – Thiophene

Ammonium – Furan

Ammonium – Pyrrole

Test Set 4: π–cations

Benzene – Ammonium(a)

Benzene – Li+

Benzene – Na+

Benzene – K+

System Figure

Test Set 5: π interacting systems

Benzene – Benzene
(T–Shaped)

Benzene – Benzene
(Parallel Displaced)

Benzene – Pyridine

Benzene – Pyrimidine

Benzene – DMA(b)

Test Set 6: Halogenated systems

Benzene –
Fluorobenzene

Benzene –
Chlorobenzene

Benzene –
Bromobenzene

(a) The benzene – ammonium system of test set 3 is also contained
within test set 4.
(b) DMA is dimethylacetamide.

1–39 | 21

Page 21 of 39 Chemical Society Reviews



tion of the systems in test set 6 is provided in Note 1.
NEDA, KM EDA and RVS EDA calculations were per-

formed on the structures using the GAMESS–US153 ab ini-
tio package and ALMO EDA and SAPT(KS)141,154 calcula-
tions were performed using the Q–Chem155 package. The
locally–projected SCF equations of Gianinetti77,78 were used
in the ALMO approximation of the ALMO EDA, and par-
titioning of the charge transfer and polarization components
of the SAPT(KS) approach from the induction energy was
achieved using eqs. 81a and 81b.

6.2 Results and Discussion

Within this section, we compare the trends of the various EDA
components within each congeneric series. Our goal is to ex-
amine the chemical relevance of each EDA method for the dif-
ferent series. An ‘ideal’ EDA would be expected to produce
results that agree with chemical intuition in obvious cases and
produce sensible energy components in more difficult cases
where chemical intuition is less obvious. Plots of the EDA
results for the test sets are given in Fig. 11 and 12.

6.2.1 Test Set 1: Hydrogen Bonding Interactions. This
test set focusses on the hydrogen bonding interactions of wa-
ter dimer derived systems, specifically the water dimer, water
– methanol, methanol – methanol, and water – ammonia sys-
tems in the geometries shown in Table 1. A number of studies
concerning the covalency of hydrogen bonding in water have
been published.156–163. EDA allows insight into the covalency
of this interaction through the charge transfer component.

In Fig. 11(a) we observe that the electrostatics of the wa-
ter dimer, water – methanol and methanol dimer systems are
similar (within 0.52 kcal/mol at the NEDA/SAPT(KS) level
and 1.05 kcal/mol at the KM EDA level), and that the wa-
ter – ammonia system electrostatic energy is more stabiliz-
ing than the water – methanol system by 3.81 kcal/mol at the
NEDA/SAPT(KS) level and 5.44 kcal/mol at the KM EDA
level. We would expect that as oxygen is more electronegative
than nitrogen this would give rise to a greater dipole moment
than for the final nitrogen containing ammonia interacting sys-
tem and hence a higher electrostatic component for the first
three systems. The oxygen containing molecules also possess
2 lone pairs rather than the 1 lone pair found on the nitrogen of
ammonia, and this would also support expectations of a lower
electrostatic component for the ammonia interacting system.
This trend therefore contradicts our chemical expectations. A
similar yet opposite in sign trend is observed for the exchange
component of Fig. 11(d), with the ∆EFRZ and ∆EESX terms
showing the electrostatic energy to be more dominant than
exchange by similar amounts for the water dimer and water
– ammonia systems. Polarization (displayed in Fig. 11(j)) is
shown to become more stabilizing across the set fairly consis-
tently, with a gain observed in stabilization from the methanol

dimer to the water – ammonia system for all but the NEDA
(0.41 kcal/mol to 0.68 kcal/mol increase in stabilization for
all other schemes). For the NEDA of these two systems, po-
larization (with the self–energy correction) is shown to be less
stabilizing by 1.08 kcal/mol for the water – ammonia system.
This may be seen due to a number of reasons including lack
of variational optimization of the intermediate wavefunctions
of NEDA.

We expect charge transfer to be increasingly dominant
across the first three systems due to increasing presence of
the electron donating methyl substituents. This is shown in
Fig. 11(m) and is noted to increase consistently and at a slower
rate than for the polarization component across these systems.
Charge transfer for the ammonia system is expected to be sim-
ilar to the water dimer system due to its similar size. Due to
the greater electronegativity of oxygen in comparison to ni-
trogen, we may expect charge transfer to be greater from the
ammonia molecule due to its greater ability for electron do-
nation. These features are also observed, with charge transfer
indicated as falling for the final water – ammonia system by
all schemes but the NEDA and SAPT(KS). For all but the RVS
EDA scheme, charge transfer effects are greater for the water
– ammonia system than the water dimer system. The NEDA
values for charge transfer are also noted as being excessively
large (up to -18.35 kcal/mol), almost an order of magnitude
larger than the other methods and do not appear chemically
credible.

The results suggest electrostatics to be the most dominant
driving force of hydrogen bonding, with exchange greatly
countering this contribution. Charge transfer remains the
next most dominant driving force, except for the SAPT(KS)
for which on including exchange corrections the polarization
component is slightly more dominant across the set (up to
0.49 kcal/mol more dominant). Overall our results therefore
suggest the hydrogen bonding interactions of this set to be
characterized by dominance of the electrostatic energy com-
ponent but with significant contribution from the charge trans-
fer component and minimal polarization contribution. This
is a very interesting observation as hydrogen bonds are of-
ten described by necessity (e.g. force–fields) as arising only
due to electrostatics without involvement of charge transfer
effects. Notably, Weinhold and Klein164 recently character-
ized a set of hydrogen bonding complexes in which the elec-
trostatic interaction is interpreted as repulsive. Such “anti–
electrostatic” hydrogen bonding complexes include interact-
ing fluoride and bicarbonate anions, with the hydrogen bond
presence evidenced by near linearity of the F−H−O unit
bond (157.1◦), significant vibrational red shift at νOH, Bader’s
QTAIM26 analysis and natural bond critical point analysis.
There exists a significant repulsive penalty in order to form
the bond (56.75 kcal/mol at the B3LYP/aug-cc-pVTZ level),
with a shallow metastable “hydrogen bond” local minimum
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Fig. 11 Converged EDA component values (in kcal/mol) of the test sets 1–3. The results of test set 1 are given by plots (a), (d), (g), (j) and
(m), test set 2 by plots (b), (e), (h), (k) and (n), and test set 3 by plots (c), (f), (i), (l) and (o). The EDA results of the electrostatic components
are shown within plots (a)–(c), the exchange/exchange–correlation components within plots (d)–(f), the Heitler–London interaction
components within plots (g)–(i), the polarization components within plots (j)–(l), and the charge transfer components within plots (m)–(o).
The NEDA polarization energies corrected with self energy term are given by POL+SE within plots (j)–(l). The green bars of the polarization
and charge transfer plots (j)–(o) represent the SAPT(KS) contributions, where the non–hashed bars represent the electrostatic contribution of
this term only and where the hashed bars also include exchange in this term. The full BLYP–D3/6-311G* level interaction energy ∆E is given
within plots (a)–(c).

1–39 | 23

Page 23 of 39 Chemical Society Reviews



Fig. 12 Converged EDA component values (in kcal/mol) of the test sets 4–6. The results of test set 4 are given by plots (a), (d), (g), (j) and
(m), test set 5 by plots (b), (e), (h), (k) and (n), and test set 6 by plots (c), (f), (i), (l) and (o). ‘Bz Bz (p-displaced)’ represents the parallel
displaced benzene dimer. The EDA results of the electrostatic components are shown within plots (a)–(c), the exchange/exchange–correlation
components within plots (d)–(f), the Heitler–London interaction components within plots (g)–(i), the polarization components within plots
(j)–(l), and the charge transfer components within plots (m)–(o). The NEDA polarization energies corrected with self energy term are given by
POL+SE within plots (j)–(l). The green bars of the polarization and charge transfer plots (j)–(o) represent the SAPT(KS) contributions, where
the non–hashed bars represent the electrostatic contribution of this term only and where the hashed bars also include exchange in this term.
The full BLYP–D3/6-311G* level interaction energy ∆E is given within plots (a)–(c).
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∆E = -0.05 kcal/mol. This is also further supported by our
own ALMO EDA calculations at the B3LYP/aug-cc-pVTZ
level and using the same geometry as Weinhold and Klein,
in which we observe a strongly repulsive frozen density in-
teraction of 64.27 kcal/mol with relatively small polarization
(-8.49 kcal/mol) and charge transfer (-3.81 kcal/mol) contri-
butions. A re–examination of the electrostatic and resonance
phenomena of this system by Frenking and Caramori165 us-
ing the ETS EDA29–31 at the B3LYP-D3/TZ2P+ level gave a
deeper energy well (-0.77 kcal/mol) which was interpreted as
a stabilizing electrostatic interaction. In reply to Frenking and
Caramori, Weinhold and Klein166 argue that their viewpoint
is different. This is a clear example that within the chemistry
community a variety of EDA interpretations are in use which
are not always compatible. This class of systems demon-
strates the complex nature of hydrogen bonding (and equally
the complex nature of EDA interpretations also), and shows
that the presence of stabilizing electrostatic interactions may
not be necessary for hydrogen bonding between molecules.

