Chemical Society Reviews

Chem Soc Rev

Black titanium dioxide (TiO2) nanomaterials

Journal:	Chemical Society Reviews
Manuscript ID:	CS-CRV-09-2014-000330.R2
Article Type:	Review Article
Date Submitted by the Author:	30-Sep-2014
Complete List of Authors:	Chen, Xiaobo; University of Missouri - Kansas City, Department of Chemistry liu, lei; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Huang, Fu Qiang; Shanghai Institute of Ceramics, State Key Laboratory of High Performance Ceramics and Superfine Microstructures

SCHOLARONE[™] Manuscripts

Black titanium dioxide (TiO₂) nanomaterials

Xiaobo Chen,^{1,*} Lei Liu,² Fuqiang Huang³

Department of Chemistry, University of Missouri – Kansas City, Kansas City, MO
64110, U.S.A.

2. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, Jilin, P. R. China.

3. Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China; Shanghai Institute of Ceramics, State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai 200050, P. R. China.

Corresponding Author:

Xiaobo Chen

Email: chenxiaobo@umkc.edu

1

TOC:

- 1. Introduction
- 2. Synthesis of black TiO₂ nanomaterials
 - 2.1 Hydrogen thermal treatment
 - 2.1.1 High-pressure pure hydrogen treatment
 - 2.1.2 Ambient or low-pressure pure hydrogen treatment
 - 2.1.3 Ambient hydrogen/Argon treatment
 - 2.1.4 Ambient hydrogen/nitrogen treatment
 - 2.1.5. Ambient Argon treatment
 - 2.2 Hydrogen plasma
 - 2.3 Chemical reduction
 - 2.3.1 Aluminum reduction
 - 2.3.2 Zinc reduction
 - 2.3.3 Imidazole reduction
 - 2.3.4 NaBH₄ reduction
 - $2.3.5 \text{ CaH}_2$ reduction
 - 2.4 Chemical oxidation
 - 2.5 Electrochemical reduction
 - 2.6 Anodization-Annealing Chemical and structural properties of black TiO₂ nanomaterials
- 3. Properties of black TiO₂ nanomaterials
 - 3.1 The existence of structural disorder near the surface
 - 3.2 The existence of Ti³⁺ ions

- 3.3 The existence of oxygen vacancies
- 3.4. The existence of Ti-OH groups
- 3.5 The existence of Ti-H groups
- 3.6 The modifications of the valence band edge
- 3.7 Theoretical consideration of hydrogenated black TiO₂ nanomaterials
- 4. Applications of black TiO_2 nanomaterials
 - 4.2 Photocatalysis
 - 4.2 Photoelectrochemical sensor
 - 4.3 Catalysis
 - 4.4 Lithium-ion rechargeable battery
 - 4.5 Supercapacitor
 - 4.6 Fuel cell
 - 4.7 Field Emission
 - 4.8 Microwave absorber
- 5. Summary and prospective
- 6. Acknowledgements
- 7. References

Abstract

In the past decades, there has been a wide research interest on titanium dioxide (TiO_2) nanomaterials due to their applications in photocatalytic hydrogen generation and environmental pollution removal. Improving the optical absorption properties of TiO_2 nanomaterials has been successfully demonstrated to enhance their photocatalytic activities, especially in the report of black TiO_2 nanoparticles. The recent progress in the investigation of black TiO_2 nanomaterials has been reviewed here, and special emphasis has been given on their fabrication methods along with their various chemical/physical properties and applications.

1. Introduction

TiO₂ nanomaterials have attracted tremendous interest due to their main applications in photocatalytic hydrogen generation and environmental pollution removal.¹⁻¹⁰ There are three main crystal phases for TiO₂: anatase, rutile and brookite,⁹ and many other minor phases such as monoclinic TiO₂ (B).¹⁰⁻¹² All of them have large electronic bandgaps of 3.0 - 3.2 eV.⁹⁻¹⁴ This limits their optical absorption in the ultraviolet (UV) region of the solar spectrum. This part, however, only accounts for less than 5% of the entire solar energy.¹⁵ Even if TiO₂ is very efficient in utilizing the UV light, its overall solar activity is thus very limited. The photocatalytic activity depends on the amount of working electrons and holes on the surface of the photocatalyst for the reaction. In the photocatalytic process, TiO₂ absorbs light with energy larger than its bandgap and produces excited electrons in the conduction band and excited holes in the valence band.^{7,14} These excited charges may separate from each other and migrate to its surface to perform photocatalytic reactions. During the charge separation and migration processes, some of the excited charges may recombine and disappear. Nevertheless, the amount of excited charges on the surface is generated from the absorption process. The more light TiO₂ can absorb, the more excited charges are likely to be on the surface. Therefore, it has become a common sense to improve the optical absorption properties of TiO₂ in order to enhance its overall activity.

During the past decades, much effort has been devoted to make TiO_2 colorful for better optical absorption through metal or non-metal doping. For examples, a series of metal ions have been used to replace the Ti^{4+} ions in the TiO_2 lattice to bring about visible-light absorption since early 1990s,¹⁶⁻³⁹ non-metal elements have been adopted to replace the O^{2-} ions in the TiO₂ lattice since 2001,⁴⁰⁻⁶⁶ and metal and non-metal elements has been combined to replace partial Ti⁴⁺ and O²⁻ ions in the TiO₂ lattice recently.⁶⁷⁻⁷⁴ All these efforts have brought about the absorption of TiO₂ into the visible-light region and improved photocatalytic activity has been frequently reported.

Thermodynamically the water splitting potential is only 1.23 V. So in the ideal case for photocatalytic water splitting, the bandgap of semiconductor should be around 1.23 eV, assuming that the overpotentials for the oxygen and hydrogen evolutions are successfully removed and the electronic structures of the semiconductor align perfectly with the water redox potentials. This bandgap corresponds to 1000 nm in wavelength. So, ideally, the color of TiO₂ should be tuned to black, with energy gap of 1.23 eV and optical absorption near 1000 nm in the near infrared region. In 2011, hydrogenation has been reported as an effective approach in shifting the bandgap of TiO₂ to around 1.5 eV with optical onset around 1.0 eV and color of black.⁷⁵ Unsurprisingly, this discovery has triggered world-wide research interest on black TiO₂ nanomaterials.⁷⁶⁻⁷⁸ Indeed, it is well known that heating TiO₂ under vacuum or in a reducing atmosphere leads to color changes.⁶ Ti³⁺ or/and oxygen vacancies turn white TiO₂ into yellow, blue or black material.⁶

Here we would like to summarize the recent research progress on the black TiO_2 nanomaterials. Specifically, in this review, we focus on the formation of black TiO_2 nanoparticles. Traditional reduction treatments of TiO_2 bulk crystals or surfaces and those led to apparent phase transformations are not reviewed here. If a material absorbs 100% light across the whole visible-light, it shows a completely black color. If only certain percentage across the entire visible-light region is equally absorbs, it is partially black or

gray. If no light is absorbed across the entire visible-light region, the color is white. If the light across the entire visible-light region is not equally absorbed, certain color (e.g., yellow, brown, green) will be observed. In this review, we focus only on the recent synthesis of black or partially black TiO_2 nanomaterials, especially on their detailed synthetic conditions, as these conditions strongly affect the properties and performance of the obtained TiO_2 nanomaterials. Those studies introducing other elements into the lattice or surface of TiO_2 to obtain black color will not be reviewed. Then we briefly summarize their chemical and structural properties and various applications. Although the change in optical absorption properties is the one main reason for the enhanced photocatalytic activities, however, this does not mean that the color change plays the same role for all applications, such as in batteries, supercapacitors, and catalytic reaction of ethylene to polyethylene (new application of TiO_2 nanoparticles). Nevertheless, we hope this review will inspire more advance in this area in the future.

2. Synthesis of black TiO₂ nanomaterials

2.1 Hydrogen thermal treatment

Intuition tells us that hydrogen thermal treatment of TiO_2 nanocrystals is simple and straightforward as hydrogen will reduce TiO_2 into other chemical species where Ti^{4+} should become Ti^{3+} or other reduction states, and their lattice structure and other physical/chemical properties change accordingly. However, this reaction seems not as simple as we thought.

$$TiO_2 + xH_2 \xrightarrow{\Delta} TiO_2, TiO_{2-x}, TiO_{2-x}H_{2x}...?$$
 (1)

As seem from this reaction scheme (1), the amount of reactants, the chemical properties of the starting TiO₂ nanomaterials, the pressure and concentration of the hydrogen gas, the reaction temperature and the reaction time will possibly play roles in the final compound of this reaction. The reaction pathways and thus the final properties of the hydrogen treated TiO₂ nanomaterials will be different depending on the hydrogen treatment conditions. The chemical properties of nanomaterials are also affected by their size, shape, morphology, surface facets, and defect contents.⁷⁹⁻⁸¹ These variables make this reaction even more complicated. Experimentally, black TiO₂ nanomaterials reported in the literature are normally prepared from different groups under different conditions. It is thus reasonable to see variations of their properties and performance and the accompanying explanations. These variations and complexities, on the other hand, also provide us a large extent of flexibility and more opportunities in tuning the chemical/physical properties and performance of black TiO₂ nanomaterials towards our different needs.

Interaction of hydrogen with TiO₂ crystals and surfaces has been studied for a long time.⁸²⁻⁹⁷ For examples, in 1951, Cronemeyer and Gilleo found hydrogen reduced rutile single-crystals had long wavelength absorption,⁸² and in 1958, Cronemeyer found rutile single-crystals reduced with hydrogen at 700 °C had the increased electrical conductivity due to the ionization trapped electrons in oxygen vacancies.⁸⁵ Hasiguti, et al. suggested the electrical conductivity were mostly Ti interstitial defects.^{94,95} Sekiya, et al. found that the color of TiO₂ changed to pale blue or dark blue when annealed in hydrogen, due to the absorption bands from the oxygen vacancy defect states below the fundamental absorption edge.⁹⁷ While TiO₂ surfaces were found not strongly interacting

Chemical Society Reviews

with molecular hydrogen,⁸⁸ additional emission peaks in the valence band region were observed with high doses of H₂ even at room temperature,⁸⁷ and atomic hydrogen stick to TiO₂ (110) surfaces at room temperature.⁹⁰ Reduction occurred when a TiO₂ surface was annealed in a H₂ atmosphere under high vacuum conditions.^{89,92} In the following, we will focus on recent studies on the formation of black TiO₂ nanoparticles.

2.1.1 High-pressure pure hydrogen treatment

Chen et al. reported the preparation of black TiO₂ nanoparticles by treating pure white TiO₂ nanoparticles under 20.0-bar pure H₂ atmosphere at about 200°C for 5 days.⁷⁵ The pure TiO_2 nanocrystals were obtained by heating the mixture of titanium tetraisopropoxide, Pluronic F127, hydrochloric acid, deionized water, and ethanol, with the molar ratio of 1:0.005:0.5:15:40 at 40°C for 24 hours, followed by drying at 110°C for 24 hours and calcinating at 500°C for 6 hours.⁷⁵ Figure 1 shows the schematic illustration of the concept of making black TiO₂ nanomaterials (Figure 1A), along with the pictures (Figure 1B) and high-resolution transmission electron microscopy (HRTEM) images (Figures 1C and 1D) of white and black TiO₂ nanoparticles.⁷⁵ Black TiO₂ nanoparticles featured with a well-crystallized lattice core surrounded by a latticedisordered shell from the hydrogenation treatment.^{75,95-97} The disordered shell was believed to host the possible hydrogen dopant, form the Ti-H and O-H bonds, and contributed to the midgap states and the black color of the hydrogenated TiO₂ nanoparticles.^{75,95-97} The black hydrogenated TiO₂ nanoparticles had an onset of optical absorption of about 1.0 eV (~1200 nm) and an optical gap around 1.54 eV (806.8 nm) from the UV-visible absorption spectrum (Figure 1E).⁷⁵

Figure 1. (A) Schematic illustration of the concept to make black TiO_2 . (B) Pictures of white and black TiO_2 nanomaterials. High-resolution transmission electron microscopy images of (C) white and (D) black TiO_2 nanoparticles.⁷⁵ Reprinted with permission from ref 75. Copyright 2011 AAAS.

Sun et al. (Sun 2011) made black TiO₂ nanoparticles and investigated the hydrogen incorporation into facet-defined anatase TiO₂ nanocrystals under high pressure.¹⁰¹ They found that hydrogenated TiO₂-(101) and TiO₂-(001) nanocrystals were black (Figures 2A) and blue (Figures 2B), respectively.¹⁰¹ The amount of hydrogen stored in TiO₂ nanocrystals depended on their facets.¹⁰¹ Under an initial hydrogen pressure of 7.0 MP at 450 °C, TiO₂ nanocrystals with predominant (101) surface had a storage capacities of 1.4 wt % (Figures 2A), while TiO₂ nanocrystals with (001) surface terminations had a storage capacities of 1.0 wt % (Figures 2B).¹⁰¹ Hydrogen occupied the interstitial sites between titanium-oxygen octahedra in the lattice and the energy barrier for hydrogen incorporation was lower through the anatase (101) surface than that through (001) (Figures 2C and 2D).¹⁰¹

Figure 2. Hydrogen adsorption profiles and digital camera images for (a) TiO_2 -(101) and (B) TiO_2 -(001). Calculated energy profiles for hydrogen incorporation through (C) (101) and (D) (001) surfaces.¹⁰¹ Reprinted with permission from ref 101. Copyright 2011, American Chemical Society.

Lu et al. prepared black TiO₂ nanoparticles at room temperature under highpressure H₂ environment and studied the color change of the hydrogenated TiO₂ nanoparticles over time.¹⁰² The hydrogenation reaction was conducted by hydrogenating commercial P25 TiO₂ powders (0.5 g) under 35 bar hydrogen atmosphere at room temperature (about 15 °C) for 0-20 days.¹⁰² The color of the white P25 turned into pale yellow after hydrogenation for 3 days' hydrogenation.¹⁰² Its color became much darker with a longer hydrogenation time and turn into gray after treatment for 15 days.¹⁰² Black TiO₂ nanoparticles were obtained after hydrogenated for more than 15 days.¹⁰² The black TiO₂ has a crystalline disordered core-shell structure.¹⁰² The corresponding visual and optical absorption property changes are shown in Figure 3.¹⁰² The onset of the optical absorption of the black TiO_2 nanoparticle was about 1.0 eV and an abrupt bandgap absorbance occurred at about 1.82 eV (680 nm).¹⁰²

Figure 3. (A) Pictures and (B) UV-visible absorption spectra of hydrogenated TiO₂ nanoparticles over various hydrogenation time.¹⁰² Reprinted with permission from ref 102. Copyright 2014, The Royal Society of Chemistry.

Liu et al compared the color change of anatase TiO_2 nanotubes hydrogenated under various conditions: (i) an anatase TiO_2 nanotube layer (air); (ii) this layer converted with Ar (Ar) or H₂/Ar (H₂/Ar); (iii) a high pressure H₂ treatment (20 bar, 500 °C for 1 h) (HP-H₂); and (iv) a high pressure H₂ treatment but mild heating (H₂, 20 bar, 200 °C for 5 d).¹⁰³ After the reduction treatments, the color of the TiO₂ nanotubes turned from white into black in H₂/Ar, deep purple in pure Ar (500 °C for 1 h), light blue in pressurized H₂ at high temperature (20 bar, 500 °C for 1 h), and gray in pressurized H₂ at mild temperature (H₂, 20 bar, 200 °C for 5 d), as shown in Figure 4, which also displays their UV-visible absorption spectra.¹⁰³ Apparently, the hydrogenation condition played a critical role in the final color and optical properties of the hydrogenated TiO_2 nanotubes.¹⁰³ The original TiO₂ nanotubes were obtained by anodizing a Ti foil with a Pt counter electrode in ethylene glycol with addition H_2O (1 M) and NH_4F (0.1 M) at 60 V for 15 min, followed by annealing at 450 °C for 1h.¹⁰³

Figure 4. Images and the UV-visible absorption of of the TiO_2 nanomaterials treated under various conditions.¹⁰³ Reprinted with permission from ref 103. Copyright 2014, American Chemical Society.

