Chemical Society Reviews

Chem Soc Rev

Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions

Journal:	Chemical Society Reviews
Manuscript ID:	CS-REV-08-2014-000285.R1
Article Type:	Review Article
Date Submitted by the Author:	30-Sep-2014
Complete List of Authors:	Peng, Xiaojun; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian University of Technology Zhu, Hao; Dalian University of Technology, State Key Laboratory of Fine Chemicals Fan, Jiangli; Dalian University of Technology, State Key Laboratory of Fine Chemicals Wang, Benhua; Dalian University of Technology, State Key Laboratory of Fine Chemicals

SCHOLARONE[™] Manuscripts Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

ARTICLE TYPE

Fluorescent, MRI, and colorimetric chemical sensors for the first-row dblock metal ions

Hao Zhu,^a Jiangli Fan, *^a Benhua Wang,^a and Xiaojun Peng*^a

Received (in XXX, XXX) Xth XXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

Transition metals (d-blocks) are recognized as playing critical roles in biology, and they most often act as cofactors in diverse enzymes; however, improper regulation of transition metal stores is also connected to serious disorders. Therefore, the monitoring and imaging of transition metals are significant for biological research as well as clinical diagnosis. In this article, efforts have been made to review the chemical

¹⁰ sensors that have been developed for the detection of the first-row d-block metals (except Cu and Zn): Cr, Mn, Fe, Co, and Ni. We focus on the development of fluorescent sensors (fall into three classes: "turnoff", "turn-on", and ratiometric), colorimetric sensors, and responsive MRI contrast agents for these transition metals (242 references). Future work will be likely to fill in the blanks: 1) sensors for Sc, Ti, and V; 2) MRI sensors for Cr, Mn, Co, Ni; 3) ratiometric fluorescent sensors for Cr⁶⁺, Mn²⁺, and Ni²⁺, ¹⁵ explore new ways of sensing Fe³⁺ or Cr³⁺ without the proton interference, as well as extend applications

of MRI sensors to living systems.

1. Introduction

Metals are indispensable for life, as they are involved in many fundamental biological processes, including osmotic regulation, ²⁰ catalysis, metabolism, biomineralization, and signalling¹. The important metals in living organisms fall into two classes: the transition metals (e. g. Fe, Zn, Cu, Mn, Co, Ni, Mo, V, and Se) and the alkali and alkaline earth metals (e. g. Na, K, Ca, and Mg)². The transition metals are present at much lower levels and

- ²⁵ often referred to as trace elements¹. Because of their electronic structures (effective electrophiles), the transition metals most often act as cofactors in diverse enzymes², such as cytochrome oxidase, histidine ammonia-lyase, and glutamate mutase³. In the most cases, the metal in a metalloenzyme serves as a redox
- ³⁰ reagent. For example, catalase, a heme-iron-containing enzyme, catalyzes the breakdown of hydrogen peroxide, in which the Fe²⁺ acts as an electron exchanger and is reversibly oxidized and reduced³. On the other hand, misregulation of the quantity of these transition metals is connected to acute and long-term
- ³⁵ diseases, including heart disease, cancer and neurodegeneration⁴. Therefore, the assessment and understanding of metal distribution in living systems could be crucial to give more insight into metal homeostasis, as well as into its related diseases⁴.

Chemical sensors are generally understood to be molecular 40 devices that transform chemical information into analytically useful signals, such as electrical, electronic, magnetic, or optical signals⁵. A typical chemical sensor contains a receptor (the recognition site) linked to the signal source, such as a fluorophore, chromophore, or MRI contrast agent. Analyte

⁴⁵ recognition (binding or reacting) produces a change in the sensor

properties (fluorescence, absorption, relaxivity et al.). For sensing metal ions, a small change in the receptor may cause a great difference in the selectivity⁶ and sensing mechanism⁷. Fluorescent sensors have been developed to be a useful tool to 50 sense in vitro and in vivo biologically important species including metal ions because of their specificity and sensitivity monitoring with fast response time⁸. Once the analyte is recognized by the receptor, the fluorescence signal can be observed in the form of quenching, enhancement or shift in the fluorescence maxima due 55 to either electron transfer (eT), charge transfer (CT) or energy transfer (ET) processes⁹⁻¹⁰. Colorimetric sensors have also attracted much attention by which the detection of analytes can be carried out by the naked eye¹¹. It allows on-site and real-time detection in an uncomplicated and inexpensive manner, offering 60 gualitative and quantitative information¹². In addition, MRI is a particularly powerful, clinically-used technique (since early 1980s) for molecular imaging¹³. The MRI contrast agents, Gd³⁺ complexes in the majority of cases, accelerate the relaxation of the surrounding water protons, which enhances the intrinsic 65 contrast and thus the anatomical resolution of the MRI14. In recent years, there has been continuous interest in the development of responsive contrast agents that can report species of interest in living systems4, 13, 15.

In this review, we focus on the development of fluorescent ⁷⁰ sensors, colorimetric sensors and responsive MRI contrast agents for the first-row d-block metals (except Cu and Zn): Cr, Mn, Fe, Co, and Ni. We note that Sc, Ti, and V not covered are also worthy of further investigation. The fluorescent sensors are categorized into three types: 1) "turn-off", 2) "turn-on", 3) ⁷⁵ ratiometric, which is, respectively, quenched, enhanced and shifted upon recognition of the target analyte. Given that molecular and supramolecular fluorescent sensors for the detection of Fe^{3+} have been summarized by Sahoo *et al*¹⁰ in 2012, our attention to the fluorescent Fe^{3+} sensors is given to contributions appearing in the 2012–2014 time period.