6.2.2 Test Set 2: Water–Cations. With the presence of
charged monomers in the systems, we would expect this set
to be dominated by electrostatic interactions. We would ad-
ditionally expect the contribution of electrostatics to fall with
increasing cation mass due to the increased intermolecular dis-
tance. This is observed in the EDA results, with the electro-
static energy contributions ranging between -44.14 kcal/mol
and -23.66 kcal/mol across the set as displayed in Fig. 11(b),
where we consider interactions between water and ammo-
nium, lithium, sodium and potassium cations in the geometries
shown in Table 1.

The trend in exchange (which includes both processes of
electron exchange and orbital orthogonalization, and hence
describes a Pauli repulsion–type contribution) shown in
Fig. 11(e) remains slightly less clear in its origin, as factors
of intermolecular distance, electron count and energy costs of
orthogonalization all contribute to the value of this compo-
nent. Nonetheless, we can rationalize the EDA results as both
the energy cost of orthogonalization and the exchange itself
decay with increasing intermolecular distance.

For the alkali metals, we expect polarization to be most
significant for the lithium interacting system due again to the
strong electrostatic energy interaction seen for this system as
discussed above. The lithium ion is the smallest of the met-
als and hence is able to approach the water fragment more
closely. We would therefore expect this ion to be able to po-
larize the water molecule charge density more effectively than
the remaining metals. This trend is observed within the EDA
results as shown in Fig. 11(k).

Polarization is observed to be less stabilizing for the ammo-
nium interacting system than for the lithium interacting sys-
tem, whilst charge transfer is conversely observed to be the

most stabilizing (excluding SAPT(KS)) for the ammonium in-
teracting system as shown in Fig. 11(n). The decrease in polar-
ization contribution is possibly a result of the increased r(O–
N+) distance in comparison to the r(O–Li+) distance, and the
greater charge transfer contribution of this system may arise
through the ability of the ammonium molecule to diffuse its
charge over a much larger volume than the alkali cations.

For the charge transfer component of the alkali metals, we
again expect the properties of the lithium ion to be signifi-
cant in determining the trend observed. We would expect the
lithium ion to be more effective at withdrawing charge from
the partner water molecule, and hence expect the EDA results
to display a more stabilizing charge transfer component for
the lithium ion that decreases down the group 1 metals. This
is observed to an extent in Fig. 11(n): between the lithium
and sodium ion interacting systems the charge transfer contri-
bution falls for all but the SAPT(KS) scheme without the ex-
change correction. We also note that for the RVS EDA scheme
the charge transfer energy is positive and unphysical for these
two systems (0.05 kcal/mol and 0.34 kcal/mol for the lithium
and sodium ion interacting systems respectively), seemingly
through overcorrection by the CP correction. Interestingly,
we observe charge transfer to increase between the sodium
and potassium ion interacting systems for all but the NEDA
and SAPT(KS) schemes. It is unclear why this is observed,
however through the analysis of the charge transfer BSSE con-
tributions of the schemes that display this unexpected trend it
appears that the increase also arises due to an artefact of these
schemes’ CP corrections.

The charge transfer KM EDA component is indicated as in-
creasing for the final water – potassium system. This observed
break from the trend may be due to the known instability of the
KM EDA with larger basis sets and smaller intermolecular dis-
tances95–97, whereby a state with occupied orbital occupation
number greater than 2 is possible. Whilst the water – cation
distance is the greatest for the potassium system, the increase
in the extension of the 6-311G* basis with the extra electron
shell may be large enough to give rise to this artefact of the
KM EDA scheme. This highlights the contradictory observa-
tion that using an incomplete basis set with the KM EDA can
give rise to results with more physical relevance.

6.2.3 Test Set 3: Ammonium–π Systems. We have con-
sidered the interactions of ammonium with benzene, thio-
phene, furan and pyrrole in the geometries shown in Table 1.
The results suggest electrostatic effects to be the most domi-
nant interactions for this set followed by exchange, as shown
in Fig. 11(c) and 11(f). Polarization followed by charge trans-
fer are observed to be the next most dominant interactions as
shown in Fig. 11(l) and 11(o). These observations are sup-
ported by a similar EDA analysis of this test set by Aschi et
al.16 using the RVS EDA method. The electrostatics of the
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benzene and thiophene are observed to be similar in magni-
tude and lie between the interaction magnitudes of the furan
and pyrrole interacting systems, closer to the furan system.
In fact the thiophene and benzene interacting systems display
similar EDA component profiles across the range of the EDA
schemes, evidencing their similar bonding character and pos-
sible functional group interchangeability within drug design.
The similar components seen for these two systems are ex-
pected through the very similar electronegativities of carbon
and sulphur and the similar aromatic structures of these sys-
tems.

We would chemically expect the vast majority of polariza-
tion to result by effect of the ammonium ion on the aromatic
fragment. Aschii et al.16 support this expectation quantita-
tively with greater than 98.5% of polarization contributed by
the aromatic fragment and describe the polarization interac-
tion as “exclusively an ion–induced multipole interaction”.
Polarization is observed to fall slightly (up to 0.59 kcal/mol)
between the benzene and thiophene interacting systems, and
again between the thiophene and furan interacting systems (up
to 1.31 kcal/mol). For the pyrrole interacting system polariza-
tion is observed to increase in stability. The NEDA scheme
predicts this stability increase to be small (0.23 kcal/mol) with
the contribution of polarization lying between the thiophene
and furan contributions. However, for the remaining schemes
this is suggested to be more significant, with the polarization
contribution of the pyrrole interacting system the greatest for
this set.

The magnitude of charge transfer effects is dependent on
the electron donating ability of the aromatic system. Based
purely on the electronegativities of carbon, sulphur, oxygen
and nitrogen (and therefore their electron donating ability into
the aromatic ring), we would expect charge transfer to the am-
monium to be of the order furan < pyrrole < benzene =
thiophene. Our expectations using this model partially con-
firm this, with the trend supporting similar charge transfer val-
ues for the benzene and thiophene interacting systems, and
smaller furan charge transfer than for pyrrole. Our model
does not account for the less clear effects resulting from the
aromatic geometries and constituents however, and this may
be the reason for the inaccuracy of our expectations. For the
ALMO, KM and RVS EDAs and SAPT(KS), charge trans-
fer is indicated as within a reasonably small range across the
set (within 2.60 kcal/mol) but increasing significantly from -
12.33 kcal/mol to -18.89 kcal/mol for the NEDA scheme. This
large range of NEDA charge transfer energies is unexpected
and indicates a lack of stability of this component.

6.2.4 Test Set 4: π–Cations. In this set we consider
the interactions of benzene with ammonium, lithium, sodium
and potassium cations in the geometries shown in Table 1.
The set is similar to the systems in test set 2 through shared

cation molecules, and similar component profiles are observed
as a result of this. From a chemical perspective, we would
expect similar but less stabilizing electrostatic components
for the benzene interacting systems of this set than the wa-
ter interacting systems of test set 2. This is due to a more
strongly interacting dipole moment of water in comparison to
the quadrupole moment of benzene with the cations. This is
confirmed by electrostatic energies between -6.94 kcal/mol to
-22.61 kcal/mol across test set 4 compared with electrostatic
energies between -23.66 kcal/mol to -44.14 kcal/mol for test
set 2.

Exchange effects (Fig. 12(d)) are expected to be generally
less significant than for test set 2 due to the greater intermolec-
ular distances of the systems of test set 4. This is observed
across the set, notably however exchange is not shown to fall
in a consistent manner. This observation possibly arises due
the comparatively small intermolecular benzene – lithium sep-
aration that results in a greater exchange component.

Polarization within test set 4 (Fig. 12(j)) is shown to be ap-
proximately twice the magnitude of polarization within test
set 2 (Fig. 11(k)). This observation is explained from a chem-
ical perspective by the greater polarizability of benzene (α =
10.74 Å3) in comparison to water (α = 1.45 Å3) 167. The
polarization component of the lithium interacting system is
shown to stabilize the system by more than 400 kcal/mol
through the KM EDA using the 6-311G* basis set. Remov-
ing d polarization functions from the lithium basis reduces this
component to a more reasonable value (-25.86 kcal/mol). This
artefact is believed to originate in the ability of valence elec-
trons to collapse from one fragment into the core orbitals of
the other fragment, enabled through the use of intermediate
wavefunctions that do not satisfy the Pauli exclusion princi-
ple95–97. As the completeness of the basis set increases, the
polarization component becomes extreme in magnitude as this
process of collapse becomes more significant. We have also
included results using the balanced 6-311G basis set in the
supporting information. These results support the use of the
modified unbalanced basis as reliable as an approximation to
the 6-311G* basis used in the remaining calculations.