Qiu et al. prepared blue hydrogenated rutile TiO₂ nanoparticles by heating rutile TiO₂ nanoparticles (40 nm) under 40 bar hydrogen pressure at 450 °C for 1 h.¹⁰⁴ The white rutile TiO₂ nanoparticles turned into blue color after 5 min's hydrogenation.¹⁰⁴ Its blue color became more intense with increased reaction time and subsequently steady after 30 min's reaction.¹⁰⁴ The blue color changed into gray after the hydrogenated rutile TiO₂ nanoparticles were exposed to the air.¹⁰⁴ Qiu et al. also fabricated blue hydrogenated lithium titanate by treating lithium titanate at 500 °C for 1 h under a 40 bar H₂ atmosphere.¹⁰⁵ The blue color of the hydrogenated lithium titanate was stable in air.¹⁰⁵

Wang et al. studied the hydrogenation of F and N-F doped anatase TiO_2 nanoparticles dominated with {001} facets.¹⁰⁶⁻¹⁰⁸ The hydrogenation was performed at 400 °C for 2 h under 10 bar pure H₂ atmosphere to create hydrogenated F and N-F doped

TiO₂ (TiO₂-HF and TiO₂-NHF).¹⁰⁸ The F doped TiO₂ (TiO₂-F) were prepared by reacting Ti(OBu)₄ (25 ml) with HF (6 ml) and water (9 ml) at 180 °C for 24 h in an autoclave.¹⁰⁸ N dopant was introduced by reacting with urea at 400 °C for 2 h in air to obtain N-F doped TiO₂ (TiO₂-NF).¹⁰⁸ As shown in Figure 5, The colors of TiO₂-F, TiO₂-NF, TiO₂-HF, and TiO₂-NHF were white, yellow, blue and brown color, respectively.¹⁰⁸ TiO₂-F only showed absorption in the UV region, TiO₂-NF had an onset of absorption around 590 nm, TiO₂-HF showed increased visible-light absorption from 500 nm to 1000 nm.¹⁰⁸

Figure 5. UV–visible absorption spectra and pictures of TiO₂-N, TiO₂-NF, TiO₂-HF, and TiO₂-NHF.¹⁰⁸ Reprinted with permission from ref. 108. Copyright 2012, Elsevier.

Leshuk et al. conducted hydrogenation under a 300 ± 5 psig pure H₂ gas environment at 200 °C for 5 days or under a 10% H₂ + 90% Ar gas flow at 400 – 500 °C for 24-102 h on various TiO₂ nanomaterials.^{109,110} They found that under both hydrogen gas environments the color of the hydrogenated TiO₂ nanomaterials changed to yellow or black, depending on how the original TiO₂ nanomaterials were prepared.¹¹⁰

2.1.2 Ambient or low-pressure pure hydrogen treatment

Rekoske, et al. reported that reduction of anatase and rutile TiO₂ with H₂ at 300 – 500 °C under ambient hydrogen pressure, however, they did not mention the optical properties.¹¹¹ In 2003, Liu et al. treated anatase TiO₂ nanoparticles (30 nm in diameter) under pure H₂ flow with general grade from 20 to 700 °C for 2 h, however, no report was available on the optical and color property changes.¹¹² Yu et al performed hydrogenation on anatase TiO₂ nanosheets under a H₂ gas flow (50 sccm) at atmospheric pressure in a quartz tube at 500 – 700 °C for various time.¹¹³ The TiO₂ nanosheets were prepared by treating tetrabutyl titanate (25 g) with HF (4 mL) at 200 °C for 24 h.¹¹³ The color of the nanosheets changed from white to blue, then finally to gray, depending on the hydrogenation temperature and time, as shown in Figure 6A.¹¹³ Figure 6B shows their corresponding UV-visible absorption spectra.¹¹³

Figure 6. (A) Photographs and (B) UV-visible absorption spectra of hydrogenated anatase TiO_2 nanosheets (H-a TiO_2) prepared with a H₂ gas flow at temperatures of 500 – 700 °C.¹¹³ Reprinted with permission from ref 113. Copyright 2014, American Chemical Society.

Li et al. prepared hydrogenated mesoporous anatase TiO₂ microspheres via a hydrogenation treatment process.¹¹⁴ The hydrogen thermal treatment was performed by calcining the TiO₂ microspheres under ambient hydrogen pressure at 400 °C for 1 h.¹¹⁴ The color of the TiO₂ microspheres changed to gray from white after hydrogenation and the hydrogenated TiO₂ microspheres exhibited a high and broad light absorption band towards the infrared region in contrast to the UV absorption of the original TiO₂ microspheres from the UV-visible diffuse reflectance spectra.¹¹⁴ Lu et al. performed the hydrogenation on anodized TiO₂ nanotubes in ultrahigh purity hydrogen atmosphere (ambient pressure) between 300 to 600 °C for 1 h.¹¹⁵ However, no information on the color or optical properties was available for the hydrogenated TiO₂ nanotubes.¹¹⁵ The TiO₂ nanotubes were obtained by anodizing Ti fiber at 30 V for 3 h at room temperature with a graphite rod as cathode in a glycerol aqueous solution (90 vol% glycerol: 10 vol% H₂O) containing 0.75% NH₄F, followed by drying at 80 °C.¹¹⁵ Similarly, Li et al prepared hydrogenated TiO₂ nanotubes (mainly rutile, 95%) via the anodization of a titanium sheet followed by a hydrogenation process conducted at 450 °C for 2 h in a hydrogen atmosphere (ambient pressure).¹¹⁶ The TiO₂ nanotubes were obtained by anodizing a Ti foil in 1,2,3-propanetriol containing NH₄F (1.0 wt %) and H₂O (15 vol %) at 25 V for 2 h with a platinum mesh as a cathode, followed by heating at 700 °C for 1 h.¹¹⁶ Zhang et al. fabricated hydrogenated anatase TiO₂ nanotubes by annealing the anatase TiO₂ nanotubes in ultrahigh purity H₂ atmosphere at 200 – 600 °C for 1 h.¹¹⁷ The anatase TiO₂ nanotubes were synthesized anodizing a Ti sheet at 50 V for 3 h at room temperature in glycol aqueous solution (90 wt% glycerol: 10 wt% H₂O) containing NH₄F (0.5 wt%).¹¹⁷

Wang et al. prepared hydrogenated rutile TiO₂ nanowire arrays by annealing in ultrahigh purity hydrogen atmosphere (ambient pressure) for 3 h at 200 – 550 °C.¹¹⁸ The color of the hydrogenated rutile TiO₂ nanowires turned into yellowish green (350 °C) and black (450 °C or above), depending on the hydrogen annealing temperature (Figure 7).¹¹⁸ This suggested that the hydrogenated rutile TiO₂ nanowires had visible light absorption as a result of hydrogen treatment.¹¹⁸ The original rutile TiO₂ nanowires were obtained by treating titanium n-butoxide (0.5 ml) in HCl (18.25%) solution at 150 °C for 5 hours, followed by annealing in air at 550 °C for 3 h.¹¹⁸

Figure 7. Pictures of rutile TiO_2 nanowires hydrogenated at various temperatures for 3 h.¹¹⁸ Reprinted with permission from ref 118. Copyright 2011, American Chemical Society.

Naldoni et al. prepared black TiO₂ nanoparticles by heating amorphous TiO₂ under H₂ stream, followed by fast cooling in inert environment until room temperature.¹¹⁹ They treated amorphous TiO₂ powders under vacuum (10^{-5} mbar) and then heated at 200 °C for 1 h under flowing O₂, and then heated 500 °C for 1 h under hydrogen atmosphere.¹¹⁹ They found that the use of very slow cooling rate or instantaneous

exposure to air resulted in a gray coloration, and that reducing crystalline samples generated only pale blue colored powders with unmodified absorption spectra.¹¹⁹

Barzan et al. conducted the hydrogenation reaction on P25 under pure hydrogen atmosphere (pressure of 200 mbar) at 500 °C for 1 h and obtained TiO₂ with blue color.¹²⁰ Jiang et al. performed hydrogenation on commercial P25 powders in a tube furnace filled with ultrahigh purity hydrogen gas (99.99%) under atmospheric pressure at 400 °C for 10 h and found that the color of P25 turned into gray.¹²¹ Liang et al. reported the hydrogenation of an anatase TiO₂ inverse opal structure.¹²² The hydrogenation reaction was conducted at 500 °C for 2 h under a reduced hydrogen pressure of 80 Torr.¹²² However, no information of the optical properties of the hydrogenated TiO₂ was readily available.¹²²

2.1.3 Ambient hydrogen/Argon treatment

Shin et al prepared hydrogenated TiO₂ nanoparticles from commercial anatase TiO₂ nanoparticles (50 nm in diameter).¹²³ The hydrogenation reaction was conducted at 450 °C for 1–7 h under a 5% H₂/ 95% Ar gas flow.¹²³ They found that the color of pristine TiO₂ changed from pure white (Figure 8A) to light yellowish after 1 h of hydrogen thermal treatment and after 7 h of hydrogen thermal treatment, the color turned to dark yellow (Figure 8B).¹²³ No color change was visible after the same time of thermal annealing under inert atmosphere.¹²³

Figure 8. Pictures of anatase TiO₂ before (A) and after (B) hydrogenation for 7 h at 450 °C under a 5% $H_2/$ 95% Ar gas flow.¹²³ Reprinted with permission from ref 123. Copyright 2012, American Chemical Society.

Zhu et al. conducted hydrogenation on anatase TiO₂ nanotubes in a quartz tube under a continuous hydrogen (8 sccm) and argon (10 sccm) flux for 5 h at 400 - 600°C.¹²⁴ The anatase TiO₂ nanotubes were obtained from anodization of Ti foil in an ethylene glycol solution containing NH₄F (0.25 wt%) and HF (0.02 wt%) at 40 V at room temperature for 40 min.¹²⁴ However, no information on the optical properties was provided in this study.¹²⁴ Lu et al reported hydrogenation on anatase nanoparticles, anatase nanotubes and rutile nanorods.¹²⁵ The hydrogenation was carried out by annealing various TiO₂ nanomaterials at 450 °C for 1 h in a reducing 5% H₂ and 95% Ar atmosphere (100 sccm flow rate).¹²⁵ The hydrogenated TiO₂ nanomaterials turned into black from white (Figure 8).¹²⁵ The original TiO₂ nanotubes were prepared by anodizing Ti foil in ethylene glycol with 0.5 wt% ammonium fluoride and 4-6 vol% water at a constant potential of 60 V for 0.5 h, followed by annealing at 500 °C for 3 h.¹²⁵ The starting rutile TiO₂ nanorods were made by heating titanium n-butoxide (0.5 ml) in HCl (18.25%) solution at 150 °C for 5 hours, followed by annealing in air at 550 °C for 3 h.¹²⁵ The anatase TiO_2 nanoparticles were bought from Aldrich with grain size of 50 nm.¹²⁵

Figure 9. Pictures of anatase TiO_2 nanoparticles, nanotubes, and rutile nanorods before (A) and after (B) hydrogenation at 450 °C for 1 h under a 5% H₂/ 95% Ar gas flow.¹²⁵ Reprinted with permission from ref 125. Copyright 2012, Wiley-VCH.

Shen et al. performed hydrogenation on lithium titanate nanowires.¹²⁶ The hydrogenation was conducted by treating the nanowires at 500 - 700 °C for 1.5 h in 5% v/v H₂/Ar.¹²⁶ The titanate nanowires were prepared by reacting a titanium foil (1 cm \times 2 cm) in 1 M NaOH (20 mL) aqueous solution at 220 °C for 16 h in an autoclave, followed by immersion in 0.5 M HCl solution for 1 h and 2 M LiOH solution for 8 h at 60 °C.¹²⁶ Danon et al. treated titanate nanotubes under a flow of 5% H₂ in Ar at atmospheric pressure at 350 °C for 3 h and found that in stainless reactor, black powders were obtained, but in quartz reactor, only blue powders were synthesized, as shown in Figure 10.¹²⁷ The starting titanate nanotubes were prepared by heating anatase TiO₂ powders (2 g) in a of 10M NaOH solution (50 mL) 120 °C for 48 h, following by washing with 1M HCl, water and drying at 110 °C overnight.¹²⁷

Figure 10. Pictures of titanate nanotubes and after hydrogenation at 350 °C for 3 h under a flow of 5% H_2 in Ar at atmospheric pressure in a stainless reactor and a quartz reactor.¹²⁷ Reprinted with permission from ref 127. Copyright 2012, American Chemical Society.

Zhang et al prepared hydrogenated rutile TiO₂ nanorods by treating rutile TiO₂ nanorods in a H₂/Ar flow.¹²⁸ The hydrogenation process was carried out in a hydrogen (20 sccm) and argon (80 sccm) atmosphere at 350 °C in a tubular furnace under ambient pressure for 1 h.¹²⁸ The starting TiO₂ nanorods were prepared on a fluorine-doped tin oxide glass slide by reacting titanium butoxide (0.48 mL) in HCl solution (40 mL 18.25 wt%) at 170 °C for 6 h.¹²⁸ The hydrogenated TiO₂ nanorods had a stronger absorbance in the visible light region (ca. 50%) than and a slight enhancement in the UV light region (ca. 4%), compared to pristine TiO₂ nanorods.¹²⁸

Zeng et al carried out hydrogenation on pure and C-doped TiO₂ nanoparticles under a flow of H₂/Ar mixture at 300 °C for 2h,¹²⁹ however, did not report on their optical properties. Wang et al. synthesized hydrogenated TiO₂–reduced-graphene oxide nanocomposite.¹³⁰ Typically, tetrabutyl titanate was added into ethanol containing graphene oxide and reacted at 90 °C for 8 h.¹³⁰ The powder was treated at 450 °C for 4 h under a 5% H₂/95% Ar flow.¹³⁰ Hoang et al prepared N, H-doped rutile TiO₂ nanowires via hydrothermal synthesis followed hydrogenation treatment.¹³¹ The rutile TiO₂ nanowires were prepared in 50 mL n-hexane, 5 mL HCl, and 5 mL of titanium (IV) isopropoxide at 150 °C for 5 h on seeded fluorine-doped tin oxide substrates.¹³¹ The nanowires were annealed at 500 °C (i) in air for 1 h (denoted as TiO₂), (ii) in NH₃ for 2 h (N-TiO₂), (iii) in a mixture of H₂ and Ar (5% of H₂) for 1 h (H-TiO₂), and (iv) in a mixture of H₂ and Ar for 1 h followed by annealing in NH₃ for 2 h (H, N-TiO₂).¹³¹ As shown in Figure 11, the color of the pristine TiO₂ nanowires did not change after hydrogen treatment; however, it turned green after nitridation and dark green after hydrogenation-nitridation treatment.¹³¹ The hydrogenated TiO₂ nanowires had increased absorption in both UV and visible light region compared to the pristine TiO₂ nanowires, and the absorption edge of the H, N-TiO₂ nanowires shifted ~20 nm to the longer wavelength region compared to the N-doped TiO₂ nanowires.¹³¹

Figure 11. Pictures and UV-visible transmission spectra of various TiO₂ nanowires.¹³¹ Reprinted with permission from ref 131. Copyright 2012, American Chemical Society.

2.1.4 Ambient hydrogen/nitrogen treatment

22

He et al prepared hydrogenated TiO₂ nanostructured film by annealing the TiO₂ film at 350 °C for 2 h in a mixed gas of 6% H₂ and 94% N₂.¹³² The hydrogenated TiO₂ nanostructured film had a yellow color while the TiO₂ film was transparent (Figure 12).¹³² The H:TiO₂ film showed a stronger absorption than pure TiO₂ film in both UV and visible light regions (Figure 12).¹³² The pristine TiO₂ nanoparticles were obtained by heating titanium isopropoxide (0.02 M), acetic acid (0.02 M), H₂O (27.4 ml) and HNO₃ (0.4 ml 80%) at 200 °C for 12 h after stirring at 80 °C for 2 h.¹³² The nanostructured TiO₂ films were fabricated by screen printing of a TiO₂-terpineol-ethylcellulose ethanol slurry on fluorine-doped tin oxide glasses, followed by annealing at 500 °C for 30 min.¹³²

Figure 12. UV-visible absorption spectra of pristine (TiO₂) and hydrogenated (H:TiO₂) TiO₂ nanostructured films.¹³² The inset shows their pictures and the Reprinted with permission from ref 132. Copyright 2013, American Institute of Physics.

Wang et al. conducted hydrogen treatment on rutile TiO_2 nanorods with anatase nanoparticles.¹³³ The hydrogenation reaction was conducted at 400 °C for 30 minutes in a mixed gas of 90% N₂ and 10% H₂.¹³³ The color of the film changed from white to gray after annealing.¹³³ The TiO₂ nanorods were prepared by heating 1.5 ml mixed solution of

hydrochloric acid (47.2 vol.%), deionized water (51.5 vol.%), and tetrabutyl titanate (1.3 vol.%) in an autoclave at 150 °C for 10 h, followed by heating at 450 °C for 30 minutes.¹³³ The anatase nanoparticles were then loaded in a 0.04 M TiCl₄ aqueous solution at 70 °C for 12 h in an autoclave.¹³³ Zheng et al hydrogenated anatase TiO₂ nanowire microspheres at 500 °C for 4 h under a flow of H₂ (5 % in N₂, 300 sccm).¹³⁴ The color of the hydrogenated anatase TiO₂ nanowire microspheres was dark brown compared to the white color of the pristine microspheres, and had enhanced visible-light absorption.¹³⁴ The nanowire-microspheres were obtained by heating Ti(OBu)₄ (5.1 g) in ethanol (75 mL) with sulfuric acid (0.33 mL, 98%) and water (0.3 mL) at 180 °C for 4 h in an autoclave, followed by heating at 150 °C for 24 h in 10 M NaOH aqueous solutions and ion-exchanged in 0.1 M HCl aqueous solution for 12 h.¹³⁴

Zhu et al prepared black TiO₂ through hydrogen spill on supported Pt nanoparticles (Figure 13).¹³⁵ Hydrogenated Pt/TiO₂ was obtained by treating Pt/P25 in a 8% H₂/N₂ atmosphere at 200 – 700 °C for 4 h.¹³⁵ Pt/P25 was first prepared via conventional impregnation followed by reduction with sodium borohydride.¹³⁵ The hydrogenation reduction started from 160 °C, and became apparent at 400, 500, 700 and 750 °C due to the hydrogen spillover from Pt to TiO₂.¹³⁵ The hydrogenated TiO₂ nanoparticles had large visible-light absorption then the pristine TiO₂ nanoparticles.¹³⁵

Figure 13. Illustration of routes to prepared hydrogenated Pt/TiO_2 nanoparticles. Route 1: hydrogenation of TiO_2 followed by the loading of Pt; route 2: hydrogen spillover involved simultaneous hydrogenation of Pt/TiO_2 .¹³⁵ Reprinted with permission from ref 135. Copyright 2014, The Royal Society of Chemistry.