Interestingly, charge transfer (Fig. 12(m)) does not follow
the same trend as within test set 2 (Fig. 11(n)) and the ammo-
nium and lithium cations are reversed in their charge transfer
contribution trends. This observation is expected, as the hy-
drogen atom of the ammonium molecule interacting with ben-
zene is directed into the low electron region of the π cloud
whereas for the water – ammonium system an ammonium
hydrogen atom is directed towards the oxygen of the water
molecule.

Charge transfer within the benzene – lithium system is in-
dicated as highly contributing in comparison to the systems of
the other sets. This contribution is possibly due to the cation
being able to access the electron–rich π cloud of the benzene
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by siting itself within this on binding, and due to the charge of
the cation interacting with the benzene. A more rapid decrease
in charge transfer contribution with increasing cation mass is
observed than for the water – cation systems of test set 2. This
may be a result of the geometry of the set: the rate of fall in
intermolecular distance across the π – cation set (1.90Å range
of r) is greater than across the water – cation set (0.77Å range
of r).

6.2.5 Test Set 5: π Interacting Systems. In this set
we consider a number of systems interacting with the π ring
of benzene. Specifically we consider the parallel displaced
and T–shaped benzene dimers, and pyridine, pyrimidine and
dimethylacetamide (DMA) interacting with benzene in the ge-
ometries shown in Table 1.

A number of predictions can be made based on the com-
positions of the structures of study. We would expect the en-
ergy components to increase in magnitude when going from
the benzene T–shaped to the parallel displaced conformers due
to the smaller intermolecular distance between the molecules.
Generally this is observed in the results. Notably, however,
stabilization through the KM EDA electrostatic component
is shown to fall by over 1 kcal/mol as shown in Fig. 12(b).
The charge transfer components of the ALMO EDA and
SAPT(KS) (with exchange correction) schemes are also ob-
served to fall fractionally between these two systems as shown
in Fig. 12(n), however these energy changes are so small that
they may be considered negligible.

The three π–π interacting parallel displaced systems are
structurally very similar and so deducing the expected com-
ponent trends for these systems is slightly less clear. With an
increase in the number of nitrogen constituent atoms on the
interacting molecules we observe an increase in charge trans-
fer effects, as also shown in Fig. 12(n). This is expected: with
increased substitution through benzene, pyridine and pyrimi-
dine the electron withdrawing abilities of these molecules also
increase, and so are able to withdraw more charge density
from the π cloud of the partner benzene molecule. In con-
sidering polarization effects within these three systems, we
would expect a more significant electric moment in the plane
of the benzene interacting system with increased substitution
to provide a more polarizing field for the benzene molecule.
Polarization across these three systems is predicted to be en-
hanced through this effect. However, the polarizabilities of
these molecules themselves are shown to fall across the three
systems (α = 10.74 Å3, 9.15 Å3 and 8.53 Å3 for benzene,
pyridine and pyrimidine respectively)167, and so the final po-
larization contribution becomes a balance of these two oppos-
ing factors of polarizability and field strength. As shown in
Fig. 12(k), polarization falls across the three systems for all
but the NEDA scheme, therefore indicating that the effect of
falling polarizabilities outweighs the effect of more significant

polarizing electric fields for the benzene.
For the final DMA interacting system, we observe mod-

erately increased electrostatic and exchange energy contribu-
tions as shown in Fig. 12(b) and 12(e) respectively. This is
interesting to note as the DMA molecule to benzene distance
is similar to the intermolecular distances seen within the other
systems. We may expect a greater polarization contribution
for this system due to the more extended structure of the DMA
molecule in comparison to the cyclic structures of the other
interacting systems. This is supported by the results shown in
Fig. 12(k) for all but the NEDA scheme. We expect the proton
positioned above the π cloud to act as a means for electron
transfer to the DMA molecule, with the oxygen acting as an
electron sink stabilized through resonance of the amide bond.
As a result of this, we predict charge transfer to be greater for
this system. This is observed for all but the HF level schemes
(KM and RVS EDA), as shown in Fig. 12(n).

6.2.6 Test Set 6: Halogenated Systems. We have con-
sidered a selection of halogenated benzene systems interact-
ing with another benzene molecule in test set 6. The halogens
we have selected are fluorine, chlorine and bromine and the
system geometries are shown in Table 1. The systems have
been constrained in a T–shaped geometry, with the halogens
directly interacting with the π ring through the halogen σ

hole168. For all our structures the energy minimization pro-
cedure we employed did not use the CP correction. We note
that the (BSSE corrected) interaction energy of the benzene –
fluorobenzene system is positive as shown in Fig. 12(c), with
this arising due to the CP correction raising the interaction en-
ergy to the point that the interaction becomes repulsive. Nat-
ural population analysis of these systems at the BLYP–D3/6-
311G* level reveals natural charges on the fluoro–, chloro–
and bromobenzene halogens as -0.326e, -0.007e, 0.061e re-
spectively, correlating with the presence of a σ hole on the
bromine and chlorine atoms. The σ hole arises due to three
unshared electron pairs on the halogen arranging to produce a
belt of negative potential around the bond axis on the halogen,
leaving a region of positive potential on the halogen oppo-
site to the halogen bond168. The presence of the σ holes on
the bromine and chlorine atoms is expected to affect the EDA
profiles of the systems of test set 6, most significantly through
enhanced electrostatics in the systems containing these atoms.

We predict the electrostatic energy to increase from the fluo-
robenzene interacting system through to the bromobenzene in-
teracting system. This is because going through the series the
charge on the halogen becomes more positive, and so the elec-
trostatic interaction of the halogenated benzene molecule with
the quadrupole of the benzene will become more favourable.
We expect the σ hole on the chlorine and bromine atoms to
enhance this effect, as the positive potential on these atoms is
therefore concentrated to a region on the halogen that gives
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a more favourable electrostatic interaction with the benzene
π cloud. In fact, due to lack of a σ hole on the fluoroben-
zene molecule we may expect the electrostatic interaction in
this system to be destabilizing. We also expect the increas-
ing intermolecular distances through the series to contribute
to a decrease in electrostatic component energy magnitudes.
This factor opposes our expectations of increasing electro-
statics through the series due to increasing halogen charge.
The electrostatic component results are shown in Fig. 12(c).
It appears that the increase in electrostatics through the se-
ries arises due to increasing halogen charge, which more than
compensates for any weakening of this component through in-
creased intermolecular distance.

The exchange component is expected to fall through the
series due to increased intermolecular separation of the
molecules. As halogen electronegativity decreases through
the series, we expect the charge on the halogenated benzene
molecule to become more localized on the π ring. This is ex-
pected to additionally reduce the contribution of exchange, as
exchange is distance dependent and the electrons are now fur-
ther from the partner benzene molecule. We observe a slight
fall in exchange that is in agreement with our predictions be-
tween the fluorinated and chlorinated systems as shown in
Fig. 12(f). However, exchange is approximately as strong
for the brominated system as the fluorinated system. This
arises due to the greater number of electrons on bromoben-
zene than on fluorobenzene. With more electrons on the bro-
mobenzene available to exchange with the benzene electrons,
the exchange interaction for bromobenzene can therefore be
stronger despite the greater intermolecular separation for this
system.

Whilst polarization effects are expected to increase through
the set as a result of increasing polarizabilities of the halo-
genated benzene molecules, the increase in intermolecular
separations of the systems is also expected to have an impact
on this component. The polarizability of fluorobenzene (α =
10.3 Å3) is less than that of chlorobenzene (α = 14.1 Å3) and
bromobenzene (α = 14.7 Å3) 167. However, the benzene π

ring to halogen distance is more than 0.42Å shorter for the
fluorinated system than for the chlorinated and brominated
systems as shown in Table 1. The enhancement of polariza-
tion through the smaller benzene – fluorobenzene intermolec-
ular separation could be reasonably similar to the enhance-
ment in the benzene – bromobenzene through the effect of
greater bromobenzene polarizability, however we cannot pre-
dict by chemical reasoning alone which factor dominates. The
intermolecular separations of the chlorinated and brominated
systems are reasonably similar, and we expect that polariza-
tion effects will be greater in the brominated system than the
chlorinated system solely as a result of differences in molec-
ular polarizabilities. The polarization results are shown in
Fig. 12(l). The NEDA results show polarization to be small-

est for the fluorinated system (-1.22 kcal/mol with the self–
energy correction), indicating the smaller intermolecular sep-
aration within this system to offer little enhancement to po-
larization. However, NEDA overestimates polarization by an
order of magnitude compared to the other schemes. More im-
portantly all other schemes show polarization to be slightly
greater for the fluorinated system and therefore instead indi-
cate the smaller intermolecular separation to enhance polar-
ization to a small degree. Our prediction of increased polar-
ization from the chlorinated system to the brominated system
is in agreement with all the EDA scheme results.

We expect the presence of a σ hole on the chlorine and
bromine atoms to enhance charge transfer to a degree in these
systems. This is due to the σ holes being located in the high
electron region of the benzene π ring. We predict the strongly
electron withdrawing nature of the fluorine atom to be more
important than the presence of a σ hole in enhancing charge
transfer effects. Also, the smaller benzene – halogen separa-
tion in the benzene – fluorobenzene system (2.97 Å) is also
expected to enhance charge transfer effects in this system.
The intermolecular separation is slightly greater within the
bromobenzene system than within the chlorobenzene system,
and chlorine is more electronegative than bromine. We there-
fore predict the charge transfer interaction to be weaker for the
bromobenzene system than the chlorobenzene system. Our re-
sults of charge transfer for this test set are shown in Fig. 12(o).
The results of the SAPT(KS) scheme shows charge transfer to
increase in strength going through the set from the fluorinated
system to the brominated system. This indicates charge trans-
fer to be weakest in the benzene – fluorobenzene system de-
spite this system’s smaller intermolecular separation and the
greater electronegativity of the fluorine atom compared to the
other halogens, and therefore suggests the presence of a σ hole
to be significant in determining charge transfer in these sys-
tems. The other schemes generally show similar or greater
charge transfer effects for the fluorinated system than for the
brominated and chlorinated systems. These schemes therefore
instead suggest the presence of a σ hole on the halogen to con-
tribute at least slightly to charge transfer effects in the chlori-
nated and brominated systems. All schemes show an increase
in charge transfer between the chlorinated and brominated sys-
tems, confirming our predictions for these two systems.

6.2.7 Dispersion Energy Treatments. In this section we
consider the results of the various treatments of the disper-
sion energy contribution to the interaction energy. The dis-
persion component is described as an explicit component of
the SAPT(KS) scheme, but as an ad–hoc correction term to
the interaction energy of the other EDA schemes provided by
the empirical –D3 correction of Grimme151. The results of
our calculations using these approaches are shown in Fig. 13.
The form of the –D3 correction is dependent on the choice of
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density functional used and therefore we note that it is more
suitable for the energies of this component to be considered
with respect to other –D3 energy values, rather than in di-
rect comparison to the SAPT(KS) dispersion energy values.
Overall the SAPT(KS) and –D3 approaches to measuring dis-
persion are generally in agreement with one another, except
in the case of the metallic cation systems of test set 4 shown
in Fig. 13(d) for which the results differ quite substantially.
This inconsistency will be discussed below, in addition to the
dispersion component observations for the other test sets.

The dispersion interaction arises as a result of instantaneous
polarization dipoles in the monomers forming and interacting.
We would therefore expect greater dispersion contributions for
systems where both monomers have high polarizabilities, as
this would enable larger instantaneous dipoles to arise. Chem-
ically this component is also highly dependent on the inter-
molecular separation R, with its magnitude decaying as R−6.

For test set 1, we expect the determining factor of the
trends to be the molecular polarizabilities. This is because
the intermolecular separations observed in this set are simi-
lar, as shown in Table 1. The polarizability of methanol (α =
3.29 Å3)167 is more than twice that of water (α = 1.45 Å3)167

and therefore an increase in dispersion across the first three
systems of this set is expected. The polarizability of methanol
is greater than that of ammonia (α = 2.10 Å3)167 and so we
would expect dispersion within the water – methanol system
to be greater than within the water – ammonia system. The re-
sults of the dispersion component for these systems are shown
in Fig. 13(a), and our predictions are generally confirmed. We
note that our prediction of a greater dispersion component for
the water – methanol system than the water – ammonia sys-
tem is observed in the results of the –D3 component, however
for the SAPT(KS) scheme dispersion remains nearly constant
between these two systems.

We expect the induced electric dipole moment of the am-
monium molecules to be greater than for the metal cations for
test set 2. This is because despite the presence of more dif-
fuse electrons on the metal cations, the ammonium molecule is
much larger and so we expect a larger dipole for this molecule
to be able to be induced. The intermolecular separations of the
ammonium molecule and metal cations are similar as shown
in Table 1, and we therefore predict dispersion for the am-
monium interacting system to be the strongest. This is con-
firmed by the results by both dispersion methods as shown in
Fig. 13(b). In this set the intermolecular distance between the
potassium ion and the water molecule is 0.77 Å greater than
for the lithium ion interacting system. As dispersion forces are
very close range interactions decaying as R−6, this component
would fall to less than 1/8th of its original size if this geometric
displacement were applied to the lithium ion. The polarizabil-
ity of a potassium atom (α = 43.4 Å3)167 is nearly twice that
of lithium (α = 24.33 Å3)167 and we expect the difference in

polarizability of their ions to be similar in size. We would
therefore expect that the strong dependence on intermolecular
distance for dispersion outweighs the greater polarizability of
potassium, resulting in a fall in dispersion across the set. Inter-
estingly, however, the opposite is observed in our results and
dispersion instead increases across the set.

As previously stated for our analysis of the remaining en-
ergy components of test set 3, we expect the systems of this
set to display similar dispersion energy values due to the sim-
ilar geometries and compositions of the structures. The po-
larizabilities (α) of benzene167, thiophene169, furan169 and
pyrrole170 are 10.74 Å3, 9.96 Å3, 7.20 Å3, and 8.27 Å3 re-
spectively. We therefore expect a slight fall in dispersion con-
tributions from benzene to furan, and for pyrrole to have a
dispersion energy value between thiophene and furan. The re-
sults for this set shown in Fig. 13(c) are in close agreement
with our predictions, however for the final pyrrole interacting
system we observe a greater than expected contribution by the
SAPT(KS) approach and a slightly lesser than expected con-
tribution by the –D3 component.

We expect the systems of test set 4 to show similar disper-
sion component values to the systems of test set 2 because
these sets differ only through the interaction of benzene rather
than water. Our expectations for test set 2 were of a greater
dispersion energy for the ammonium interacting system, and
a decrease in dispersion through the metal cation interacting
systems due to the significant intermolecular dependence of
dispersion. The increase in intermolecular distances through
the metal cation interacting systems of test set 4 is much
greater than in test set 2, and so we expect an even greater fall
in dispersion through these systems in test set 4 than in test
set 2. Our prediction of a greater dispersion component for
the ammonium interacting system is supported by the results
shown in Fig. 13(d), however the trends observed for the re-
maining metal cation interacting systems are significantly less
supportive. In comparison to the results of the metal cation
interacting systems of test set 2 (Fig. 13(b)), the greater in-
crease in intermolecular distance through test set 4 appears
to cause a comparatively weaker contribution of dispersion to
the potassium interacting system by the SAPT(KS) scheme.
Interestingly the opposite is shown for the –D3 component,
with this energy unexpectedly increasing significantly across
the metal cation interacting systems of test set 4 despite the
rapid increase in intermolecular distances.