2.1.5. Ambient Argon treatment

Myung et al. prepared black TiO₂ nanoparticles by annealing a yellow TiO₂ gel in Ar gas at 400 – 600 °C for 5 h.¹³⁶ The TiO₂ gel was obtained by stirring high-purity TiCl₄ dropwise to a distilled water-ethanol mixture with HF and urea at 0 °C for 4 h, and then evaporating the solution slowly at 80 °C.¹³⁶ The color of the annealed TiO₂ nanoparticles depended on the annealing temperature and the amount of HF added in the preparation of the TiO₂ gel.¹³⁶

2.2 Hydrogen plasma

Figure 14. UV-visible-IR absorption spectra and pictures of the pristine and hydrogen plasma treated black TiO₂ nanoparticles.¹³⁷ Reprinted with permission from ref 137. Copyright 2013, Wiley-VCH.

Wang et al. prepared hydrogenated black TiO₂ nanoparticles in a thermal plasma furnace by hydrogen plasma for 4 - 8 h at 500 °C.¹³⁷ The plasma input power was 200 W and the starting TiO₂ was P25.¹³⁷ The hydrogenated black TiO₂ nanoparticles had a significant absorption in the visible and near infrared light (Figure 14).¹³⁷ Their absorption in the visible and infrared light region increased drastically and monotonously with wavelengths longer than ≈ 400 nm.¹³⁷ Teng et al. prepared of black TiO₂ nanotubes by hydrogen plasma assisted chemical vapor deposition.¹³⁸ The hydrogenation was performed in a hot-filament chemical vapor deposition apparatus with hydrogen as reaction gas (Figure 15A).¹³⁸ The TiO₂ nanotubes were obtained by heating 2 g of Degussa P25 nanoparticles (2 g) in 10 M NaOH solution (50 mL) at 120 °C for 12 h, followed by washing with HCl and water, and drying at 110 °C.¹³⁸ During the treatment process, the TiO₂ was loaded in a corundum boat under the filament.¹³⁸ The temperature of the filament was maintained at 2000 °C, and the samples were treated for 3 h at 350 - 500 °C (TiO₂-350, TiO₂-500).¹³⁸ Some Cr fragments were mixed in the TiO₂ during the treatment process to study the effect of Cr (TiO₂-Cr-350, TiO₂-Cr-500).¹³⁸ All the hydrogenated TiO₂ nanoparticles had black color (Figure 15B) and enhanced absorption in the visible-light region (Figure 15C).¹³⁸ Yan et al also prepared hydrogenated black anatase TiO₂ nanoparticles by a H₂ plasma treatment.¹³⁹ The H₂ plasma treatment was performed at 390 °C for 3 h, with the inductively coupled plasma power of 3000 W, the chamber pressure of 26.5–28.3 mTorr, and the H₂ flow rate of 50 sccm. The starting anatase TiO₂ nanoparticles had a mean diameter of 15 nm.¹³⁹ The hydrogenated TiO₂ nanoparticles had a mean diameter of 15 nm.¹³⁹ The hydrogenated TiO₂ nanoparticles had black color and increased absorption in the visible-light region (Figure 15D).¹³⁹

Figure 15. (A) Illustration of hydrogen plasma hot-filament chemical vapor deposition setup. (B) Pictures and (C) UV-visible absorption spectra of the pristine and

hydrogenated black TiO₂ nanoparticles.¹³⁸ Reprinted with permission from ref 138. Copyright 2014, Elsevier. (D) Pictures and UV-visible absorption spectra of the pristine and hydrogenated black TiO₂ nanoparticles.¹³⁹ Reprinted with permission from ref 139. Copyright 2013, The Royal Society of Chemistry.

2.3 Chemical reduction

2.3.1 Aluminum reduction

Wang et al. prepared black TiO₂ nanoparticles using Al as a reductant in an evacuated two-zone vacuum furnace at $300 - 500 \,^{\circ}C.^{140}$ For the reduction reaction, TiO₂ and aluminum were placed separately in a two-zone tube furnace and then evacuated to a base pressure lower than 0.5 Pa (Figure 16A).¹⁴⁰ The aluminum was heated at 800 °C, and TiO₂ samples were heated at 300 - 600 °C for 6 - 20 h.¹⁴⁰ The aluminum sustained low oxygen partial pressure from melting and releasing the O from TiO₂.¹⁴⁰ The reduced TiO₂ nanoparticles had black color (Figure 16B), and showed intense absorption in the visible-light and near-infrared regions.¹⁴⁰

Figure 16. (A) Schematic illustration of the two-zone furnace, (B) Pictures and (B) UVvisible absorption spectra of TiO_2 nanoparticles reduced at different temperatures (300 °C, 400 °C, and 500 °C) by Al, the high-pressure hydrogenated black TiO_2 (HP- TiO_2), the

Chemical Society Reviews

H₂-reduced TiO₂ (H₂-TiO₂), and pristine TiO₂.¹⁴⁰ Reprinted with permission from ref 140. Copyright 2013, The Royal Society of Chemistry.

Cui et al. prepared black anatase TiO_2 nanotubes by the melted aluminum reduction of pristine anodized and air-annealed TiO_2 nanotube arrays.¹⁴¹ In the reduction process, TiO_2 nanotubes and aluminum powder were heated to 500 °C and 850 °C for 4 h, respectively.¹⁴¹ The TiO_2 nanotubes were prepared by anodizing an Ti foil with copper plate as the cathode in a glycol electrolyte containing 0.4 wt% NH₄F and 3 wt% H₂O under 100 V for 5 min, after peeling off the first layer obtained under 100 V for 25 min and followed by annealing at 500 °C for 4 h in air.¹⁴¹ The black anatase TiO_2 nanotubes had large absorption from visible-light to near-infrared regions.¹⁴¹

Yin et al prepared gray anatase TiO_2 nanowires by treating protonated titanate nanowires (0.5 g) under vacuum at 200 – 900 °C for 4 h in a two-zone furnace under Al atmosphere where aluminum powder was put in the zone set at 800 °C.¹⁴² The protonated titanate nanowires were prepared with hydrothermal reaction of anatase powder in 10 M NaOH solution at 200 °C for 18 h.¹⁴² The gray nanowires exhibited stable visible-light and even infrared light absorption.¹⁴²

Similarly, Zhu et al. to synthesized black brookite TiO_2 nanoparticles in a twozone vacuum furnace with the Al reduction method.¹⁴³ The Al powders and brookite TiO_2 were separately heated at 800 °C (Al) and 300 – 600 °C (brookite) for 4 h in a two-zone evacuated furnace under a pressure of 0.5 Pa.¹⁴³ The brookite TiO_2 nanoparticles were synthesized heating at 220 °C for 48 h under pH 12.5 the precipitates from the reaction of TiOSO₄ $^{\bullet}$ xH₂O (3 g) and 10 M NaOH (6.25 ml) in water (50 ml).¹⁴³ The black brookite TiO₂ had drastically enhanced visible and infrared light absorption.¹⁴³

Yang et al. synthesized black core-shell rutile TiO₂ nanoparticles with sulfided surface (TiO_{2-x}:S) from both anatase and rutile nanoparticles.¹⁴⁴ Rutile (route 1) and anatase (route 2) TiO₂ with sizes of ~30 nm in diameter were first reduced by molten Al to form a disordered TiO_{2-x} shell (Figure 17A).¹⁴⁴ The Al powders and pristine TiO₂ were separately heated at 800 °C (molten Al) and 500 °C (TiO₂) for 6 h in an evacuated twozone furnace under 5×10^{-4} Pa pressure.¹⁴⁴ The modified TiO₂ nanoparticles were treated at 600 °C for 4 h in a 1000 Pa H₂S.¹⁴⁴ This sulfided rutile TiO₂ nanoparticles exhibited remarkably enhanced absorption in visible and near-infrared regions (Figures 17B and 17C).¹⁴⁴ The color of the sulfided rutile TiO₂ nanoparticles was brown or black, depending on the crystal phase of the starting TiO₂ nanoparticles (Figure 17C).¹⁴⁴ The black color changed into gray after annealing.¹⁴⁴

Figure 17. (A) Illustration of routes 1 and 2 to make black core-shell rutile TiO_2 nanoparticles with sulfided surface. (B) UV-visible absorption spectra of TiO_2 and sulfided rutile and anatase TiO_2 nanoparticles. The sulfided rutile and anatase

Chemical Society Reviews

nanoparticles were labeled as R-TiO₂-S and R'-TiO₂-S, respectively.¹⁴⁴ Reprinted with permission from ref 144. Copyright 2013, American Chemical Society.

Lin et al. further synthesized a series of nonmetal-doped black titania with this two-step strategy (Figure 18).¹⁴⁵ First, reduction by molten Al introduced oxygen vacancies on the amorphous surface layer surrounding the crystalline core in TiO₂ (Degussa P25) nanocrystals.¹⁴⁵ Then incorporation nonmetal element X (X = H, N, S, I) in the oxygen-deficient amorphous layers of Al-reduced titania nanocrystals (TiO_{2-x}) induced color change.¹⁴⁵ The P25 (0.5 g) and aluminum powders were treated at 500 °C and 800 °C for 6 h, respectively, in a two-zone evacuated furnace, under the pressure of 0.5 Pa, to obtain black TiO_{2-x} nanoparticles.¹⁴⁵ The hydrogenation was then performed in a thermal plasma furnace by hydrogen plasma at 500 °C for 4 h.¹⁴⁵ The TiO₂-S and TiO₂-I were prepared by reacting black TiO_{2-x} nanoparticles with S and I₂ at 500 °C for 4 h, respectively, followed by dispersed in CS_2 (ethanol for I_2) solution to remove residual S (I₂) to obtain TiO₂–S (TiO₂–I) nanoparticles.¹⁴⁵ The black TiO₂-N nanoparticles were obtained by heating black TiO_{2-x} nanoparticles in a NH₃-Ar (2:1) gas flow at atmospheric pressure at 500 °C for 4 h.¹⁴⁵ All the TiO₂-X nanoparticles displayed enhanced absorption in both visible-light and near-infrared regions.¹⁴⁵ The amount of light absorbed followed in this order: $TiO_2-N > TiO_2-S > TiO_2-I > TiO_2-x > TiO_2-H > TiO_2$.¹⁴⁵

Figure 18. Schematic evolution from pristine TiO_2 to oxygen-deficient titania (TiO_{2-x}) and then to X-doped titania (TiO_2 -X: X = H, N, S, I).¹⁴⁵ Reprinted with permission from ref 145. Copyright 2013, The Royal Society of Chemistry.

2.3.2 Zinc reduction

Zhao et al prepared reduced gray rutile TiO₂ nanoparticles with zinc reduction in a solvothermal route.¹⁴⁶ Typically, TiCl₃ (1 mL, 15 – 20%) aqueous solution was reacted in isopropanol (30 mL) in the presence of Zn powders (0.5 – 2.5 mmol) at 180 °C for 6 hours.¹⁴⁶ The excess Zn powders were removed with HCl aqueous solution.¹⁴⁶ Zn powders were added to avoid the complete oxidation of Ti³⁺ in the reaction.¹⁴⁶ Without Zn powers, only white anatase TiO₂ was obtained.¹⁴⁶ The color of TiO₂ can be changed from gray to dark blue depending on the amount of Zn (the inset in Figure 18).¹⁴⁶ The reduced TiO₂ nanorods showed a broad visible-light absorption band, which increased with the addition of Zn powder in the reaction (Figure 19).¹⁴⁶ Meanwhile, the relative amount of rutile phase increased with the amount of Zn powder.¹⁴⁶

Figure 19. UV-visible absorbance spectra and pictures of TiO₂ nanoparticles by Zn reduction.¹⁴⁶ Reprinted with permission from ref 146. Copyright 2014, The Royal Society of Chemistry.

2.3.3 Imidazole reduction

Zou et al prepared reduced gray TiO₂ nanoparticles by calcining a mixture of a porous amorphous TiO₂ precursor (0.5 g), imidazole (1 g), and hydrochloric acid (37 wt%, 3 mL) in a preheated muffle furnace (450 °C) for 6 h.¹⁴⁷ The amorphous TiO₂ precursor was obtained by photodecomposing titanium glycolate (2.0 g) dispersed in water (60 mL) under UV-light irradiation (for 1 h).¹⁴⁷ The reduced TiO₂ had a broad and strong absorption through the entire visible-light region.¹⁴⁷

2.3.4 NaBH₄ reduction

Kang et al synthesized reduced black TiO_2 nanotubes by chemical reduction with NaBH₄.¹⁴⁸ The starting TiO_2 nanotubes were obtained by anodizing a Ti foil in an ethylene glycol solution containing 0.3 wt% NH₄F and 2 vol% H₂O under 80 V for 30 min at 5 °C with a graphite cathode, followed by annealing at 450 °C for 3 h.¹⁴⁸ The

reduction was performed in 0.1 M NaBH₄ solution for 10 - 60 min at room temperature.¹⁴⁸ The reduced TiO₂ nanotubes had strong absorption from visible-light region to the near-infrared.¹⁴⁸

2.3.5 CaH₂ reduction

Tominaka et al. found that black corundum Ti_2O_3 nanoparticles were obtained by reducing of rutile TiO_2 nanoparticles with CaH_2 powder at 350 °C for 10 – 15 d with the same morphology.^{149,150}

2.4 Chemical oxidation

Liu et al prepared reduced TiO_{2-x} nanoparticles with a hydrothermal method by oxidizing TiH₂ powder (0.60 g) in H₂O₂ solution (60 mL 25 wt%) at 160 °C for 20-27 h after stirring for 5h at room temperature.¹⁵¹ The TiO₂ nanoparticles had blue or light-blue color.¹⁵¹ The particles showed a strong absorption across the UV to the visible light region and retained their light-blue color upon storage in ambient atmosphere or water for one month at 40 °C.¹⁵¹ Grabstanowicz et al. TiO₂ black powders with a two-step strategy as shown in Figure 20.¹⁵² First, H₂O₂ (15 mL) was added into TiH₂ powder (0.96 g) aqueous suspension (10 mL) and stirred for 3 h at room temperature to obtain a miscible gel-like slurry, followed with additional H₂O₂ (12 mL and 15 mL) and stirring (4 h and 16 h) in forming a yellow gel.¹⁵² Second, the gel was vacuum-desiccated overnight, placed in an oven at 100 °C for 12–20 h to become a yellow powder, and then finally at 630 °C for 3 h in Ar.¹⁵² The black TiO₂ had rutile phase and remarkably enhanced absorption in the visible-light and near-infrared regions.¹⁵² Pei et al. prepared gray TiO₂

Chemical Society Reviews

by oxidizing TiO powder with a hydrothermal method.¹⁵³ In a typical procedure, titanium monoxide (400 mg) was reacted with HCl solution (20 mL 3M) at 160 °C for 24 h.¹⁵³ The formed gray TiO₂ showed enhanced and stable absorption across the entire visible-light region.¹⁵³ Kako et al. prepared colorful rutile TiO₂ by heating Ti₂O₃ at 550 – 900 °C for 3 h.¹⁵⁴ The samples had colors ranged from grayish green to yellowish off-white and large visible-light absorption.¹⁵⁴

Figure 20. Illustration of the synthesis strategy from TiO_2 to black TiO_2 nanoparticles, along with their images.¹⁵² Reprinted with permission from ref 152. Copyright 2013, American Chemical Society.