We note a significant dispersion contribution for the sys-
tems of test set 5 as shown in Fig. 13(e). This is expected con-
sidering the π interacting chemical nature of these systems.
For the SAPT(KS) results of the benzene dimer, dispersion
for the parallel displaced conformation is almost double than
when in the T–shaped conformation. This is rationalized by
the fact that the sum of the intermolecular atomic distances
for the parallel displaced benzene dimer system is less than
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Fig. 13 The –D3 correction for dispersion (blue), and SAPT(KS) dispersion (green) energy values (in kcal/mol). The energy values for test
sets 1–6 are given by plots (a)–(f) respectively. ‘Bz Bz (p-displaced)’ represents the parallel displaced benzene dimer. The non–hashed green
bar represents the electrostatic contribution of dispersion only and the hashed bar represents the exchange plus electrostatic contribution of
this term.
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in the T–shaped system. It is also noted that the parallel dis-
placed benzene dimer system features close proximity of the
π rings of the benzene molecules. This is also expected to
contribute to the dispersion interaction. For the three π–π

interacting parallel displaced systems our chemical expecta-
tions are mixed. Polarizability is noted to fall from benzene
to pyrimidine (α = 10.74 Å3 and 8.53 Å3 respectively167),
and so we expect dispersion to fall across these benzene in-
teracting molecules. However, the fall in intermolecular dis-
tances across these systems is expected to enhance the con-
tribution of the dispersion energy due to its significant depen-
dence on this parameter. The increase in dispersion across
these three systems indicates that the decrease in intermolecu-
lar distances is more significant than the fall in polarizabilities
of the molecules. For the DMA interacting system, we expect
dispersion to be approximately as contributing as in the other
systems. However it is difficult to give a precise prediction of
this system’s relative value due to the many possible chemical
factors that affect dispersion. There exists delocalized π sys-
tems in all the molecules of this set. In DMA the presence of
this feature is in the delocalized amide bond, and for the re-
maining molecules this is in their aromatic π rings. However,
for DMA the amide bond is located further away from the π

ring of benzene and so dispersion resulting from this delocal-
ized feature is expected to be smaller. The structure of DMA
is noted to be more extended than the other molecules in this
set, and therefore greater dipoles are expected to be able to be
induced in this molecules. This factor would be expected to
favour a greater dispersion contribution in this system. The
intermolecular separations of the systems (excluding the T–
shaped benzene dimer system) are similar and therefore the
balance of the above two features is difficult to predict. For
the –D3 component dispersion is shown to increase moder-
ately, whereas for the SAPT(KS) scheme this component falls
by at most only 0.25 kcal/mol.

Within test set 6 we expect dispersion to be most contribut-
ing in the fluorinated system, followed by the chlorinated sys-
tem, and finally the brominated system. The polarizabili-
ties of chlorobenzene (α = 14.1 Å3) and bromobenzene (α
= 14.7 Å3) are similar, with the polarizability of fluoroben-
zene much smaller (α = 10.3 Å3).167 However, the inter-
molecular separation for the fluorinated system (5.69 Å) is
also smaller than for the chlorinated (6.50 Å) and brominated
systems (6.75 Å), as also shown in Table 1. Due to the sig-
nificant dependence of dispersion on distance we expect dis-
persion to be relatively strong in the fluorinated system. For
the chlorinated and brominated systems, we expect the chlori-
nated system to show the greater dispersion contribution. The
strong dependence of dispersion on intermolecular separation
combined with the similar polarizabilities of chlorobenzene
and bromobenzene leads us to expect the chlorinated system
to show a greater dispersion contribution than the brominated

system. Our results shown in Fig. 13(f) display opposite trends
to our predictions. The –D3 component shows an increase in
dispersion from the fluorinated system (-2.54 kcal/mol) to the
chlorinated system (-3.50 kcal/mol) and to the brominated sys-
tem (-4.15 kcal/mol). The SAPT(KS) results show an increase
in dispersion from the fluorinated system to the chlorinated
system of over 0.8 kcal/mol, and from the chlorinated system
to the brominated system of over 1 kcal/mol. It is interesting
to note the greater dispersion contribution shown by the EDA
results for the benzene – bromobenzene system, and the less
than expected dispersion contribution for the benzene – fluo-
robenzene system.

6.2.8 Observed EDA Scheme Advantages and Weak-
nesses. In this section, we compare the features and artefacts
of the different EDA schemes studied in this review, as emerg-
ing by the theory and our tests.

6.2.8.1 General Observations. The CP correction is
known to overestimate the BSSE171,172 and many of the
schemes we have included in our investigation apply the CP
correction to energy terms. It is important to note that as a
result this correction has the potential to give rise to unphys-
ical results, as is observed in the case of the charge transfer
energies in the group 1 metal ion interacting systems of test
set 2 for example. Overcorrection of the RVS EDA charge
transfer energies results in a positive and unphysical energy
for the lithium and sodium ion interacting systems, as shown
in Fig. 11(n). Also, on applying the CP correction to the
ALMO, KM and RVS EDA scheme charge transfer energy
components the trend between the sodium and potassium ion
interacting systems reverses. This serves to highlight the pos-
sible issues that may arise when applying the CP correction to
EDA energy components.

6.2.8.2 KM EDA. The KM EDA7,90 requires an unphys-
ical residual mixing term ∆EMIX to account for the difference
between the energy components and the total interaction en-
ergy. This is a significant weakness as the mixing component
values are at times observed to be of the same magnitude as
the chemically meaningful terms. For example when includ-
ing BSSE corrections, in the case of the metal cation interact-
ing systems of test set 2 the mixing component is greater than
the charge transfer term, and for test set 6 this component is
greater than the magnitude of the polarization term. Attempts
to reduce this problem have been discussed and implemented
within the RVS and CSOV schemes, and the problem alto-
gether avoided in other schemes such as the ALMO EDA and
NEDA.

Numerical instability problems of the charge transfer and
polarization energies with large basis sets and at short inter-
molecular distances95–97 are evidenced in our results. For the
benzene – Li+ system of test set 4 convergence issues are ob-
served when using the 6-311G* basis set. For this system the
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Table 2 A summary of the EDA approaches investigated

EDA MO Additional Energy Level Component Artefacts
Scheme Localization(a) Components(b) of Theory and Notes

KM EDA – ∆EMIX HF only

Presence of the ∆EMIX energy unascribable
to any particular component. Problems of
numerically unstable charge transfer and
polarization energies with large basis sets and
at short intermolecular distance95–97.

RVS EDA – ∆EMIX HF only
Unphysical ∆EMIX present. Typical
magnitude is insignificant, but possible for
non–negligible magnitudes to be seen.

ALMO ALMO – HF/Correlated
Combined electrostatics and exchange
description of the frozen density
component may reduce chemical insight.

NEDA NBO ∆EDEF, ∆ESE, (c) HF/Correlated
Theoretical overestimation of charge transfer
and underestimation of polarization1,11. Observed
to provide unphysical charge transfer values.

PIEDA FMO –
HF/ Shares similar theoretical weaknesses
Correlated(d) of the KM EDA.

SAPT(KS) – E(2)
disp, E(2)

exch−disp, (e) HF/Correlated

Observed overestimation of polarization and
underestimation of charge transfer.
SAPT(KS) overestimation of second–order
energy components (induction and dispersion)
with the B3LYP functional142.

(a) Localization methods include adopting an alternate basis to the MO basis (the NBO basis), an MO constraining method (ALMO), or a
different energy calculation method (FMO).
(b) Additional energy components to the electrostatics, exchange, polarization and charge transfer (or similar) interaction components.
(c) Additional core repulsions (∆ECORE) and electrical interaction (∆EEL) terms are also included in this scheme as combinations of other
energy components of this scheme.
(d) The PIEDA scheme is implemented at the HF level (as the basis of this scheme is the KM EDA), with the dispersion component added as
an additional term, ∆EDI.
(e) SAPT descriptions of polarization and charge transfer are calculated from the MCBS and DCBS induction energies (see eqs. 81a and 81b).
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intermolecular separation is particularly small (1.88 Å) and
gives rise to unphysical polarization and mixing component
energies. This is likely due to valence electrons collapsing
from one fragment into the core orbitals of the other frag-
ment95–97.

6.2.8.3 RVS EDA. The RVS EDA13,99 is similar to the
KM EDA, but with modification to the calculations of the po-
larization and charge transfer energies to use fully antisym-
metric wavefunctions in attempt to remedy the numerical in-
stability problems associated with these components in the
KM EDA.

The ∆EESX component of the RVS EDA scheme (and simi-
lar ∆EFRZ component of the ALMO scheme) presents a prob-
lem in terms of the analytic information provided. This is be-
cause this energy component conceals the magnitudes of its
electrostatic and exchange parts. The combined term does
however provide useful indication of the dominance of its
parts. For example, if this component is highly repulsive this
would indicate Pauli repulsions to be significant. Avoiding the
use of Hartree product intermediate wavefunctions involved
in expressing the separated components may be desired, how-
ever, due to it not obeying the Pauli principle.

The RVS EDA scheme shares a component of the KM EDA
that describes a residual energy to the interaction energy. In
our calculations the magnitude of the RVS mixing component
is typically less than 0.1 kcal/mol and therefore much smaller
than the KM EDA mixing component. However, for systems
containing an ammonium molecule the RVS mixing compo-
nent is noted to increase significantly, for example the ammo-
nium – pyrrole system of test set 3 has an RVS mixing com-
ponent of -0.44 kcal/mol. Whilst the magnitude of this term
is only a fraction of the KM EDA mixing term (3.76 kcal/mol
with BSSE correction), this does indicate that a notable level
of ambiguity can still remain in the origin of a proportion of
the interaction energy. Overall, however, the magnitude of the
mixing term for any given system is more often than not neg-
ligible, and this helps to correct a major weakness of the KM
EDA.