2.5 Electrochemical reduction

Xu et al prepared hydrogenated black TiO₂ nanotubes by electrochemically reduction.¹⁵⁵ The nanotubes were obtained by two-step anodization at 150 V for 1 h in ethylene glycol electrolyte containing 0.3 wt.% NH₄F and 10 vol.% H₂O with a carbon rod as the cathode and Ti as the anode.¹⁵⁵ The nanotubes formed after the first-step were removed with adhesive tape to the second anodization.¹⁵⁵ The nanotubes after the second-step were treated at 150 °C for 3 h and at 450 °C for 5 h.¹⁵⁵ The electrochemical reductive doping process was performed under 5 V for 5 to 40 s in 0.5 M Na₂SO₄ aqueous solution at room temperature with the nanotubes as the cathode and a Pt electrode as the anode,
respectively.¹⁵⁵ Zhang et al fabricated black TiO₂ nanotubes with a similar strategy.¹⁵⁶ The TiO₂ nanotubes were obtained by anodizing a Ti sheet at 60 V for 30 min in EG solution containing 0.5 wt% NH₄F and 2 vol% H₂O with a Pt counter electrode, followed by sonicating, another anodizing at 80 V for 5 min, and calcination at 450 °C for 1 h.¹⁵⁶ The reduction was conducted under negative potential (0.4 V vs. reversible hydrogen electrode) in 1 M Na₂SO₄ for 30 min.¹⁵⁶

Similarly, Li et al prepared black TiO₂ nanotubes using anodization followed by electrochemical reduction as illustrated in Figure 21.¹⁵⁷ TiO₂ nanotubes were first prepared with a Pt gauze as the counter electrode and a Ti foil as the working anode under a constant voltage or current (typically, 80 V for 7200 s, or 4 mA for 5000 s) in an "aged" ethylene glycol solution under 60 V for 12 h with 0.2 M HF and 0.12 M H_2O_2 .¹⁵⁷ The nanotubes were treated at 450 °C in air for 4 h.¹⁵⁷ The electrochemical reduction was conducted under 40 V for 200 s in an ethylene glycol solution containing 0.27 wt% NH₄F after a brief activation treatment (typically, at 60 V for 30 s, or 4 V for 600 s).¹⁵⁷ Zhou and Zhang adopted similar strategy in making black TiO₂ nanotubes.¹⁵⁸ The pristine nanotubes were made by anodizing Ti foil in a Ti-platium two-electrode system under 20 V for 2 h as 25 °C in ethylene glycol containing 0.5 wt % NH₄F and 10 wt % H₂O, followed by annealing at 450 °C for 2 h.¹⁵⁸ Zheng prepared black TiO₂ films with a multipulse anodization method.¹⁵⁹ The fabricated TiO₂ films had tens of well-defined layers with long-range structural periodicity and photonic band gaps in the visible wavelengths.¹⁵⁹ The color was electrically switchable between green and black.¹⁵⁹

Figure 21. Illustration of the fabrication procedure for obtaining black TiO₂ nanotubes with electrochemical reduction method.¹⁵⁷ Reprinted with permission from ref 157. Copyright 2014, The Royal Society of Chemistry.

2.6 Anodization-Annealing

Dong et al prepared black TiO₂ nanotubes by anodization followed with annealing as shown in Figure 22.¹⁶⁰ TiO₂ nanotubes were first obtained after two 10 h anodization on a Ti foil at 60 V in ethylene glycol containing 0.25 wt.% NH₄F and 2 vol.% distilled water.¹⁶⁰ The TiO₂ nanotubes after the first anodization were removed before the second anodization.¹⁶⁰ The anodized Ti foil was cleaned in ethanol and distilled water, dried at 150 °C, and then sintered at 450 °C for 1 h in ambient atmosphere.¹⁶⁰ A layer of black TiO₂ was obtained on the substrate after removing the top oxide layer.¹⁶⁰

Figure 22. (A) Illustration of the experimental Process and images of the stripped TiO_2 nanotubes. (B) UV-visible absorption spectra of TiO_2 nanotubes.¹⁶⁰ Reprinted with permission from ref 160. Copyright 2014, American Chemical Society.

3. Properties of black TiO₂ nanomaterials

Since the fabrication methods and conditions of black TiO_2 nanomaterials in the literature vary one from the others, it is commonly reported that the various black TiO_2 nanomaterials displayed different chemical and physical properties, as briefly summarized in the following sections. Some of these properties, if not all, have been used to explain the black color of the reported TiO_2 nanomaterials.

3.1 The existence of structural disorder near the surface

Disordered structural features have been reported near the surface of black TiO_2 nanoparticles with a crystalline/disordered core/shell structure in some studies, ^{75,98,99,102,106,119,121,134,137,140} however, different observation has also been reported.¹²⁵ For examples, a disordered surface layer was observed surrounding the crystalline core by Chen, et al. in the hydrogenated black TiO_2 nanoparticles obtained

under 20 bar at 200 °C,^{75,98,99} by Lu et al. in the hydrogenated TiO₂ nanocrystals obtained by treating the commercial Degussa P25 under 35 bar hydrogen and room temperature up to 20 days,¹⁰² in the hydrogenated black TiO₂ nanosheets by Wang and Xu,¹⁰⁶ in hydrogenated TiO₂ nanocrystals by Naldoni, et al.,¹¹⁹ in black TiO₂ nanoparticles by hydrogen plasma,¹³⁷ and in black TiO₂ nanocrystals obtained by reducing with aluminum by Wang et al.,¹⁴⁰ etc. Lattice contraction in the disordered layer was reported by some groups,^{98,99,106,119} however, a weak lattice expansion was also suggested by the hydrogenated TiO₂ nanotubes had a very clear surface.¹²⁵

Figure 23. HRTEM (a) and line analyses (b) of one white TiO_2 nanoparticle, HRTEM (c) and line analyses (d) of one black TiO_2 nanoparticle. The zeros of the axis in b and d correspond to the left ends of the lines in a and c. The red, and green curves in b and d correspond to the red and green lines in a and c.⁹⁹ Reprinted with permission from ref 99. Copyright 2013, Nature Publishing Group.

High-resolution transmission electron microscopy (HRTEM) has been commonly used to differentiate the disordered phase from the crystallaine phase in the black TiO_2 nanoparticles.^{75,98,99,102,106,119,121,137,140} For example, Figure 23 shows the HRTEM and line analysis of one normal white TiO₂ nanoparticle in comparison with one black TiO₂ nanoparticle.⁹⁹ The white TiO₂ nanoparticle displayed clearly-resolved and well-defined lattice fringes, even at the surface of the nanocrystal (Figure 23a), and the distance between the adjacent lattice planes was typical for anatase (0.352 nm) and uniform throughout the whole nanocrystal (Figure 23b).⁹⁹ The black TiO₂ nanoparticle had a crystalline-disordered core-shell structure (Figure 23c),⁹⁹ and a structural deviation from the standard crystalline anatase was readily seen at the outer layer, where the straight lattice line was bent at the edge of the nanoparticle, and the plane distance was no longer uniform (Figure 23d).⁹⁹ Sometimes, electron diffraction (ED) has also been used to identify the amorphous structure from the crystalline phase.¹⁶¹ The nanoparticles containing only crystalline phase gave clear diffraction patterns made of diffraction dots or rings, but the nanoparticles having both crystalline and disordered phases produced cloudy diffraction patterns instead.¹⁶¹ Fast Fourier transform (FFT) of the HRTEM images is also a useful technique to reveal the crystalline and amorphous structures in black TiO₂ nanoparticles.¹¹⁹

X-ray diffraction (XRD) is a commonly used technique to analyze crystalline phase structures in black TiO₂ nanoparticles;^{75,102,106,119} however, it is a bulk analysis technique and only sensitive to the crystalline phase. In the XRD pattern, the diffraction peaks might shift to the higher diffraction angles in black TiO₂ nanoparticles, suggesting that the reduction of the interplanar distance of the crystalline phase.^{98,106} Raman

Chemical Society Reviews

spectroscopy has been used as a complimentary structural characterization to XRD in probe the amorphous or disordered structures in black TiO_2 nanoparticles.^{75,106} In the Raman spectroscopy, the scattering peaks became much weaker in intensity,^{75,106,121,124,125} broader in width,^{102,110,119,124,129,134,136,140} shifted to higher wavenumbers,^{101,110,113,119,124,129,140,141} and additional small vibrational modes were observed in black TiO_2 nanoparticles.^{75,121,134,147} Both XRD and Raman techniques provide the assemble information of the overall properties. Combining XRD with HRTEM, estimation of the volumes and percentages of disordered phase over the crystalline phase in black TiO_2 nanoparticles has also been attempted.⁹⁸

3.2 The existence of Ti³⁺ ions

Depending on the synthetic conditions of black TiO₂ nanomaterials, Ti³⁺ ions can be observed or not seen experimentally. In some black TiO₂ nanomaterials from hydrogen reduction or by hydrogen plasma, Ti³⁺ ions were not detected in hydrogenated black TiO₂ nanocrystals with conventional X-ray photoelectron spectroscopy (XPS),^{75,117-119} synchrotron X-ray absorption, emission and photoelectron spectroscopies,⁹⁹ and electron spin resonance spectroscopy (ESR).^{103,137,161,162} For example, Wang et al. found that suggested the absence of Ti³⁺ in the black hydrogenated TiO₂ nanowires treated at 450 °C based on the almost identical Ti 2*p* XPS spectra of pure and hydrogenated TiO₂ nanowires.¹¹⁸ However, in some reports, the existence of Ti³⁺ ions in the black TiO₂ nanomaterials was found from hydrogen treatment,^{106,113,115,119,121,125} chemical reduction,^{141,142,146} chemical oxidation,^{141,152} and electrochemical reduction.^{155,160} For

41

example, Ti^{3+} ions were detected with XPS in the black TiO_2 nanotubes obtained by electrochemical reduction¹⁵⁶ and from the oxidation of TiH_2 .¹⁵²

3.3 The existence of oxygen vacancies

Oxygen vacancies have been constantly reported in black TiO₂ nanomaterials from with hydrogen thermal treatment,^{106,111,116,118,121,163,164} electrochemical reduction,^{152,165} chemical reduction^{142,143,147} and chemical oxidation.¹⁶⁶ For example, oxygen vacancies were seen with ESR spectroscopy in the black TiO₂ nanoparticles from Al reduction,^{142,143} in the black TiO₂ nanotubes from thermal hydrogen treatment^{103,105} and electrochemical reduction.¹⁶⁰ However, in some cases, oxygen vacancies were not observed. For example, no oxygen vacancy was detected with ESR in the black TiO₂ nanoparticles prepared with thermal treatment in the studies by Xia, et al.^{161,162}

3.4. The existence of Ti-OH groups

In the black TiO₂ nanomaterials treated with hydrogen, the OH content changed after the hydrogenation treatment. A shoulder peak of Ti–OH in the O 1*s* XPS spectrum was found in hydrogenated black TiO₂ nanoparticles treated at 200 °C for 5 d,⁷⁵ in the hydrogenated TiO₂ nanowires¹¹⁸ and in the hydrogenated TiO₂ nanotubes with ultrahigh purity H₂ atmosphere at 200 – 600 °C for 1 h.^{115,117} However, no change of Ti–OH in the O 1s spectra was observed in the hydrogenated TiO₂ nanotube arrays treated at 450 °C for 1 h in a reducing 5% H₂ and 95% Ar atmosphere,¹²⁵ and a decreased OH signal was observed in the O 1*s* XPS spectrum, for the hydrogenated black TiO₂ nanoparticles treated at 450 °C for 4 h under 5 bar H₂.^{161,162}

In the Fourier transform infrared (FTIR) spectrum, the hydrogenated black TiO_2 nanomaterials showed the intensity change of the OH vibrational band.^{99,106,125,134,137,161,162} More surface OH groups were observed on hydrogenated TiO₂ nanosheets treated at 400 °C for 2 h under a 10 bar pure H₂ atmosphere.¹⁰⁶ Hydrogenated TiO₂ nanoparticles treated by hydrogen plasma for at 500 °C 4 - 8 h displayed extra peaks at 3685, 3670, and 3645 cm⁻¹ and at 3710 cm^{-1,137} In hydrogenated TiO₂ microspheres treated at 500 °C for 4 h under a flow of H₂ (5 % in N₂, 300 sccm), the intensity of the OH peak was much lower than pure TiO₂.¹³⁴ Less adsorbed water and/or hydroxyl groups was present in the hydrogenated TiO₂ nanotubes treated at 450 °C for 1 h in a reducing 5% H₂ and 95% Ar atmosphere based on the weaker bands at 3446 and 1645 cm⁻¹.¹²⁵ An decreased O–H intensity was observed for hydrogenated black TiO₂ treated at 200 C for 5 d,⁹⁹ and no OH absorption bands was found in hydrogenated TiO₂ nanocrystals treated at 450 °C for 4 h under 5 bar H₂.^{161,162}

In the ¹H nuclear magnetic resonance (NMR) spectra, a higher peak at 5.5 ppm from bridging hydroxyl groups was observed in the hydrogenated TiO₂ nanocrystals groups treated by hydrogen plasma at 500 °C for 4 - 8 h, and extra signals at 0.01 and 0.4 ppm from the internal and terminal hydroxyl.¹³⁷ A slightly broader peak at chemical shift +5.7 ppm with two additional small and narrow peaks at chemical shifts -0.03 and 0.73 ppm was seen in the hydrogenated black TiO₂ nanocrystals treated at 200 °C for 5 d.⁹⁹ However, much smaller OH signals were found for the hydrogenated TiO₂ nanocrystals heated at 450 °C for 4 h under 5 bar H₂.^{161,162}

3.5 The existence of Ti-H groups

The appearance of Ti-H groups was sometimes reported in hydrogenated black TiO_2 nanomaterials.^{106,117,134,137} A shoulder peak around 457.3 eV in the Ti 2p XPS spectrum due to the surface Ti–H bonds was found in hydrogenated TiO_2 nanowire microspheres treated at 500 °C for 4 h under a flow of H₂ (5 % in N₂, 300 sccm)¹³⁴ and in the hydrogenated TiO₂ nanocrystals treated by hydrogen plasma at 500 °C for 4 - 8 h.¹³⁷ Ti–H bonds were suggested to cover the surface of hydrogenated TiO₂ nanosheets obtained at 400 °C for 2 h under 10-bar pure H₂ atmosphere.¹⁰⁶ The formation of Ti–H bond was also suggested from the diffraction peak at approximately 59.28° in the X-ray diffraction (XRD) pattern of hydrogenated TiO₂ nanotubes treated in ultrahigh purity H₂ atmosphere at 200 – 600 °C for 1 h.¹¹⁷

3.6 The modifications of the valence band edge

Shift in the valence band was sometimes observed in the black TiO_2 nanomaterials.^{75,119,125,141,143,144,148,157,167} For example, a red shift of the valence band was observed from valence-band XPS spectrum for the hydrogenated TiO_2 nanoparticles treated at 200 C for 4 d under 20 bar H_2^{75} or heated at 500 °C for 1 h under hydrogen atmosphere,¹¹⁹ in the black brookite TiO_2 nanoparticles,¹⁴³ rutile TiO_2 nanoparticles,¹⁴⁴ and TiO_2 nanotubes¹⁴¹ prepared with the Al reduction method, in the black anatase TiO_2 nanotubes by NaBH₄ reduction,¹⁴⁸ in the black TiO_2 nanoparticles by electron beam treatment,¹⁶⁷ in the hydrogenated TiO_2 nanotubes treated at 450 °C for 1 h in a reducing 5% H_2 and 95% Ar^{125} and in the black TiO_2 nanotubes electrochemically hydrogenated.¹⁵⁷ Ti^{3+} ions was found not contribute to extra bandgap states of the hydrogenated TiO_2 nanocrystals,⁹⁹ as when Ti^{3+} showed up, the these midgap states disappeared.⁹⁹ On the

Chemical Society Reviews

other hand, similar valence-band structures was seen for pure and hydrogenated TiO_2 nanowires treated with ultrahigh purity hydrogen atmosphere (ambient pressure) at 200 – 550 °C for 3 h.¹¹⁸ Similar observations were reported on hydrogenated TiO_2 nanosheets as well.^{106,137}

Table 1 summarizes the various black TiO_2 nanomaterials with different method and their properties. It is clearly seen that the structural, optical, chemical and electronic properties largely depends on the preparation methods and conditions. Thus it is important in our practice to pay attention to the experimental procedures and details in order to obtain the desired properties that we are targeting.

3.7 Theoretical consideration of hydrogenated black TiO₂ nanomaterials

First-principles calculations by Aschauer and Selloni suggested that hydrogen migration from anatase (101) surface to subsurface sites had smaller kinetic barriers than desorption.¹⁷¹ The H adsorption energy at subsurface sites was about 0.4 eV smaller than at surface sites and was entropically favored.¹⁷¹ Atomic hydrogen was likely to diffuse into the subsurface and further into the bulk, especially at higher coverage.¹⁷¹ Subsurface vacancies were stable in reduced anatase and favorably accommodated hydrogen.¹⁷¹ Highly reduced anatase enhanced hydrogen incorporation in the bulk.¹⁷¹

Periodic density functional theory calculations by Raghunath, et al. suggested that both H atoms and H₂ molecules migrated into TiO₂ near subsurface layer from TiO₂ (101) surface were equally favorable.¹⁷² The dissociative adsorption of H₂ on the surface was the controlling step for H migration.¹⁷² The presence of H atoms on the surface and inside the subsurface layer promoted both H and H₂ penetration into the subsurface layer, and

45

prevented the escape of the H_2 from the cage.¹⁷² The H_2 molecule inside a cage readily dissociated and formed 2HO-species exothermically, which further transformed into H_2O and resulted in the formation of O-vacancies and surface disordering.¹⁷² The interstitial H, H_2 , and H_2O brought in density of states within the TiO₂ band gap and induced a shift of the band gap position notably towards the conduction band.¹⁷²

In the study by Chen, et al.,⁷⁵ the H atoms were suggested to bond to O and Ti atoms.⁷⁵ Two groups of midgap states were predicted at about 3.0 and 1.8 eV, with the higher-energy group made of Ti 3d orbitals, and the lower-energy group mixed of O 2p and Ti 3d orbitals.⁷⁵ The hydrogen 1s orbital mainly passivated the dangling bonds and stabilized the lattice disorders, which contributed to the midgap states.⁷⁵ In the DFT-PBE calculations by Lu et al., hydrogen atoms were chemically absorbed both on Ti_{5c} and O_{2c} atoms for (101), (001), and (100) surfaces by taking into account the synergistic effect of Ti–H and O–H bonds.¹⁶⁸ The hydrogenation-induced lattice distortions on (101) and (100) surfaces of nanoparticles enhanced the intraband coupling within the valence band, while the (001) surface was not largely affected.¹⁶⁸ The adtoms not only induced the lattice disorders but also interacted strongly with the O 2p and Ti 3d states, resulting in a considerable contribution to the midgap states.¹⁶⁸ The optical absorption was dramatically redshifted due to the midgap states and the photogenerated electron-hole separation was substantially promoted as a result of electron-hole flow between different facets of hydrogenated nanoparticles.¹⁶⁸

Liu, et al. later pointed out that hydrogenated black TiO₂ required not only hydrogen passivation of Ti and O dangling bonds on the surface.¹⁰⁰ The conduction band minimum (CBM) did not change upon the O distortion, redshifted upon the Ti-sublattice

Chemical Society Reviews

distortion; the valence band maximum (VBM) blueshifted on either case.¹⁰⁰ The little effect of the O distortion upon CBM was attributed to the nature of Ti 3d orbital featured CBM.¹⁰⁰ The lattice disorder was mainly due to the O distortion.¹⁰⁰ Hydrogenation played an important role in reducing the distortion energy in raising the VBM.^{75,100} The CBM electrons were not sensitive to local lattice distortions nor to H bonding induced changes.¹⁰⁰ The midgap states changed upon both lattice distortion and H bonding.¹⁰⁰ The lattice distortion caused by H in bulk anatase was not most stable and might release hydrogen from the lattice even at room temperature.¹⁰⁰

Pan, et al. found H-doping had different effects on the electronic properties of three TiO₂ polymorphs - anatase, rutile, and brookite.¹⁶⁹ Although the incorporation of hydrogen was important for n-type TiO₂ formation, interstitial hydrogen caused bandgap narrowing, but substitutional hydrogen did not reduced bandgap of anatase.¹⁶⁹ (H, N)-co-doping narrowed the bandgap of anatase and brookite TiO₂, but had little effect on rutile TiO₂.¹⁶⁹ Based on density functional–pseudopotential calculations by Sotoudeh et al., O/Ti termination was the most stable surface on anatase (001) TiO₂, the valence band comes from p-states of deep and surface O atoms and d-orbitals of surface Ti atoms, and the conduction band comes from the d-orbitals of deep Ti atoms.¹⁷² H doping injected electrons to clean (001) surface, created an empty mid-gap state below the conduction band and removed the mid-gap state in the (001) surface with O vacancy.¹⁷²

Deng et al. found that real-hydrogen–passivated (RH-passivated) passivation of the nanostructured semiconductors could either increase or decrease the band gap, depending on the ionicity of the nanocompounds.¹⁷³ For anatase TiO₂, occupied gap states from the Ti-H bond with H s and Ti s and d characters were created at about 0.7 eV above the host VBM and the effective band gap was reduced.¹⁷³ The position of occupied H-induced state (bonding cation-H state) near the VBM state was not affected much by the anion.¹⁷³ The first-principle calculations by Liu et al suggested that the absolute value of the O_2 adsorption energy was increased by H atoms on the anatase (101) surface or at subsurface sites.¹⁷⁴ The dissociation barriers of O_2 on an anatase surface were further decreased with two H atoms at the subsurface sites or with an H surface adatom and a subsurface atom.¹⁷⁴ After the dissociation, OH, H₂O, and O adatoms might form on the surface.¹⁷⁴

4. Application examples of black TiO₂ nanomaterials

4.1 Photocatalysis

Before the report of hydrogenated black TiO₂ nanoparticles, hydrogen thermal treatment on TiO₂ has already been shown in enhancing its photocatalytic activities. Harris and Schumacher found that hydrogen reduction at high temperatures reduced recombination centers and increased the lifetime of the holes in the bulk TiO₂.¹⁷⁵ The improved photoactivity was likely due to the presence of oxygen vacancies, Ti³⁺ species, and hydroxyl groups induced by this treatment.¹⁷⁵ Heller, et al. found by treating it in H₂ at 550 °C the photoactivity of rutile TiO₂ was enhanced due to the increased *E*_F and the energy barrier which pushed electrons away from the surface.¹⁷⁶ Liu, et al. reported that anatase TiO₂ nanoparticles treated with H₂ at 500 – 600 °C had enhanced performance in sulfosalicylic acid's photodecomposition.¹¹²

Chen, et al. found that the hydrogenated black TiO_2 nanoparticles obtained by treating at 200 °C for 5 d under 20 bar H₂ had much higher photocatalytic activities in

Chemical Society Reviews

decomposing organic pollutants (methylene blue and phenol) and generating H₂ from water/methanol solution.⁷⁵ Wang and Li, et al. reported that hydrogenated black TiO₂ nanowires treated under ultrahigh purity hydrogen atmosphere (ambient pressure) for 3 h at 200 – 550 °C displayed enhanced photoelectrochemical water-splitting performance.¹¹⁸ Zheng, et al. found that hydrogenated black anatase nanowire microspheres prepared at 500 °C for 4 h under a flow of H₂ (5 % in N₂, 300 sccm) improved enhanced photocatalytic activity in photodecomposition of 2,4-dichlorophenol in the visible-light region.¹³⁴ Wang and Xu, et al. reported that hydrogenated black TiO₂ nanosheets obtained at 400 °C for 2 h under 10-bar pure H₂ atmosphere had an enhanced photocatalytic activity in decomposing methylene blue.¹⁰⁶ Wang and Jiang, et al. produced black TiO₂ under hydrogen plasma yielded large improvement in photocatalytic decomposition of methyl-orange.¹³⁷ Danon, et al. reported that the hydrogenated TiO₂ nanotubes under a flow of 5% H₂ in Ar at atmospheric pressure at 350 °C for 3 h had better photocatalytic activity in removing acetaldehyde under visible light.¹²⁷ Yu et al. demonstrated that by tuning the hydrogenation conditions (under a H_2 gas flow (50 sccm) at atmospheric pressure in a quartz tube at 500 - 700 °C for various time), the photocatalytic activity of hydrogenated TiO₂ nanocrystals in decomposing methylene blue under UV light was flexibly controlled through the control of the bulk to surface defect distribution.¹¹³ Lu et al. showed hydrogenated TiO₂ nanocrystals by treating the commercial Degussa P25 under 35 bar hydrogen and room temperature up to 20 days, displayed improved photocatalytic activity in hydrogen generation.¹⁰² Hoang found hydrogenation and nitridation on TiO₂ nanowires improved the visible-light performance in photo-oxidation of water.¹³¹ However, Leshuk, et al. found that hydrogenated TiO₂ nanoparticles prepared at 200 °C under a 300 ± 5 psig pure H₂ gas environment for 5 days or at 400 – 500 °C for 102 h under a 10% H₂ + 90% Ar gas flow showed worse photocatalytic activities in decomposing methylene blue than pure TiO₂ nanocrystals.^{109,110}

Liu et al. compared the cocatalyst-free photocatalytic activities in generating hydrogen from water of hydrogenated TiO₂ nanotubes and nanorods treated under several conditions: (i) an anatase TiO₂ nanotube layer (air); (ii) this layer converted with Ar (Ar) or H₂/Ar (H₂/Ar); (iii) a high pressure H₂ treatment (20 bar, 500 °C for 1 h) (HP-H₂); and (iv) a high pressure H₂ treatment but mild heating (H₂, 20 bar, 200 °C for 5 d) (Sci ref).¹⁰³ They found that hydrogenated TiO₂ nanotubes from high pressure H₂ treatment had a high open circuit photocatalytic hydrogen production rate without the presence of a cocatalyst, in comparison to the nonactivity of those from atmospheric pressure H₂/Ar annealing and the hydrogenated rutile nanorods (Figure 24).¹⁰³ The high H₂ pressure annealing induced room-temperature stable, isolated Ti³⁺ defect-structure created in the anatase nanotubes.¹⁰³ They suggested that clearly an adequate H₂ treatment was needed to form these centers and the detailed experimental procedure seems to be crucial.¹⁰³ A considerable difference in reactivity existed on the hydrogenation conditions and the phase of the TiO₂ nanomaterials.¹⁰³

Figure 24. Photocatalytic H₂ production under open circuit conditions in methanol/water (50/50 vol %) with TiO₂ nanotubes and nanorods treated in different atmospheres under AM1.5 (100mW/cm²) illumination.¹⁰³ Air, heat treatment in air at 450 °C; Ar, heat treatment in pure argon at 500 °C; Ar/H₂, heat treatment in H₂/Ar (5 vol %) at 500 °C; HP-H₂, heat treatment in H₂ at 20 bar at 500 °C; Sci ref, heat treatment in H₂ at 20 bar at 200 °C for 5 days (following ref 72).¹⁰³ Reprinted with permission from ref 103. Copyright 2014, American Chemical Society.

Xu et al.¹⁵⁵ and Zhang et al.¹⁵⁶ reported that electrochemically reduced black TiO₂ nanotubes obtained with an electrochemical reduction method showed improved performance in photoelectrochemical water splitting. Li et al. showed the electrochemically reduced black anatase TiO₂ nanotubes with a largely improved photocatalytic activity in decomposing Rhodamine.¹⁵⁷

Wang et al. found that black anatase nanoparticles from Al reduction showed enhanced photocatalytic activity in decomposing methyl orange under both UV and visible-light irradiations.¹⁴⁰ More completely degradation of MO by Al-reduced TiO₂ suggests the high mineralization efficiency of black titania, revealing a improved photooxidation.¹⁴⁰ Cui et al. demonstrated that black anatase TiO₂ nanotubes from Al reduction had improved photoelectrochemical water-splitting performance.¹⁴¹ Yin et al. showed that gray anatase TiO₂ nanowires from Al reduction displayed higher photocatalytic activity in decomposing methyl orange under sunlight irradiation.¹⁴² Zhu et al. showed that black brookite nanoparticles from Al reduction had enhanced photocatalytic activities in decomposing methyl orange and methylene blue under sunlight.¹⁴³ Yang et al. showed the black rutile TiO₂ nanoparticles from Al reduction with improved photoelectrochemical water-splitting performance under both UV and visible-light irradiations (Figure 25).¹⁴⁴ Lin et al. found that the black P25 nanoparticles with non-metal dopants had increased photocatalytic activity in hydrogen generation under both UV and visible-light irradiations.¹⁴⁵

Figure 25. Photoelectrochemical properties of R'-TiO₂-S, R-TiO₂-S, TiO₂-S and R-TiO₂ electrodes: Chopped J-V curves (a) under simulated solar light illumination and (b) under visible-light illumination using three electrode setup (TiO₂ working, Pt counter, Ag/AgCl reference electrode, scan rate of 10 mV/s) in 1 M NaOH electrolyte (pH = 13.6); (c)

Chemical Society Reviews

photoconversion efficiency as a function of applied potential; (d) IPCE spectra in the region of 300-700 nm at 0.65 V_{RHE} ; Inset: IPCE spectra in the region of 420-700 nm.¹⁴⁴ Reprinted with permission from ref 144. Copyright 2013, American Chemical Society.

Zhao et al. reported that black rutile TiO₂ nanorods from Zn reduction had improved photocatalytic activity in producing hydrogen from water/methanol solution under both UV and visible-light irradiations.¹⁴⁶ Zou found gray TiO₂ nanoparticles by imidazole reduction improved photocatalytic activity in producing hydrogen from water/methanol solution under both UV and visible-light irradiations.¹⁴⁷ Kang showed enhanced photoelectrochemical performance of the black anatase TiO₂ nanotubes by NaBH₄ reduction.¹⁴⁸ Black TiO₂ nanoparticles from the oxidation of TiH₂ by H₂O₂ had enhanced photocatalytic activities in both methylene blue decomposition and hydrogen generation under visible-light irradiation by Liu et al.¹⁵¹ and Grabstanowicz et al.¹⁵²

Gallo et al. reported that Pt-Au nanoparticles supported on reduced anatase TiO₂ nanocrystals showed remarkable photocatalytic activity in generating hydrogen from water/ethanol or water/glycerol solutions under both UV and simulated sunlight irradiations.^{177,178} The Pt-Au nanoparticles were loaded on the TiO₂ nanoparticle surface with an impregnation method with (NH₄)₂PtCl₆ and HAuCl₄ solutions, followed by heating in flow O₂ gas at 200 °C for 1 h. The hydrogen reduction was conducted in flow H₂ gas at 250 or 500 °C for 1 h.^{177,178} The good photocatalytic activity was attributed to the presence of bimetallic Pt–Au nanoparticles, Ti³⁺ sites/O²⁻ vacancies in the bulk, for maximizing light absorption and feedstock activation.^{177,178}

The enhanced photocatalytic and photoelectrochemical activities of black TiO₂ nanomaterials have been frequently attributed to the existence of more oxygen vacancies, ^{118,140-148,151} Ti³⁺ ions, ^{140-145,151,153} surface Ti-OH groups, ^{75,118} surface Ti-H groups, ^{75,117,134} narrower bandgap, ¹³⁴ better charge separation¹⁴⁰⁻¹⁴⁵ and possibly the combination of these species. ^{140-145,151} These reasons have also been adopted for pure or doped TiO₂ nanomaterials as well. ¹⁷⁹⁻¹⁸⁶ For example, Wang attributed the enhanced photocatalytic activity of {001}-facets-dominated anatase TiO₂ nanosheets to the existence of oxygen vacancies and Ti³⁺ defects from the hydrothermal reaction. ¹⁷⁹ Pan et al. found TiO₂ nanoparticles with oxygen vacancies has been reported to spontaneously reduce gold or Pd on the surface and to have enhanced visible light photoactivity toward Rhodamine B (RhB) degradation or reduction of nitroaromatics. ^{180,181} Kong found that decreasing the relative concentration ratio of bulk defects to surface defects in TiO₂ nanocrystals significantly improved the separation efficiency of photogenerated electrons and holes and the photocatalytic efficiency. ¹⁸²

4.2 Photoelectrochemical sensor

Zhang et al. reported hydrogenated black TiO_2 nanorods as a photoelectrochemical sensor for organic compounds under visible light.¹¹⁸ The hydrogenated TiO_2 nanorods were obtained by treating TiO_2 nanorods in H₂/Ar flow (20:80 sccm) at 350 °C for 1 h under ambient pressure.¹¹⁸ The starting TiO_2 nanorods were prepared on a fluorine-doped tin oxide (FTO) glass slide by reacting titanium butoxide (0.48 mL) in HCl solution (40 mL 18.25 wt%) at 170 °C for 6 h.¹¹⁸ Under UV and visible light, the hydrogenated TiO_2 nanorods showed a highly sensitive and steady

photocurrent response on several organic compounds: glucose, malonic acid and potassium hydrogen phthalate (Figure 26), due to introduction of oxygen vacancy and mid-gap energy levels.¹¹⁸ The increase of the photocurrent was suggested mainly due to the improvement of electronic conductivity that resulted from the creation of mid-energy levels, rather than the enhancement in the UV and visible-light absorption after the hydrogenation process.¹¹⁸ The improved electrical conductivity was beneficial to the separation of electron–hole pairs and electron collection from the oxidation of water and organic compounds.¹¹⁸

Figure 26. (A) The voltammograms of TiO_2 nanorods and hydrogenated TiO_2 nanorods obtained at a scan rate of 5 mV/s under visible light irradiation, (B) Relationships between I_{net} and concentrations of various organic compounds. KHP: potassium hydrogen phthalate.¹¹⁸ Reprinted with permission from ref 118. Copyright 2014, Elsevier.