In the RVS EDA scheme the BSSE is only partially treated
and this may be considered a weakness of the scheme. The
interaction energy that is obtained in this scheme omits the ex-
change BSSE correction of eqs. 36a and 36b that is treated in
the KM EDA. By adopting the KM EDA BSSE correction for
the exchange component, it is possible to remedy this. This is
possible because the origin of the exchange component energy
of these two schemes are the same, and so the RVS exchange
energy is compatible with this BSSE correction and will give
the fully BSSE corrected interaction energy.

6.2.8.4 ALMO EDA. The ALMO EDA scheme1 used in
our calculations provided overall chemically sensible results.
There are two possible disadvantages we note of this scheme

however. Firstly, as discussed regarding the ∆EESX compo-
nent of the RVS EDA scheme above, the ALMO EDA ∆EFRZ
component similarly has the potential to be limited in the ana-
lytic information it provides. Secondly, it is theoretically pos-
sible for the charge transfer contribution to be repulsive on
inclusion of the CP BSSE correction. This is because the CP
correction has a tendency to overestimate the BSSE171,172 as
discussed above. As noted by Mo et al.11, it may be appro-
priate to consider the ALMO (and BLW) EDA charge transfer
energies with and without the BSSE energy correction as the
upper and lower bounds of this energy. Our results otherwise
show the ALMO EDA scheme to consistently provide results
in good agreement with chemical expectations.

6.2.8.5 NEDA. Our calculations using the NEDA
scheme3–6 have shown this to give often very large charge
transfer and polarization energy contributions. Theoreti-
cally the NEDA scheme is expected to generally overesti-
mate charge transfer contributions and underestimate polar-
ization1,11. This is because in NEDA, the polarization and
charge transfer terms are calculated from the monomer and su-
permolecule charge densities without variational optimization
to an intermediate state. If we consider an alternative scheme
such as the ALMO EDA scheme (in which an intermediate
state is produced in a constrained optimization procedure) we
can see that the NEDA description of the intermediate state is
likely less desirable.

Another key observation of the NEDA scheme is its descrip-
tion of polarization effects. The polarization term includes
only electrostatic contributions as shown in eq. 63, and the ex-
change contribution is contained within the deformation com-
ponent. Furthermore, an electrostatic self energy penalty is
also included in the NEDA scheme that describes the energy
cost of charge polarization. This partitioning of polarization in
NEDA may be advantageous or not depending on the situation
at hand.

6.2.8.6 SAPT(KS). The results of the SAPT(KS)
scheme139,140 are observed to remain in keeping with the
trends shown by the other schemes and generally show chem-
ically relevant magnitudes. Polarization energies of the
SAPT(KS) scheme are typically second in magnitude only to
the NEDA scheme polarization energies. The SAPT(KS) is
noted as overestimating the second–order energy components
(induction and dispersion) with the B3LYP functional142.
This is suggested to arise due to the poor suitability of DFT
canonical virtual orbital energies in the SAPT scheme. The
first–order terms (electrostatics and exchange) are not affected
by this as their values depend on use of the occupied set of
MOs only.

The arrangement of the SAPT energy components is dif-
ferent to within the variational based EDA methods. This or-
ganisation is arguably more intuitive than in the other EDA
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schemes, with the SAPT approach separating the energy terms
at the different orders into exchange and electrostatic con-
tributions. Equally, however, the theory of SAPT is also
more complicated than the variational based EDA methods
and many energy terms can be involved in describing the
interaction energy. For example, Stone et al.18 have noted
that in some cases exchange uncorrected SAPT(DFT) charge
transfer terms are overestimated by up to an order of magni-
tude. The inclusion of the exchange part corrects and almost
cancels the charge transfer term. Indeed, this large correc-
tion to charge transfer by the exchange part is observed in
many of the results of our SAPT(KS) calculations. For exam-
ple, in the case of our hydrogen bonding water dimer system,
SAPT(KS) charge transfer is -5.60 kcal/mol and the exchange
correction is 4.75 kcal/mol giving an overall corrected charge
transfer energy of -0.85 kcal/mol. In this case, the additional
separation may have the potential to mislead. As discussed
above, the lack of consistency of term definitions between the
EDA schemes (whether variational or perturbational) can be-
come problematic. For example, one scheme may include ex-
change contributions in certain energy components while an-
other scheme may not. In SAPT, by partitioning each com-
ponent into electrostatic and exchange parts, the term descrip-
tions are more clearly described as the terms are explicitly par-
titioned into their classical and quantum energy contributions.

Whereas the variational EDA approaches we have studied
do not include dispersion contributions within the decompo-
sition, the SAPT scheme explicitly includes this energy as
E(2)

disp. This additional description of dispersion is of merit to
this scheme. Our results comparing the SAPT(KS) dispersion
energies to the –D3 component energies showed reasonable
correlation between the two approaches, as shown in Fig. 13.

Concluding Remarks

During the past several decades, a wide range of EDA ap-
proaches have been developed that decompose the interaction
energy into many different chemically useful forms. Many of
these methods have evolved from the early KM EDA of Ki-
taura and Morokuma7,90. These variational based approaches
sometimes share the problems of the KM EDA, such as the
RVS EDA retaining a residual unascribable energy as part of
the decomposition. However, the problem of energy compo-
nent instability in the KM EDA has generally been solved
in the more recent schemes that build upon the KM EDA.
Alternatively, perturbation based approaches such those of
the SAPT family may be used in which the interaction en-
ergy is constructed as perturbative corrections to the isolated
monomers.

In this review we have compared popular currently used
EDA schemes of interest to biomolecular application on six

congeneric series test sets. The model systems of these test
sets were selected to express key interactions typically found
within ligand–host systems such as hydrogen bonding, π–π

and halogen interactions. In the variational approaches BSSE
has been treated very differently between the EDA schemes
we have discussed. Whereas the NEDA scheme avoids the
issue of BSSE by calculating all energies in the full super-
molecule basis set, the KM, RVS, and ALMO EDA schemes
treat BSSE by applying a CP correction to the energy com-
ponents. The KM and RVS EDA schemes both share similar
approaches in which partial CP corrections are applied to spe-
cific energy components. These corrections are calculated by
partitioning the set of ghost orbitals used in the calculation by
their occupancies. The ALMO EDA instead applies the full
CP correction to the charge transfer component only. These
treatments are unique and provide further subtle differences in
the definitions of the energy components of the schemes.

One common problem that arises is the issue of energy
component consistency. It is often the case that an energy
term described by one EDA scheme is significantly different
to that of another. Polarization, for example, can be described
as an electrostatic–only effect or as also including exchange
within its description. These different descriptions can result
in substantially different results. For example, on including
the exchange part of the energy components in the SAPT(KS)
results, we observe the energy components to often become
a fraction of their original size. In fact, SAPT arguably de-
composes the energy components more intuitively in some re-
gards, since each component is split into its electrostatic and
exchange constituent. The general inconsistency of term defi-
nitions is not necessarily ‘wrong’ as such, but this point high-
lights the complications that may arise through different de-
scriptions of chemical processes.

Despite the term definitions sometimes lacking consis-
tency, we note a number of meritable features of certain EDA
schemes. The KM EDA, despite its theoretical weaknesses,
is observed to provide overall reasonably fair energy compo-
nent values. However, the KM EDA charge transfer energy
was extreme and chemically unsound in the case of the ben-
zene – lithium system with the larger 6-311G* basis set. This
problem is important to note as it counterintuitively implies
that using more complete basis sets reduces the accuracy of
the KM EDA results.

The RVS EDA scheme also performed well, and succeeds
the KM EDA by its improved theory that results in better nu-
merical stability of the energy components. Both the RVS
and KM EDA schemes are limited to the RHF level of the-
ory. However in systems where correlation effects are im-
portant, it may be feasible to perform an additional super-
molecular interaction energy calculation at a higher level of
theory to evaluate this contribution. Alternatively, the CSOV
EDA scheme of Bagus et al.69,70 (closely related to the RVS
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scheme) may provide a useful alternative for treating correla-
tion effects in the energy components as this has been imple-
mented for use with MCSCF wavefunctions127 and extended
to the DFT level128,129.

The NBO based NEDA scheme at times displays issues re-
garding the magnitudes of its energy components: in many
cases these are extremely large and chemically unrealistic for
our test systems. The approach taken by NEDA to decompos-
ing the interaction energy is somewhat different to the other
KM EDA derived schemes. In this, additional energy com-
ponents of less obvious chemical origin are described such as
the deformation and self energy terms. Also the method does
not involve intermediate wavefunctions that are variationally
optimized. The polarization and charge transfer components
are therefore calculated directly from the monomer and super-
molecular charge densities. The NEDA scheme may perform
better in its three component form, decomposing the interac-
tion energy into electrostatic, charge transfer, and core repul-
sions energy components. As the other schemes considered
in this review did not share equivalent energy components
to these three energy components we have not evaluated the
NEDA scheme in this form.