4.3 Catalysis

Barzan et al recently reported that reduced in hydrogen reduced TiO₂ displayed excellent catalytic activity in the conversion of ethylene to high density polyethylene (HDPE) under mild conditions (room temperature, low pressure, absence of any activator).¹²⁰ The hydrogenation reaction was conducted under pure hydrogen atmosphere (pressure of 200 mbar) at 500 °C for 1 h.¹²⁰ Upon H₂ reduction, a broad and featureless absorption appears throughout the whole visible, near infrared, and mid infrared regions due to the creation of shallow-trapped defect sites (Ti⁴⁻ⁿ and oxygen vacancies).¹²⁰ Their UV-visible and infrared spectroscopic studies of the reaction process suggested that ethylene polymerization occurred on the Ti⁴⁻ⁿ defect sites in the reduced TiO₂ nanoparticles.¹²⁰ The defects behaved as shallow-trap defects located in the band gap.¹²⁰ These results opened valuable new applications for TiO₂ nanomaterials as catalysts.¹²⁰

Zeng et al. reported that hydrogenated TiO_2 nanoparticles could decompose gaseous formaldehyde without light irradiation at room temperature.¹²⁸ On the other hand, pure TiO_2 nanoparticles did not show good activity in decompositing gaseous formaldehyde without light irradiation at room temperature.¹²⁸ The hydrogenation was carried out under a flow of H₂/Ar mixture at 300 °C for 2 h.¹²⁸ The oxygen vacancies induced by hydrogenation was believed to be responsible for the catalytic activities of the hydrogenated TiO₂ nanoparticles in the dark.¹²⁸

4.4 Lithium-ion rechargeable battery

TiO₂ has been suggested as a safer lithium-ion battery anode material over graphite, since the insertion/extraction of lithium proceeds within 1.5 - 1.8 V vs the Li⁺/Li redox couple in TiO₂.¹⁸⁷⁻¹⁹⁰ It has a theoretical capacity value of 335 mAhg⁻¹.^{187,188} Shin, et al. reported that hydrogenated black TiO₂ nanocrystals treated at 450 °C for 1–7 h under a 5% H₂/ 95% Ar gas flow displayed excellent rate performance for lithium storage.¹²³ The high performance was attributed to the well-balanced Li⁺/e⁻ diffusion in

the hydrogenated TiO_2 nanocrystals from the oxygen vacancies and increased electronic conductivity induced by the hydrogen reduction reaction.¹²³ Lu et al. reported that substantially improved high-rate performance was obtained by annealing anodized TiO₂ nanotubes or rutile nanowires at 450 °C for 1 h in a 5% H₂ and 95% Ar atmosphere (100 sccm flow rate) from the increase of electronic conductivity induced by a large number of oxygen vacancies produced from the hydrogenation treatment.¹²⁵ Shen, et al. found that by introducing Ti³⁺ through hydrogenation for higher electrical conductivity hydrogenated Li₄Ti₅O₁₂ nanowires treated at 500-700 °C for 1.5 h in 5% v/v H₂/Ar had high capacity (173 mAhg⁻¹ at C/5), excellent rate performance (121 mAhg⁻¹ at 30 C), and good stability.¹²⁶ Li, et al. found that hydrogenated mesoporous TiO₂ microspheres proceeded under ambient hydrogen pressure at 400 °C for 1 h showed twice the rate capability of mesoporous TiO₂ microspheres due to the combination of the short lithiumion diffusion path and the high electronic conductivity.¹¹⁴ Improved lithium battery performance in the hydrogenated TiO₂ nanocrystals was reported by Xia, et al. as well by heating TiO₂ nanoparticles at 200 °C for 5 d under 20 bar H₂.¹⁹¹ The suggested reasons for the improved performance was attributed to reduced charge diffusion resistance within the disordered TiO₂ lattice in the hydrogenated TiO₂ nanoparticles.¹⁹¹

Myung et al. found that nanostructured black TiO_2 had a superior performance with a capacity of 127 mAhg⁻¹ at 100 C (20 A g⁻¹) and approximately 86% retention after 100 cycles at 25 °C (Figure 27).¹³⁶ The black TiO_2 nanoparticles were obtained by annealing a yellow TiO_2 gel in Ar gas at 400 – 600 °C for 5 h.¹³⁶ The white TiO_2 nanoparticles were obtained by annealing the gel in air.¹³⁶ The TiO_2 gel was obtained by stirring high-purity $TiCl_4$ dropwise to a distilled water-ethanol mixture with HF and urea at 0 °C for 4 h, and then evaporating the solution slowly at 80 °C.¹³⁶ Yang et al. reported hydrogenated anatase TiO₂ nanoparticles prepared by a H₂ plasma treatment had a fast lithium storage performance due to the enhanced contribution of pseudocapacitive lithium storage on the particle surface, possibly from the combined effect of the disordered surface layers and Ti³⁺ species of H-TiO₂.¹³⁹

Figure 27. (A) Comparison of the continuous charge (Li^+ insertion) and discharge (Li^+ extraction) curves and (B) rate capability for the white and black anatase TiO₂ nanoparticles.¹³⁶ Reprinted with permission from ref 136. Copyright 2013, The Royal Society of Chemistry.

The suggested explanations for the enhanced performance as electrode materials in lithium-ion rechargeable batteries of the black TiO_2 nanomaterials included the creation of oxygen vacancies,^{123,125} the existence of Ti^{3+} ions,¹²⁶ the well-balanced $Li^+/e^$ diffusion in the hydrogenated TiO_2 nanocrystals,¹²³ the increased electronic conductivity,^{114,123,125,126} short lithium-ion diffusion path,¹¹⁴ reduced charge diffusion resistance,¹⁹¹ and pseudocapacitive lithium storage on the disordered particle surface.¹³⁶

4.5 Supercapacitor

Lu et al. reported that hydrogenated black TiO₂ nanotube arrays obtained by heating anodized TiO₂ nanotubes under hydrogen environment between 300 to 600 °C displayed improved performance as supercapacitors due to increased densities of carrier and hydroxyl groups on TiO₂ surface from the hydrogenation.¹¹⁵ When scanned at a rate of 100 mVs⁻¹, the hydrogenated TiO₂ nanotubes had a capacitance of 3.24 mF cm⁻², 40 times better than the air-annealed sample.¹¹⁵ They showed 68% capacitance retention when the scan rate increased from 10 to 1000 mVs⁻¹, and had a good long-term cyclic stability (96.9% capacitance retention after 10000 cycles).¹¹⁵ Li et al. also found that black anatase TiO₂ nanotubes from electrochemical reduction displayed much higher performance as a supercapacitor electrode, possibly due to their high conductivities.¹⁵⁷ In summary, the increased performance as electrode materials in supercapacitors of the black TiO₂ nanomaterials was suggested due to increased densities of charge carrier and hydroxyl groups on TiO₂ surface,¹¹⁵ and the higher electrical conductivity.¹⁵⁷

4.6 Fuel cell

Zhang, et al. reported that hydrogenated black TiO_2 nanotube obtained by annealing the anatase TiO_2 nanotubes in ultrahigh purity H₂ atmosphere at 200 – 600 °C for 1 h significantly improved fuel cells' performance and durability.¹¹⁷ Their electrical conductivity (1.7 mScm⁻¹) increased 10 times and the increased numbers of oxygen vacancies and hydroxyl groups from hydrogenation for uniformly depositing a greater number of Pt nanoparticles.¹¹⁷ The hydrogenation reduced the decrease in the electrochemical surface area.¹¹⁷ When used as anode in fuel-cell testing, they delivered a maximum power density of 500 mWcm⁻², and gave a specific power density of 2.68 kWgPt⁻¹ when loaded with Pt and used as the cathode.¹¹⁷ The increased performance as electrode materials in fuel cells of the hydrogenated TiO₂ nanotube was suggested due to the increased electrical conductivity, oxygen vacancies, surface hydroxyl groups, and more uniform deposited Pt nanoparticles.¹¹⁷

4.7 Field Emission

Hydrogenated black TiO₂ nanotube arrays treated under a continuous hydrogen (8 sccm) and argon (10 sccm) flux for 5 h at 400 – 600 °C displayed a dramatically improved performance in field emission due to the increased conductivity and decreased work function.¹²⁴ Hydrogenation treatment reduced the turn-on field from 18.23 to 1.75 V μ m⁻¹.¹²⁴ Black TiO₂ nanotube hydrogenated at 550 °C showed a low turn-on field, a high current density (4.0 mA cm⁻² at 4.50 V μ m⁻¹), and an excellent field emission stability over 480 min.¹²⁴ The substantially enhanced field emission properties was attributed to the a reduced work function and the improved conductivity.¹²⁴ Hydrogenation created oxygen vacancies as electron donors and increased the donor density of TiO₂.¹²⁴ The introduced oxygen vacancy states lifted the Fermi level and reduced the work function to decrease the field-penetration barrier at the surface resulting in easy electron emission.¹²⁴ Meanwhile, the oxygen vacancies from hydrogenation improved the electrical conductivity and charge mobility, and injected electrons transport easily to emission sites.¹²⁴

4.8 Microwave absorption

Xia, et al. showed that hydrogenated TiO₂ nanocrystals displayed excellent microwave absorption performance, although TiO₂ is traditionally a good microwave absorption material, due to its low absorption in the gigahertz region.^{163,164} Complex permittivity and permeability values are used to evaluate the microwave absorption properties.^{163,164} The real and imaginary part of permittivity, ε ' and ε '', are related to the stored and dissipated electrical energy within the medium. Their ratio, $tg\delta_{\epsilon} = \epsilon''/\epsilon'$, is called the dielectric dissipation factor, indicates the ratio of the lost electrical energy over stored.^{163,164} Similarly, the real and imaginary part of permeability, μ' and μ'' , are related to the stored and dissipated magnetic energy within the medium. Their ratio, $tg\delta_{\mu} = \mu''/\mu'$, is called the dielectric dissipation factor, indicates the ratio of the lost magnetic energy over stored.^{163,164} The hydrogenated TiO₂ nanocrystals/epoxy composites displayed larger ε values in the frequency range 1.0–18.0 GHz with the average value about 4.3 times of the pure TiO₂ nanocrystals.^{163,164} The ε " value (5.9 – 10.6) was around 70 larger than that of TiO₂ nanocrystals/epoxy composites (0.03-0.3), ^{163,164} and the tg δ_{ϵ} value was 15 times bigger.^{163,164} The μ ' and μ '' values were slightly changed.^{163,164} The hydrogenated TiO₂ nanoparticles had much stronger microwave absorption property than pristine TiO₂ nanoparticles.^{163,164} A material with a reflection loss (RL) value less than -30 is regarded as an excellent absorber.¹⁶⁴ Apparently, hydrogenated TiO₂ nanoparticles had excellent microwave absorption performance (Figure 28A).¹⁶⁴ Figure 28B shows the simulations of the power reflection ratio of the pristine and hydrogenated TiO₂ nanoparticles.¹⁶⁴ Apparently, pristine TiO₂ nanoparticles didn't display much microwave absorption, while

all the hydrogenated TiO₂ nanoparticles had 99.9% reflection loss in certain microwave frequency ranges.¹⁶⁴

Figure 28. (A) reflection loss and (B) power reflection ratio of pristine and hydrogenated TiO₂ nanocrystals with various rutile compositions.¹⁶⁴ Reprinted with permission from ref 164. Copyright 2014, Materials Research Society.

5. Summary and prospective

Various synthetic methods: hydrogen thermal treatment, hydrogen plasma, chemical reduction, chemical oxidation, and electrochemical reduction have been developed to make black TiO_2 nanomaterials with various sizes, shapes, and morphologies. These different synthetic methods and conditions directly determine the various properties and performances of black TiO_2 nanomaterials originated from different research groups and published literatures. Black TiO_2 nanomaterials apparently have demonstrated excellent optical, chemical and electronic properties. These modified properties have been explained with either structural or chemical alterations or both in the black TiO_2 nanomaterials compared to white TiO_2 nanomaterials, such as lattice disorder near the surface layer, oxygen vacancies, Ti^{3+} ions, Ti-OH and Ti-H groups. These

various explanations are the natural extensions from the difference in the synthetic approaches and chemistries involved for black TiO₂ nanomaterials. Black TiO₂ nanomaterials have shown superior performance in photocatalysis and lithium-ion battery over white TiO₂ nanomaterials, and have also opened new applications with promising prospect in supercapacitors, fuel cells, photoelectrochemical sensors, field emission electrodes, and microwave absorbers. However, their activities in the visible-light region are still far from satisfactory, although black TiO₂ nanomaterials have shown large capabilities in absorbing a large amount of sunlight and have been sometimes reported with visible-light photocatalytic and photoelectrochemical activities. Managing the amount and spatial distributions of the sources of the blackness in the black TiO₂ nanomaterials, such as surface lattice disorder, oxygen vacancies, Ti³⁺ ions, Ti-OH and Ti-H groups, may also provide new opportunities and higher performance. Other possible reasons include that the black color only tells us the optical bandgap or the difference of the CBM and VBM and there is likely a mismatch between the electronic structures of the black TiO₂ nanomaterials and the photocatalytic and photoelectrochemical reactions we target for. Thus adjusting these potential matches either from materials point of views or chemical reactions may provide new opportunities in efficiently utilize the large amount of light being absorbed by these black TiO₂ nanomaterials, especially in the visible-light region. Apparently, more efforts are needed from synthesis to property and application in order to finally improve the efficiency of black TiO₂ nanomaterials for practical applications in renewable energy, environment and others.

6. Acknowledgements

63

X. C. thanks the support from the College of Arts and Sciences, the University of Missouri – Kansas City and the University of Missouri Research Board. L. L. acknowledges the support of the 100 Talents Program of the Chinese Academy of Sciences. F. H. thanks the support from National Science Foundation of China (Grant Nos. 51125006, 91122034, 51121064).

7. References

- 1. A. Fujishima and K. Honda, 1972. Nature 238, 37.
- 2. A. J. Nozik Nature 1975, 257, 383.
- E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca and M. Grätzel *Nature* 1981, 289, 158.
- M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, *Chem. Rev.* 1995, 95, 69.
- 5. A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 1995, 95, 735.
- 6. U. Diebold, Surf. Sci. Rep. 2003, 48, 53.
- 7. X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010, 110, 6503.
- 8. X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891.
- 9. L. Liu and X. Chen, Chem. Rev., 2014, 114, 9890.
- C.-H. Lin, J.-H. Chao, Ch.-H. Liu, J.-C. Chang and F.-C. Wang, *Langmuir*, 2008, 24, 9907.
- 11. H.-L. Kuo, C.-Y. Kuo, C.-H. Liu, J.-H. Chao and C.-H. Lin, *Catal. Lett.* 2007, 113,
 7.

- C.-H. Lin, C.-H. Lee, J.-H. Chao, C.-Y. Kuo, Y.-C. Cheng, W.-N. Huang, H.-W. Chang, Y.-M. Huang and M.-K. Shih, *Catal Lett.* 2004, 98, 61.
- 13. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han and C. Li, *Chem. Rev.*, 2014, **114**, 9987.
- X. Chen, C. Li, M. Grätzel, R. Kostecki and S. S. Mao, *Chem. Soc. Rev.* 2012, 41, 7909.
- 15. X. Chen and C. Burda, J. Am. Chem. Soc., 2008, 130, 5018.
- 16. W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem. 1994, 98, 13669.
- 17. W. Choi, A. Termin and M. R. Hoffmann, Angew. Chem. 1994, 106, 1148.
- N. J. Peill, L. Bourne and M. R. Hoffmann, J. Photochem. Photobiol., A 1997, 108, 221.
- 19. S. T. Martin, C. L. Morrison and M. R. Hoffmann, J. Phys. Chem. 1994, 98, 13695.
- Y. Wang, Y. Hao, H. Cheng, H. Ma, B. Xu, W. Li and S. Cai, *J. Mater. Sci.* 1999, 34, 2773.
- H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, J. Synchrotron Radiat. 1999, 6, 451.
- Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li and S. Cai, J. Mater. Sci. 1999, 34, 3721.
- 23. A. Szabo and A. Urda, Prog. Catal. 2002, 11, 73.
- F. Coloma, F. Marquez, C. H. Rochester and J. A. Anderson, *Phys. Chem. Chem. Phys.* 2000, 2, 5320.
- 25. M. Anpo, Pure Appl. Chem. 2000, 72, 1265.
- 26. M. Anpo, Pure Appl. Chem. 2000, 72, 1787.
- 27. M. Anpo and M. Takeuchi, Int. J. Photoenergy 2001, 3, 89.