SAPT is seen to give chemically sensible results and ar-
guably provides a more intuitive decomposition than the other
schemes as stated above. However, relating the theoretical
processes of this scheme and their chemical equivalents can
at times be more conceptually complicated than for the vari-
ational based schemes. It is also noted that a number of
more recent SAPT schemes have been developed that may be
more preferable than the SAPT(KS) used in this work. These
include the SAPT(DFT)143–146 scheme that also describes
the monomers using TD-DFT response functions not present
within the SAPT(KS) scheme, and also a new CC treatment
of intrafragmental correlation in what has been termed the
SAPT(CC) scheme173–180.

Overall the ALMO EDA scheme is shown to provide the
most chemically sensible EDA results for our systems rele-
vant to drug optimization. This is mostly due to its use of
the ALMO description for the charge transfer restricted polar-
ized state. It is noted that the charge transfer BSSE correction
may be problematic as it is theoretically possible for ‘repul-
sive’ charge transfer energies to arise as a result of its use.
Also, this scheme combines the electrostatic and exchange en-
ergy components to form the frozen density component which
may reduce the information provided in the analysis. The re-
lated BLW EDA2 instead separates these terms. However, the
wavefunction used in expressing the separated terms is con-
structed as a Hartree product and avoiding its use may be de-
sired.

Abbreviations

EDA Energy decomposition analysis
QM Quantum mechanical
ALMO Absolutely localized molecular orbital
BLW Block–localized wavefunction
HF Hartree–Fock
KM Kitaura–Morokuma
LMO Localized molecular orbital
RHF Restricted closed shell HF
ROHF Restricted open shell HF
UHF Unrestricted open shell HF
DFT Density functional theory
CC Coupled cluster
SCF Self–consistent field
MO Molecular orbital
NEDA Natural EDA
MM Molecular mechanics
SAPT Symmetry–adapted perturbation theory
NBO Natural bond orbital
QTAIM Quantum theory of atoms in molecules
ETS Extended transition state
FMO Fragment molecular orbital
PIEDA Pair interaction energy decomposition analysis
CSOV Constrained space orbital variation
KS Kohn–Sham
AO Atomic orbital
BSSE Basis set superposition error
SCF MI SCF for molecular interactions
NAO Natural atomic orbital
NHO Natural hybrid orbital
OWSO Occupancy–weighted symmetric orthogonalization
HOP Hybrid orbital projection
AFO Adaptive frozen orbitals
BAA Bond attached atom
BDA Bond detached atom
CP Counterpoise
PIE Pair interaction energy
RVS Reduced variational space
VCP CP correction with virtual orbitals
MCSCF Multi–configurational self-consistent field
IFIE Interfragment interaction energy
MP2 Second–order Møller–Plesset perturbation theory
TDDFT Time-dependent density functional theory
CI Configuration interaction
PCM Polarizable continuum model
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SRS Symmetrized Rayleigh-Schrödinger
FDDS Frequency–dependent density susceptibility
MCBS Monomer–centered basis set
DCBS Dimer–centered basis set
MAD Mean absolute deviation
DMA Dimethylacetamide
CAFI Configuration analysis for fragment interactions
FILM Fragment interaction analysis based on local MP2
XPol Explicit polarization
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Notes

1. The systems of test set 6 were obtained in a manner that
maintained a geometric trend in the series. These were ob-
tained by finding the BLYP-D3/6-311G* energy minima with
regard to intermolecular separation of the frozen monomers
when in the T–shaped conformation. The frozen monomer
geometries were taken as the monomer structure’s geometry
optimized in isolation at the BLYP-D3/6-311G* level. The T–
shaped conformation is described by the benzene monomer at
a 90◦ angle to the partner halogenated benzene monomer, with
the halogen in the axis of the benzene π cloud (i.e. directly
centred above the geometric average of the benzene carbon
atoms). The benzene – fluorobenzene system is the only sys-
tem of test set 6 not to have a σ hole present on the halogen,
and using this approach allows us to compare the effect of the
σ hole feature on the EDA components.

References
1 R. Z. Khaliullin, E. A. Cobar, R. C. Lochan, A. T. Bell and M. Head-

Gordon, J. Phys. Chem. A, 2007, 111, 8753–8765.
2 Y. Mo, P. Bao and J. Gao, Phys. Chem. Chem. Phys., 2011, 13, 6760–

6775.
3 E. D. Glendening and A. Streitwieser, J. Chem. Phys., 1994, 100, 2900–

2909.
4 E. D. Glendening, J. Am. Chem. Soc., 1996, 118, 2473–2482.
5 G. K. Schenter and E. D. Glendening, J. Phys. Chem., 1996, 100, 17152–

17156.
6 E. D. Glendening, J. Phys. Chem. A., 2005, 109, 11936–11940.
7 K. Kitaura and K. Morokuma, Int. J. Quantum Chem., 1976, 10, 325–

340.
8 P. Su and H. Li, J. Chem. Phys., 2009, 131, 014102.
9 R. J. Azar and M. Head-Gordon, J. Chem. Phys., 2012, 136, 024103.

10 Y. Imamura, T. Baba and H. Nakai, Int. J. Quantum Chem., 2008, 108,
1316–1325.

11 Y. Mo, J. Gao and S. D. Peyerimhoff, J. Chem. Phys., 2000, 112, 5530–
5538.

12 H. Umeyama and K. Morokuma, J. Am. Chem. Soc., 1977, 99, 1316–
1332.

13 W. Chen and M. S. Gordon, J. Phys. Chem., 1996, 100, 14316–14328.
14 M. v. Hopffgarten and G. Frenking, WIREs Comput. Mol. Sci., 2012, 2,

43–62.
15 C. S. Brauer, M. B. Craddock, J. Kilian, E. M. Grumstrup, M. C. Orilall,

Y. Mo, J. Gao and K. R. Leopold, J. Phys. Chem. A, 2006, 110, 10025–
10034.

16 M. Aschi, F. Mazza and A. D. Nola, J. Mol. Struct. (Theochem), 2002,
587, 177 – 188.

17 S. N. Steinmann, C. Corminboeuf, W. Wu and Y. Mo, J. Phys. Chem. A,
2011, 115, 5467–5477.

18 A. J. Stone and A. J. Misquitta, Chem. Phys. Lett., 2009, 473, 201 – 205.
19 Q. Ban, R. Li, Q. Li, W. Li and J. Cheng, Comput. Theor. Chem., 2012,

991, 88 – 92.
20 K. Ansorg, M. Tafipolsky and B. Engels, J. Phys. Chem. B, 2013, 117,

10093–10102.
21 C. D. Sherrill, Acc. Chem. Res., 2013, 46, 1020–1028.
22 H. Hirao, J. Phys. Chem. B, 2011, 115, 11278–11285.
23 H. Hirao, Chem. Lett., 2011, 40, 1179–1181.
24 D. G. Fedorov and K. Kitaura, J. Comput. Chem., 2007, 28, 222–237.
25 M. D. Esrafili and H. Behzadi, Mol. Simul., 2013, 39, 629–639.
26 R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University

Press, New York, 1994.
27 J. Church, S. Pezeshki, C. Davis and H. Lin, J. Phys. Chem. B, 2013,

117, 16029–16043.
28 N. Thellamurege and H. Hirao, Molecules, 2013, 18, 6782–6791.
29 T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1558–1565.
30 T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1755–1759.
31 T. Ziegler and A. Rauk, Theor. Chim. Acta, 1977, 46, 1–10.
32 T. Nakano, T. Kaminuma, T. Sato, Y. Akiyama, M. Uebayasi and K. Ki-

taura, Chem. Phys. Lett., 2000, 318, 614 – 618.
33 K. Kitaura, E. Ikeo, T. Asada, T. Nakano and M. Uebayashi, Chem. Phys.

Lett., 1999, 313, 701–706.
34 D. G. Fedorov and K. Kitaura, in Modern Methods for Theoretical Phys-

ical Chemistry and Biopolymers, ed. E. B. Starikov, J. P. Lewis and
S. Tanaka, Elsevier, Amsterdam, 2006, pp. 3–38.

35 D. G. Fedorov and K. Kitaura, J. Phys. Chem. A, 2007, 111, 6904–6914.
36 T. Ishikawa, Y. Mochizuki, S. Amari, T. Nakano, H. Tokiwa, S. Tanaka

and K. Tanaka, Theor. Chem. Acc., 2007, 118, 937–945.
37 T. Ishikawa, Y. Mochizuki, S. Amari, T. Nakano, S. Tanaka and

K. Tanaka, Chem. Phys. Lett., 2008, 463, 189 – 194.
38 Y. Koyama, K. Ueno-Noto and K. Takano, Chem. Phys. Lett., 2013, 578,

144 – 149.
39 Y. Koyama, K. Ueno-Noto and K. Takano, Comput. Biol. Chem., 2014,

49, 36 – 44.
40 Y. Mochizuki, K. Yamashita, T. Murase, T. Nakano, K. Fukuzawa,

K. Takematsu, H. Watanabe and S. Tanaka, Chem. Phys. Lett., 2008,
457, 396 – 403.

41 T. Iwata, K. Fukuzawa, K. Nakajima, S. Aida-Hyugaji, Y. Mochizuki,
H. Watanabe and S. Tanaka, Comput. Biol. Chem., 2008, 32, 198 – 211.

42 K. Takematsu, K. Fukuzawa, K. Omagari, S. Nakajima, K. Nakajima,
Y. Mochizuki, T. Nakano, H. Watanabe and S. Tanaka, J. Phys. Chem.
B, 2009, 113, 4991–4994.

43 Y. Mochizuki, K. Yamashita, K. Fukuzawa, K. Takematsu, H. Watanabe,
N. Taguchi, Y. Okiyama, M. Tsuboi, T. Nakano and S. Tanaka, Chem.
Phys. Lett., 2010, 493, 346 – 352.

44 T. Sawada, T. Hashimoto, H. Nakano, T. Suzuki, H. Ishida and M. Kiso,
Biochem. Biophys. Res. Comm., 2006, 351, 40 – 43.

45 T. Sawada, T. Hashimoto, H. Nakano, T. Suzuki, Y. Suzuki, Y. Kawaoka,
H. Ishida and M. Kiso, Biochem. Biophys. Res. Comm., 2007, 355, 6 –
9.

36 | 1–39

Page 36 of 39Chemical Society Reviews



46 T. Sawada, T. Hashimoto, H. Tokiwa, T. Suzuki, H. Nakano, H. Ishida,
M. Kiso and Y. Suzuki, Glycoconj. J., 2008, 25, 805–815.

47 T. Sawada, T. Hashimoto, H. Tokiwa, T. Suzuki, H. Nakano, H. Ishida,
M. Kiso and Y. Suzuki, J. Mol. Genet. Med., 2009, 3, 133–142.

48 T. Sawada, D. G. Fedorov and K. Kitaura, J. Phys. Chem. B, 2010, 114,
15700–15705.

49 A. Yoshioka, K. Fukuzawa, Y. Mochizuki, K. Yamashita, T. Nakano,
Y. Okiyama, E. Nobusawa, K. Nakajima and S. Tanaka, J. Mol. Graphics
Modell., 2011, 30, 110 – 119.

50 A. Yoshioka, K. Takematsu, I. Kurisaki, K. Fukuzawa, Y. Mochizuki,
T. Nakano, E. Nobusawa, K. Nakajima and S. Tanaka, Theor. Chem.
Acc., 2011, 130, 1197–1202.

51 T. Ishikawa, T. Ishikura and K. Kuwata, J. Comput. Chem., 2009, 30,
2594–2601.

52 T. Ishikawa and K. Kuwata, J. Chem. Theory Comp., 2010, 6, 538–547.
53 K. Hasegawa, S. Mohri and T. Yokoyama, Prion, 2013, 7, 185–191.
54 K. Fukuzawa, K. Kitaura, M. Uebayasi, K. Nakata, T. Kaminuma and

T. Nakano, J. Comput. Chem., 2005, 26, 1–10.
55 K. Fukuzawa, Y. Mochizuki, S. Tanaka, K. Kitaura and T. Nakano, J.

Phys. Chem. B, 2006, 110, 16102–16110.
56 T. Watanabe, Y. Inadomi, K. Fukuzawa, T. Nakano, S. Tanaka, L. Nils-

son and U. Nagashima, J. Phys. Chem. B, 2007, 111, 9621–9627.
57 K. Yamagishi, K. Yamamoto, S. Yamada and H. Tokiwa, Chem. Phys.

Lett., 2006, 420, 465 – 468.
58 K. Yamamoto, D. Abe, N. Yoshimoto, M. Choi, K. Yamagishi,

H. Tokiwa, M. Shimizu, M. Makishima and S. Yamada, J. Med. Chem.,
2006, 49, 1313–1324.

59 S. Motoyoshi, K. Yamagishi, S. Yamada and H. Tokiwa, J. Steroid
Biochem. Mol. Biol., 2010, 121, 56 – 59.

60 K. Yamagishi, H. Tokiwa, M. Makishima and S. Yamada, J. Steroid
Biochem. Mol. Biol., 2010, 121, 63 – 67.

61 M. Ito, K. Fukuzawa, Y. Mochizuki, T. Nakano and S. Tanaka, J. Phys.
Chem. B, 2007, 111, 3525–3533.

62 M. Ito, K. Fukuzawa, Y. Mochizuki, T. Nakano and S. Tanaka, J. Phys.
Chem. A, 2008, 112, 1986–1998.

63 M. Ito, K. Fukuzawa, T. Ishikawa, Y. Mochizuki, T. Nakano and
S. Tanaka, J. Phys. Chem. B, 2008, 112, 12081–12094.

64 W. H. J. III, E. G. Buchanan, C. W. Mller, J. C. Dean, D. Kosenkov, L. V.
Slipchenko, L. Guo, A. G. Reidenbach, S. H. Gellman and T. S. Zwier,
J. Phys. Chem. A, 2011, 115, 13783–13798.

65 H. Mori and K. Ueno-Noto, J. Phys. Chem. B, 2011, 115, 4774–4780.
66 M. Bayat, M. von Hopffgarten, S. Salehzadeh and G. Frenking, J.

Organomet. Chem., 2011, 696, 2976 – 2984.
67 M. Bayat, S. Salehzadeh and G. Frenking, J. Organomet. Chem., 2012,

697, 74 – 79.
68 A. Marjolin, C. Gourlaouen, C. Clavagura, J.-P. Dognon and J.-P. Pique-

mal, Chem. Phys. Lett., 2013, 563, 25 – 29.
69 P. S. Bagus, K. Hermann and C. W. Bauschlicher, J. Chem. Phys., 1984,

80, 4378–4386.
70 P. S. Bagus and F. Illas, J. Chem. Phys., 1992, 96, 8962–8970.
71 J. P. Foster and F. Weinhold, J. Am. Chem. Soc., 1980, 102, 7211–7218.
72 A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83,

735–746.
73 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133–A1138.
74 P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864–B871.
75 D. A. Hartree, Proc. Camb. Phil. Soc., 1928, 24, 89.
76 V. Fock, Z. Phys., 1930, 61, 126–148.
77 R. Z. Khaliullin, M. Head-Gordon and A. T. Bell, J. Chem. Phys., 2006,

124, 204105.
78 E. Gianinetti, M. Raimondi and E. Tornaghi, Int. J. Quantum Chem.,

1996, 60, 157–166.
79 T. Nagata, O. Takahashi, K. Saito and S. Iwata, J. Chem. Phys., 2001,

115, 3553–3560.
80 A. Famulari, E. Gianinetti, M. Raimondi and M. Sironi, Int. J. Quantum

Chem., 1998, 69, 151–158.
81 E. Gianinetti, I. Vandoni, A. Famulari and M. Raimondi, Adv. Quantum

Chem., 1998, 31, 251–266.
82 A. Famulari, R. Specchio, E. Gianinetti and M. Raimondi, in Valence

Bond Theory, ed. D. L. Cooper, Elsevier, Amsterdam, 2002, vol. 10, p.
313.

83 Y. Mo and S. D. Peyerimhoff, J. Chem. Phys., 1998, 109, 1687–1697.
84 A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066–4073.
85 F. Weinhold and C. R. Landis, Discovering Chemistry With Natural

Bond Orbitals, Wiley, New Jersey, 2012.
86 D. G. Fedorov, J. H. Jensen, R. C. Deka and K. Kitaura, J. Phys. Chem.

A, 2008, 112, 11808–11816.
87 M. S. Gordon, D. G. Fedorov, S. R. Pruitt and L. V. Slipchenko, Chem.

Rev., 2012, 112, 632–672.
88 D. G. Fedorov and K. Kitaura, in The Fragment Molecular Orbital

Method: Practical Applications to Large Molecular Systems, ed. D. G.
Fedorov and K. Kitaura, CRC, Boca Rotan, FL, 2009, ch. 2, pp. 5–36.

89 S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553–566.
90 K. Morokuma, Acc. Chem. Res., 1977, 10, 294–300.
91 K. Morokuma, J. Chem. Phys., 1971, 55, 1236–1244.
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