- M. Anpo, S. Kishiguchi, Y. Ichihashi, M. Takeuchi, H. Yamashita, K. Ikeue, B. Morin, A. Davidson and M. Che, *Res. Chem. Intermed.* 2001, 27, 459.
- 29. M. Anpo and M. Takeuchi, J. Catal. 2003, 216, 505.
- 30. C. Y. Wang, D. W. Bahnemann and J. K. Dohrmann, Chem. Commun. 2000, 1539.
- 31. W. Li, Y. Wang, H. Lin, S. I. Shah, C. P. Huang, D. J. Doren, S. A. Rykov, J. G. Chen and M. A. Barteau, *Appl. Phys. Lett.* 2003, 83, 4143.
- 32. T. Mikulas, Z. Fang, J. L. Gole, M. G. White and D. A. Dixon, *Chem. Phys. Lett.* 2012, **539–540**, 58.
- 33. B. Liu, H. M. Chen, C. Liu, S. C. Andrews, C. Hahn and P. Yang, J. Am. Chem. Soc. 2013, 135, 9995.
- 34. K. G. Roberts, M. Varela, S. Rashkeev, S. T. Pantelides, S. J. Pennycook and K. M. Krishnan, *Phys. Rev. B* 2008, **78**, 014409.
- 35. F. M. Dukes, E. Iuppa, B. Meyer and M. J. Shultz, *Langmuir* 2012, 28, 16933.
- 36. H. A. Hamedani, N. K. Allam, H. Garmestani and M. A. El-Sayed, J. Phys. Chem. C 2011, 115, 13480.
- 37. S. N. R. Inturi, T. Boningari, M. Suidan and P. G. Smirniotis, J. Phys. Chem. C 2014, 118, 231.
- R. Ghosh, Y. Hara, L. Alibabaei, K. Hanson, S. Rangan, R. Bartynski, T. J. Meyer and R. Lopez, ACS Appl. Mater. Interfaces 2012, 4, 4566.
- A. Ali, E. Yassitepe, I. Ruzybayev, S. I. Shah and A. S. Bhatti, *J. Appl. Phys.* 2012, 112, 113505.
- 40. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 2001, 293, 269.
- 41. S. U. M. Khan, M. Al-Shahry and W. B., Ingler, Jr. Science 2002, 297, 2243.

- 42. C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, *Nano Lett.* 2003, **3**, 1049.
- 43. X. Chen and C. Burda, J. Phys. Chem. B 2004, 108, 15446.
- 44. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, T. Sumita and K. Asai, *J. Appl. Phys.* 2003, 93, 5156.
- 45. T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett. 2002, 81, 454.
- 46. H. Irie, Y. Watanabe and K. Hashimoto, J. Phys. Chem. B 2003, 107, 5483.
- 47. T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist and S. E. Lindquist, *J. Phys. Chem. B* 2003, **107**, 5709.
- H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen and Y. Yan, *Chem. Mater.* 2004, 16, 846.
- D. Li, H. Haneda, S. Hishita, N. Ohashi and N. K. Labhsetwar, *J. Fluorine Chem.* 2005, **126**, 69.
- 50. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, *Appl. Catal. A* 2004, **265**, 115.
- 51. T. Lindgren, J. Lu, A. Hoel, C. G. Granqvist, G. R. Torres and S. E. Lindquist, Sol. Energy Mater. Sol. Cells 2004, 84, 145.
- 52. Y. Choi, T. Umebayashi and M. Yoshikawa, J. Mater. Sci. 2004, 39, 1837.
- D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita and N. Ohashi, *Chem. Phys. Lett.* 2005, **401**, 579.
- 54. C. Di Valentin, G. Pacchioni and A. Selloni, *Phys. Rev. B* 2004, **70**, 085116/1.
- 55. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, J. Phys. Chem. B 2005, 109, 11414.

- 56. C. Di Valentin, G. Pacchioni and A. Selloni, Chem. Mater. 2005, 17, 6656.
- 57. D. Li, H. Haneda, S. Hishita and N. Ohashi, Chem. Mater. 2005, 17, 2596.
- Y. Kuroda, T. Mori, K. Yagi, N. Makihata, Y. Kawahara, M. Nagao and S. Kittaka, Langmuir 2005, 21, 8026.
- 59. X. Chen, Y. Lou, A. C. S. Samia, C. Burda and J. L. Gole, *Adv. Funct. Mater.* 2005, **15**, 41.
- Z. Lin, A. Orlov, R. M. Lambert and M. C. Payne, J. Phys. Chem. B 2005, 109, 20948.
- J. Yuan, M. Chen, J. Shi and W. Shangguan, Int. J. Hydrogen Energy 2006, 31, 1326.
- S. Hoang, S. Guo, N. T. Hahn, A. J. Bard and C. B. Mullins, *Nano Lett.*, 2012, 12, 26.
- 63. V. Likodimos, C. Han, M. Pelaez, A. G. Kontos, G. Liu, D. Zhu, S. Liao, A. A. de la Cruz, K. O'Shea, P. S. M. Dunlop, J. A. Byrne, D. D. Dionysiou and P. Falaras, *Ind. Eng. Chem. Res.* 2013, **52**, 13957.
- G4. J. W.J. Hamilton, A. Byrne, P. S.M. Dunlop, D. D. Dionysiou, M. Pelaez, K. O'Shea, D. Synnott and S. C. Pillai, *J. Phys. Chem. C* 2014, **118**, 12206.
- G. Liu, C. Han, M. Pelaez, D. Zhu, S. Liao, V. Likodimos, A. G. Kontos, P. Falaras, D. D. Dionysiou, J. Mol. Catal. A 2013, 372, 58.
- 66. J. Wang, D. N. Tafen, J. P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc. 2009, 131, 12290.
- 67. Q. Zhang, T. Gao, J. M. Andino and Y. Li, Appl. Catal. B 2012, 123-124, 257.
- 68. J. Zhang, J. Xi and Z. Ji, J. Mater. Chem. 2012, 22, 17700.

- 69. H. Zhang, Y. Liang, X. Wu and H. Zheng, Mater. Res. Bull. 2012, 47, 2188.
- 70. X. Wu, S. Yin, Q. Dong, C. Guo, T. Kimura, J.-i. Matsushita and T. Sato, J. Phys. Chem. C, 2013, 117, 8345.
- C. Yan, W. Yi, H. Yuan, X. Wu and F. Li, *Environ. Prog. Sust. Energy* 2014, 33, 419–429.
- 72. M. Zhang, J. Wu, J. Hou and J. Yang, Sci. Adv. Mater. 2013, 5, 535.
- J. Jaćimović, R. Gaál, A. Magrez, L. Forró, M. Regmi and G. Eres, *Appl. Phys. Lett.* 2013, **102**, 172108.
- 74. Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J. N. Kondo, M. Hara and K. Domen, *J. Mater. Res.* 2004, **19**, 2100.
- 75. X. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science 2011, 331, 746.
- 76. Y. H. Hu, Angew. Chem. Int. Ed. 2012, 51, 12410
- 77. J. Qiu, J. Dawood and S. Zhang, Chin. Sci. Bull. 2014, 59, 2144.
- 78. J. Buha, J. Phys. D. 2012, 45, 385305.
- 79. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, *Nature*, 2008, **453**, 638.
- 80. A. Vittadini, M. Casarin and A. Selloni, Theor. Chem. Acc. 2007, 117, 663.
- C. Burda, X. Chen, R. Narayanan and M. A. El-Sayed, *Chem. Rev.* 2005, 105, 1025.
- 82. D. C. Cronemeyer and M. A. Gilleo, Phys. Rev. 1951, 82, 975.
- 83. D. C. Cronemeyer, Phys. Rev. 1952, 87, 876.
- 84. R. G. Breckenridge and W. R. Hosler, Phys. Rev. 1953, 91, 793.
- 85. D. C. Cronemeyer, Phys. Rev. 1959, 113, 1222.

- 86. J. H. Becker and W. R. Hosler, *Phys. Rev.* 1965, **137**, 1872.
- 87. W. J. Lo, Y. W. Chung and G. A. Somorjai, Surf. Sci. 1978, 71, 199.
- 88. V. E. Henrich and R. L. Kurtz, Phys. Rev. 1981, 23, 6280.
- 89. M. S. Lazarus and T. K. Sham, Chem. Phys. Lett. 1982, 92, 670.
- 90. J.-M. Pan, B. L. Maschhoff, U. Diebold and T. E. Madey, J. Vac. Sci. Technol. A 1992, 10, 2470.
- 91. P. Salvador, M. L. G. Godlez and F. Mdoz, J. Phys. Chem. 1992, 96, 10349.
- 92. Q. Zhong, J. M. Vohs and D. A. Bonnell, J. Am. Ceram. Soc. 1993, 76, 1137.
- 93. W. E. Wallace, Q. Zhong, J. Genzer, R. J. Composto and D. A. Bonnell, *J. Mater. Res.* 1993, 8, 1629.
- 94. R. R. Hasiguti and E. Yagi, Phys. Rev. B 1994, 49, 7251.
- 95. E. Yagi, R. R. Hasiguti and M. Aono, Phys. Rev. B 1996, 54, 7945.
- 96. T. Fujino, M. Katayama, K. Inudzuka, T. Okuno, K. Oura and T. Hirao, *Appl. Phys. Lett.* 2001, **79**, 2716.
- T. Sekiya, T. Yagisawa, N. Kamiya, D. Das Mulmi, S. Kurita, Y. Murakami and T. Kodaira, *J. Phys. Soc. Jpn.* 2004, **73**, 703.
- 98. T. Xia and X. Chen, J. Mater. Chem. A, 2013, 1, 2983.
- 99. X. Chen, L. Liu, Z. Liu, M. A. Marcus, W.-C. Wang, N. A. Oyler, M. E. Grass, B. Mao, P.-A. Glans, P. Y. Yu, J. Guo and S. S. Mao, *Sci. Rep.* 2013, **3**, 1510.
- 100. L. Liu, P. P. Yu, X. Chen, S. S. Mao, D. Z. Shen, *Phys. Rev. Lett.* 2013, **111**, 065505.
- 101. C. Sun, Y. Jia, X.-H. Yang, H.-G. Yang, X. Yao, G. Q. (Max) Lu, A. Selloni and S. C. Smith, J. Phys. Chem. C 2011, 115, 25590.

- 102. H. Lu, B. Zhao, R. Pan, J. Yao, J. Qiu, L. Luo and Y. Liu, *RSC Adv.*, 2014, 4, 1128.
- 103. N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Muller, E. Spiecker and P. Schmuki, *Nano Lett.* 2014, 14, 3309.
- 104. J. Qiu, S. Li, E. Gray, H. Liu, Q.-F. Gu, C. Sun, C. Lai, H. Zhao and S. Zhang, J. Phys. Chem. C 2014, 118, 8824.
- 105. J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, C. Sun, H. Zhao and S. Zhang, J. Mater. Chem. A 2014, 2, 6353.
- 106. W. Wang, Y. Ni, C. Lu and Z. Xu, RSC Adv. 2012, 2, 8286.
- 107. W. Wang, C. Lu, Y. Ni, M. Su, Z. Xu, Appl. Catal. B 2012, 127, 28.
- 108. W. Wang, Y. Ni, C. Lu and Z. Xu, Appl. Surf. Sci. 2014, 290, 125.
- 109. T. Leshuk, S. Linley and F. Gu, Can. J. Chem. Eng. 2013, 91, 799.
- 110. T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R. A. Varin and F. Gu, *ACS Appl. Mater. Interfaces* 2013, **5**, 1892.
- 111. J. E. Rekoske and M. A. Barteau, J. Phys. Chem. B 1997, 101, 1113.
- 112. H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu and X.H. Bao, *Chemosphere* 2003, 50, 39.
- 113. X. Yu, B. Kim and Y. K. Kim, ACS Catal. 2013, 3, 2479.
- 114. G. Li, Z. Zhang, H. Peng and K. Chen, RSC Adv. 2013, 3, 11507.
- 115. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, *Nano Lett.* 2012, 12, 1690.
- 116. S. Li, J. Qiu, M. Ling, F. Peng, B. Wood and S. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 11129.
- 117. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao and B. Yi, *ChemSusChem* 2013, **6**, 659.
- 118. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, *Nano Lett.* 2011, **11**, 3026.
- A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L.
 Bianchi, R. Psaro, and V. Dal Santo. J. Am. Chem. Soc. 2012, 134, 7600.
- 120. C. Barzan, E. Groppo, S. Bordiga and A. Zecchina, ACS Catal. 2014, 4, 986.
- 121. X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu and C. Pan, J. Phys. Chem. C 2012, 116, 22619.
- 122. Z. Liang, G. Zheng, W. Li, Z. W. Seh, H. Yao, K. Yan, D. Kong and Y. Cui, ACS Nano 2014, 8, 5249.
- 123. J.-Y. Shin, J. H. Joo, D. Samuelis and J. Maier, Chem. Mater. 2012, 24, 543.
- 124. W.-D. Zhu, C.-W. Wang, J.-B. Chen, D.-S. Li, F. Zhou and H.-L. Zhang, Nanotechnology 2012, 23, 455204.
- 125. Z. Lu, C.-T. Yip, L. Wang, H. Huang and L. Zhou, *ChemPlusChem* 2012, 77, 991.
- 126. L. Shen, E. Uchaker, X. Zhang and G. Cao, Adv. Mater. 2012, 24, 6502.
- 127. A. Danon, K. Bhattacharyya, B. K. Vijayan, J. Lu, D. J. Sauter, K. A. Gray, P. C. Stair and E. Weitz, ACS Catal. 2012, 2, 45.
- 128. S. Zhang, S. Zhang, B. Peng, H. Wang, H. Yu, H. Wang, F. Peng, *Electrochem. Commun.* 2014, **40**, 24.
- 129. L. Zeng, W. Song, M. Li, D. Zeng, C. Xie, Appl. Catal. B 2014, 147, 490.

- 130. J. Wang, L. Shen, P. Nie, G. Xu, B. Ding, S. Fang, H. Dou and X. Zhang, J. Mater. Chem. A 2014, 2, 9150.
- 131. S. Hoang, S. P. Berglund, N. T. Hahn, A. J. Bard and C. B. Mullins, J. Am. Chem. Soc. 2012, 134, 3659.
- 132. H. He, K. Yang, N. Wang, F. Luo and H. Chen, J. Appl. Phys. 2013, 114, 213505.
- 133. D. Wang, X. Zhang, P. Sun, S. Lu, L. Wang, C. Wang, Y. Liu, *Electrochim. Acta* 2014, **130**, 290.
- 134. Z. Zheng, B. Huang, J. Lu, Z. Wang, X. Qin, X. Zhang, Y. Dai and M.-H.Whangbo, *Chem. Commun.* 2012, 48, 5733.
- 135. Y. Zhu, D. Liu and M. Meng, Chem. Commun. 2014, 50, 6049.
- 136. S.-T. Myung, M. Kikuchi, C. S. Yoon, H. Yashiro, S.-J. Kim, Y.-K. Sun and B. Scrosati, *Energy Environ. Sci.* 2013, 6, 2609.
- 137. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie and M. Jiang, *Adv. Funct. Mater.* 2013, 23, 5444.
- 138. F. Teng, M. Li, C. Gao, G. Zhang, P. Zhang, Y. Wang, L. Chen, E. Xie, Appl. Catal. B 2014, 148–149, 339.
- 139. Y. Yan, B. Hao, D. Wang, G. Chen, E. Markweg, A. Albrecht and P. Schaaf, J. Mater. Chem. A 2013, 1, 14507.
- 140. Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie and M. Jiang, *Energy Environ. Sci.* 2013, 6, 3007.
- 141. H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu and F. Huang, J. Mater. Chem. A 2014, 2, 8612.

- 142. H. Yin, T. Lin, C. Yang, Z. Wang, G. Zhu, T. Xu, X. Xie, F. Huang and M. Jiang, *Chem. Eur. J.* 2013, **19**, 13313
- 143. G. Zhu T. Lin, X. Lu, W. Zhao, C. Yang, Z. Wang, H. Yin, Z. Liu, F. Huang and J. Lin, J. Mater. Chem. A 2013, 1, 9650.
- 144. C. Yang, Z. Wang, T. Lin, H. Yin, X. Lu, D. Wan, T. Xu, C. Zheng, J. Lin, F. Huang, X. Xie and M. Jiang, J. Am. Chem. Soc. 2013, 135, 17831.
- 145. T. Lin, C. Yang, Z. Wang, H. Yin, X. Lu, F. Huang, J. Lin, X. Xie and M. Jiang, Energy Environ. Sci. 2014, 7, 967.
- 146. Z. Zhao, H. Tan, H. Zhao, Y. Lv, L.-J. Zhou, Y. Song and Z. Sun, Chem. Commun. 2014, 50, 2755.
- 147. X. Zou, J. Liu, J. Su, F. Zuo, J. Chen and P. Feng, Chem. Eur. J. 2013, 19, 2866.
- 148. Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu and J. Ye, J. Mater. Chem. A 2013, 1, 5766.
- 149. S. Tominaka, Y. Tsujimoto, Y. Matsushita and K. Yamaura, *Angew. Chem. Int. Ed.* 2011, **50**, 7418.
- 150. S. Tominaka, Inorg. Chem. 2012, 51, 10136.
- 151. X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang and Y. Dai, *Nanoscale* 2013, 5, 1870.
- 152. L. R. Grabstanowicz, S. Gao, T. Li, R. M. Rickard, T. Rajh, D.-J. Liu and T. Xu, *Inorg. Chem.* 2013, **52**, 3884.
- 153. Z. Pei, L. Ding, H. Lin, S. Weng, Z. Zheng, Y. Hou and P. Liu, J. Mater. Chem. A 2013, 1, 10099.
- 154. T. Kako, N. Umezawa, K. Xie and J. Ye, J. Mater. Sci. 2013, 48, 108.

- 155. C. Xu, Y. Song, L. Lu, C. Cheng, D. Liu, X. Fang, X. Chen, X. Zhu and D. Li Nanoscale Res. Lett. 2013, 8, 391.
- 156. Z. Zhang, M. N. Hedhili, H. Zhu and P. Wang, *Phys. Chem. Chem. Phys.* 2013, 15, 15637.
- 157. H. Li, Z. Chen, C. K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan and Y. Y. Li, *J. Mater. Chem. A* 2014, **2**, 229.
- 158. H. Zhou and Y. Zhang, J. Phys. Chem. C 2014, 118, 5626.
- 159. L. Zheng, H. Cheng, F. Liang, S. Shu, C. K. Tsang, H. Li, S.-T. Lee and Y. Y. Li, J. Phys. Chem. C 2012, 116, 5509.
- 160. J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei and W. Gao, ACS Appl. Mater. Interfaces 2014, 6, 1385.
- 161. T. Xia, C. Zhang, N. A. Oyler and X. Chen, Adv. Mater. 2013, 25, 6905.
- 162. T. Xia, C. Zhang, N. A. Oyler and X. Chen, J. Mater. Res. 2014, 29, 2198.
- 163. M. M. Khader, F. M. N. Kheiri, B. E. Elanadouli and B. G. Ateya, J. Phys. Chem. 1993, 97, 6074.
- 164. H. Haerudin, S. Bertel and R. Kramer, J. Chem. Soc., Faraday Trans. 1998, 94, 1481.
- 165. Pesci, F. M.; Wang, G. M.; Klug, D. R.; Li, Y.; Cowan, A. J. J. Phys. Chem. C 2013, 117, 25837.
- 166. Z. Pei, L. Ding, H. Lin, S. Weng, Z. Zheng, Y. Hou and P. Liu, J. Mater. Chem. A 2013, 1, 10099.
- 167. M. M. Khan, S. A. Ansari, D. Pradhan, M. O. Ansari, D. H. Han, J. Lee and M. H. Cho, *J. Mater. Chem. A* 2014, **2**, 637.

- 168. J. Lu, Y. Dai, H. Jin and B. Huang, Phys. Chem. Chem. Phys. 2011, 13, 18063.
- 169. H. Pan, Y.-W. Zhang, V. B. Shenoy and H. Gao, J. Phys. Chem. C 2011, 115, 12224.
- 170. U. Aschauer and A. Selloni, Phys. Chem. Chem. Phys. 2012, 14, 16595.
- 171. P. Raghunath, W. F. Huang and M. C. Lin, J. Chem. Phys. 2013, 138, 154705.
- 172. M. Sotoudeh, S. J. Hashemifar, M. Abbasnejad and M. R. Mohammadizadeh, *AIP Adv.* 2014, **4**, 027129.
- 173. H.-X. Deng, S.-S. Li, J. Li and S.-H. Wei, Phys. Rev. 2012, 85, 195328.
- 174. L. Liu, Q. Liu, Y. Zheng, Z. Wang, C. Pan and W. Xiao, J. Phys. Chem. C 2014, 118, 3471.
- 175. L. A. Harris and R. Schumacher, J. Electrochem. Soc. 1980, 127, 1186.
- 176. A. Heller, Y. Degani, D. W. Johnson and P. K. Gallagher, *J. Phys. Chem.* 1987, 91, 5987.
- 177. A. Gallo, M. Marelli, R. Psaro, V. Gombac, T. Montini, P. Fornasiero, R. Pievo and V. Dal Santo, *Green Chem.* 2012, **14**, 330.
- 178. A. Gallo, T. Montini, M. Marelli, A. Minguzzi, V. Gombac, R. Psaro, P. Fornasiero and V. Dal Santo, *ChemSusChem* 2012, 5, 1800.
- 179. W. Wang, C.-H. Lu, Y.-R. Ni, J.-B. Song and Z.-Z. Xu, *Catal. Commun.* 2012, 22, 19.
- 180. X. Pan and Y.-J. Xu, Appl. Catal. A: General 2013, 459, 34.
- 181. X. Pan and Y.-J. Xu, ACS Appl. Mater. Interfaces 2014, 6, 1879.
- 182. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng and X. Zhao, J. Am. Chem. Soc. 2011, 133, 16414.

- 183. J. N. Schrauben, R. Hayoun, C. N. Valdez, M. Braten, L. Fridley and J. M. Mayer, *Science* 2012, **336**, 1298.
- 184. L. Liu and Y. Li, Aerosol Air Quality Res. 2014, 14, 453.
- 185. P. Szymanski and M. A. El-Sayed, Theor. Chem. Acc. 2012, 131, 1202.
- 186. H. Park, Y. Park, W. Kim and W. Choi, J. Photochem. Photobiol. C 2013, 15, 1.
- 187. T. Xia, Y. Zhang, J. Murowchick and X. Chen, Catal. Today 2014, 225, 2.
- 188. T. Xia, W. Zhang, J. Murowchick, G. Liu and X. Chen, *Nano Lett.* 2013, 13, 5289.
- T. Xia, W. Zhang, J. Murowchick, G. Liu and X. Chen, *Adv. Energy Mater.* 2013, 3, 1516.
- 190. Z. Wang, Y. Zhang, T. Xia, J. Murowchick, G. Liu and X. Chen, *Energy Technol.* 2014, 2, 376.
- 191. T. Xia, W. Zhang, Z. Wang, Y. Zhang, X. Song, J. Murowchick, V. Battaglia, G. Liu and X. Chen, *Nano Energy*, 2014, 6, 109.

Starting TiO ₂	Reaction conditions	Color	Core/shell structure	Ti ³⁺	Oxygen vacancies	Ti-OH	Ti-H	Shift of valence band	Electrical conductivity	Ref. no.
Rutile single crystal	600 °C in H ₂	Blue	N/S	N/S	\checkmark	N/S	N/S	N/S	\uparrow	82,83
Rutile single crystal	600 – 900 °C in H ₂ , 2.5 – 15 min	Blue to opaque	N/S	\checkmark	\checkmark	N/S	N/S	N/S	\uparrow	84
Rutile single crystal	600 – 800 °C in H ₂ , 2.5 – 15 min	N/S	N/S	\checkmark	\checkmark	N/S	N/S	N/S	\uparrow	85
Anatase nanocrystals	200 °C in 20 bar H ₂ , 5 d	Black		×	×	←	\checkmark	\checkmark	N/S	75
Anatase (001) nanocrystals	450 °C in 7 MPa H ₂ , 24 h	Blue	×	N/S	N/S	\checkmark	N/S	N/S	N/S	101
Anatase (101) nanocrystals	450 °C in 7 MPa H ₂ , 24 h	Black	×	N/S	N/S	\checkmark	N/S	N/S	N/S	101
Anatase-rutile P25 nanocrystals	RT in 35 bar H ₂ , 20 d	Black	\checkmark	\checkmark	N/S	\rightarrow	N/S	N/S	N/S	102
Anatase nanotubes	500 °C in H ₂ /Ar flow, 1 h	Black	×	\checkmark	\checkmark	\checkmark	N/S	N/S	↑	103
Anatase nanotubes	500 °C in 20 bar H _{2,} 1 h	Blue	×	\checkmark	\checkmark	\checkmark	N/S	N/S	↑	103
Rutile nanocrystals	450 °C in 40 bar H ₂ , 1 h	Blue to gray	N/S	\checkmark	\checkmark	N/S	N/S	N/S	↑	104
Anatase (001) nanosheets	$200 - 500 ^{\circ}\text{C}$ in 10 bar H ₂ , 2 h	Dark blue, gray	N/S	\checkmark	\checkmark	\checkmark	\checkmark	×	N/S	106- 108
Anatase	200 °C in 300	Black	N/S	N/S	N/S	N/S	N/S	N/S	N/S	109

Table 1. Properties of black TiO₂ nanomaterials

nanocrystals	psi H _{2,} 5 d or 400 –500 °C,									
	24 – 102 h									
SiO ₂ /TiO ₂ core/shell nanocrystals	250 – 450 °C in 20 bar H ₂ , 24 h	Black	N/S	×	\checkmark	\checkmark		×	N/S	110
Anatase nanoparticles	20 – 700 °C in H ₂ flow, 2 h	N/S	N/S	\checkmark	\checkmark	N/S	N/S	N/S	N/S	112
Anatase (001) nanosheets	500 – 700 °C in H ₂ flow, 0.5 – 10 h	Blue to gray	N/S	\checkmark	\checkmark	N/S		N/S	N/S	113
Anatase microspheres	400 °C in ambient pressure H ₂ , 1 h	Gray	N/S	\checkmark	\checkmark	N/S	N/S	N/S	Ţ	114
Anatase nanotubes	300 – 600 °C in ambient pressure H ₂ , 1 h	N/S	N/S	\checkmark	\checkmark	↑	N/S	N/S	↑	115
Anatase nanotubes	450 °C in ambient pressure H ₂ , 2 h	N/S	N/S	×	\checkmark	Ŷ	N/S	N/S	1	116
Anatase nanotubes	200 – 600 °C in ambient pressure H ₂ , 1 h	N/S	N/S	×	\checkmark	Ŷ	N/S	N/S	1	117
Rutile nanowires	200 – 550 °C in ambient pressure H ₂ , 3 h	Yellow, green to black	N/S	×	\checkmark	↑	×	×	1	118
Amorphous nanoparticles	500 °C in H ₂ flow, 1 h	Black	\checkmark	\checkmark	\checkmark	↑	×	\checkmark	N/S	119
Anatase-rutile P25	500 °C in 200 mbar H ₂ , 1 h	Blue	×	\checkmark	N/S	N/S	×	N/S	N/S	120

Page	80	of	83
------	----	----	----

nanocrystals										
Anatase-rutile P25 nanocrystals	400 °C in ambient pressure H ₂ , 10 h	Gray	\checkmark	\checkmark	\checkmark	N/S	N/S	N/S	N/S	121
Anatase-rutile opals	500 °C in 80 Torr H ₂ , 10 h	Darker	N/S	\checkmark	\checkmark	N/S	N/S	N/S	\uparrow	122
Anatase nanocrystals	450 °C in 5% H ₂ -95% Ar flow, 1-7 h	Yellow to dark yellow	N/S	N/S	\checkmark	N/S	N/S	N/S	↑	123
Anatase nanotubes	450 °C in H ₂ (8 sccum)-Ar (10 sccm) flow, 5 h	N/S	N/S	\checkmark	\checkmark	N/S	N/S	N/S	1	124
Anatase nanotubes	450 °C in 5% H ₂ -95% Ar flow, 1 h	Black	×	\checkmark	\checkmark	\rightarrow	N/S	×	↑	125
Titanate nanowires	500 - 700 °C in 5% H ₂ v/v Ar, 1.5 h	N/S	\checkmark	\checkmark	N/S	N/S	N/S	N/S	1	126
Titanate nanotubes	350 °C in 5% H ₂ in Ar, 3 h	Blue, black	×	×	N/S	N/S	N/S	N/S	N/S	127
Rutile nanorods	350 °C in H ₂ (20 sccm) Ar (80 sccm) flow, 3 h	Gray	N/S	\checkmark	\checkmark	N/S	N/S	N/S	Ŷ	128
Anatase nanoparticles	300 °C in H ₂ /Ar flow, 2 h	N/S		\checkmark	\checkmark	\checkmark	N/S	N/S	N/S	129
Anatase-RGO nanoparticles	450 °C in 5% H ₂ /95% Ar flow, 4 h	N/S	N/S	\checkmark	N/S	N/S	N/S	N/S	1	130

Anatase nanoparticles	350 °C in 6% H ₂ /94% N ₂ flow, 2 h	Yellow	N/S	N/S	N/S	N/S	N/S	N/S	1	132
Rutile nanorods	400 °C in 10% H ₂ /90% N ₂ , 30 min	Gray	\checkmark	N/S		N/S	N/S	N/S	1	133
Anatase nanowire microspheres	500 °C in 5% H ₂ in N ₂ flow (300 sccm), 4 h	Dark brown	\checkmark	\checkmark	N/S	\downarrow	\checkmark	N/S	N/S	1341
Anatase-rutile P25/Pt	200 – 700 °C in 8% H ₂ in N ₂ , 4 h	×	\checkmark	×	\checkmark	↑	×	N/S	N/S	135
Amorphous gel	200, 300, 400 – 600 °C in Ar 5 h	Dark yellow, green, black	N/S	\checkmark	\checkmark	N/S	N/S	N/S	1	136
Anatase-rutile P25 nanoparticles	500 °C in H ₂ plasma (200 W) 4 - 8 h	Black	\checkmark	×		↑	\checkmark	×	N/S	137
Anatase nanotubes, nanosheets	350 - 500 °C in H ₂ plasma 3 h	Black	\checkmark	\checkmark	\checkmark	N/S	\checkmark	N/S	N/S	138
Anatase nanoparticles	390 °C in H ₂ plasma (3000 W), 50 sccm H ₂ flow, 3 h	Black	\checkmark	\checkmark	\checkmark	\checkmark	×	N/S	1	139
Anatase nanoparticles	300 - 500 °C by Al (800 °C) reduction 6 - 20 h	Black	\checkmark	\checkmark	\checkmark	N/S	N/S	×	N/S	140

Page	82	of	83
------	----	----	----

Anatase nanotubes	500 °C by Al (850 °C) reduction 4 h	Black		\checkmark		N/S	N/S	\checkmark	¢	141
Anatase nanowires	200 – 900 °C by Al (800 °C) reduction 4 h	Gray		\checkmark		N/S	N/S	N/S	N/S	142
Brookite nanoparticles	300 – 600 °C by Al (800 °C) reduction 4 h	Black	\checkmark	\checkmark	\checkmark	N/S	N/S	\checkmark	N/S	143
Anatase, rutile S-doped nanoparticles	500 °C by Al (800 °C) reduction 4 h	Black	\checkmark	\checkmark	\checkmark	N/S	N/S	\checkmark	N/S	144
Anatase-rutile P25 H, N, S, I-doped nanoparticles	500 °C by Al (800 °C) reduction 4 h	Black	\checkmark		\checkmark	N/S	N/S	N/S	N/S	145
Rutile nanorods	180 °C TiCl ₃ (1 mL, 15-20%) in IPA with Zn (0.5 – 2.5 mmol) 6 h	Gray to dark blue	×	\checkmark	\checkmark	N/S	N/S	N/S	N/S	146
Amorphous precursor	180 °C Imidazole, HCl 6 h	Gray	N/S	×	\checkmark	N/S	N/S	N/S	N/S	147
Anatase nanotubes	RT 0.1 M NaBH ₄ 10 – 60 min	Gray	N/S	\checkmark	\checkmark	×	×	\checkmark	N/S	148
Rutile nanoparticles	180 °C CaH ₂ 10 - 15 d	Black	×	\checkmark			N/S	N/S	1	149, 150
TiH ₂ powders	180 °C H ₂ O ₂	Blue	N/S		\checkmark	×	×	N/S	N/S	151

	(25wt%) 20 -27 h									
TiH ₂ powders	RT H ₂ O ₂ 23 h + 180 °C 16 h + 630 °C Ar 3 h	Black	×	\checkmark	×	×	×	N/S	N/S	152
TiO powders	160 °C in HCl (3 M) 24 h	Gray	×	\checkmark	\checkmark	N/S	N/S	N/S	N/S	153
Ti ₂ O ₃ powders	550 – 900 °C 3 h	Grayish green, yellow	×	\checkmark	\checkmark	N/S	N/S	N/S	N/S	154
Anatase nanotubes	5 V in 0.5 M Na ₂ SO ₄ 5 – 40 s	Blue black	N/S	N/S	\checkmark	N/S	N/S	N/S	N/S	155
Anatase nanotubes	0.4 V in 1 M Na ₂ SO ₄ 30 min	Dark blue	N/S	\checkmark	N/S	N/S	N/S	N/S	N/S	156
Anatase nanotubes	40 V in EG 0.27 wt% NH ₄ F 200 s	Black	N/S	×	\checkmark	\checkmark	×	\checkmark	1	157
Anatase nanotubes	20 V in EG 2 h	Black	N/S	\checkmark	\checkmark	\checkmark	×	N/S	Ť	158
Anatase nanotubes	1.65 V5 – 30 s	Black	N/S	\checkmark	N/S	N/S	N/S	N/S	N/S	159
Anatase nanotubes	450 °C 1 h	Black		×		\checkmark	N/S	N/S	N/S	160

Notes: N/S: not studied; $\sqrt{:}$ yes; \times : no; \uparrow : increase; \downarrow : decrease; RT: room temperature; RGO: reduced graphene oxide; EG: ethylene glycol; IPA: isopropanol.