5 2. Chromium

Chromium, in the trivalent form (Cr^{3^+}) , is an important ingredient of a balanced human and animal diet¹⁶, with a recommended daily intake 50–200 µg for adults¹⁷. The mechanism by which Cr^{3^+} affects human metabolism is based on ¹⁰ modulation of the action of insulin through glucose tolerance factors (GTF), thereby activating certain enzymes and stabilizing proteins and nucleic acids¹⁸. Chromium deficiency can increase the risk factors associated with diabetes, cardiovascular diseases, and nervous system disorders¹⁹. At elevated levels Cr^{3^+} can bind ¹⁵ to DNA negatively affecting the cellular structures and damaging the cellular components that may even lead to mutation and cancer²⁰. Cr^{3^+} can be oxidized to the more toxic species, hexavalent chromium (Cr^{6^+}) , which can penetrate cell membranes

and may cause death to animals and humans if ingested in large ²⁰ doses by oxidizing DNA and some proteins²¹.

2.1 Cr(III) sensors

Cr³⁺ is known to hydrolyze in water, forming its corresponding hydrates and hydroxides and releasing protons²². The pH of water can drop to around 4.53 when 500 μM Cr³⁺ is added²³. While the ²⁵ hydrolysis of Cr³⁺ can be effectively inhibited in a buffer solution²³. The majority of Cr³⁺ sensors, such as the ones based on photoinduced electron transfer (PET) or rhodamine are also sensitive to the proton. Therefore, it is better for Cr³⁺ sensors to work in a buffered aqueous solution, and testing the pH effect on ³⁰ the sensors' properties is necessary.

2.1.1 Fluorescent sensors for Cr(III)

"Turn-off" fluorescent sensors for Cr(III)

- Tang and co-workers²⁴ developed a fluorescent reagent *o*-vanillin-8-aminoquinoline (**Cr-1**) for the determination of Cr^{3+} . ³⁵ In CH₃CN-H₂O (1:1, v/v) medium of pH 6.00, the formation of complex **Cr-1**-Cr³⁺ (1:1) caused static fluorescence quenching at $\lambda_{ex/em} = 280/314$ nm due to the paramagnetic nature of Cr³⁺. The difference of fluorescence intensity between **Cr-1** and complex was high and remained constant in the range over pH 5.2–8.3.
- ⁴⁰ Cr⁶⁺ could also be determined by reducing Cr⁶⁺ to Cr³⁺ with Na₂SO₃. In another approach, Das *et al*²⁵ reported a fluorescent ligand Cr-2 for Cr³⁺ based on the affinity of hard binding sites (N, O) of acridone derivative towards Cr³⁺. Upon addition of Cr³⁺ ion, quenching of the fluorescence intensity at 498.4 nm occurred
- ⁴⁵ in DMF–H₂O (9/1, v/v). The interference of foreign ions has been found to be negligible. Analysis of Cr species (Cr^{3+} and Cr^{6+}) in different synthetic as well as environmental samples has been performed.

"Turn-on" fluorescent sensors for Cr(III)

- ⁵⁰ Photoinduced electron transfer (PET) is a long-range deactivation process in the form of an electron transfer from the ion-free receptor to the photoexcited fluorophore²⁶⁻²⁷. The PETbased mechanism is particularly attractive for the design of "turnon" fluorescent sensors because of its simplicity²⁸. In the ion-free
- ⁵⁵ situation, the fluorescence of the fluorophore is "switched off" by the PET process. However, arrival of the metal ion or the proton

causes the fluorescence to be switched back "on" again due to the suppression of the PET process. A few "turn-on" fluorescent sensors have been reported for Cr³⁺ based on the PET ⁶⁰ mechanism.

Samanta et al^{29} designed a Cr³⁺-selective fluorescence sensor Cr-3 in which the SNS (di(2-ethylsulfanylethyl)amine) ligand and 4-aminophthalimide were employed as a guest-binding unit and the fluorescing moiety, respectively. The fluorescence 65 quantum yield of Cr-3 in THF was measured to be 0.026 indicating PET between the fluorophore and receptor moieties. The coordination of Cr-3 to Cr^{3+} caused an approximately 17fold increase in the fluorescence quantum yield, which is attributed to the disruption of PET. However, an effective binding ⁷⁰ also occurred in the presence of Fe³⁺ with an approximately 4fold increase. In another approach, a BODIPY-based fluorescent sensor (Cr-4) for Cr³⁺ bearing simple NO bidentate ligands was reported by Shiraishi et al³⁰. Cr-4 showed almost no fluorescence with a quantum yield ($\Phi_{\rm F}$) of 0.003 in CH₃CN. Addition of Cr³⁺ 75 created a strong fluorescence ($\Phi_{\rm F} = 0.69$) at 643 nm and the 2:2 complex was the major emitting species.

Zhang and co-workers³¹ have developed a "turn-on" fluorescent sensor **Cr-5** for the selective signalling of Cr^{3+} , which ⁸⁰ consists of a naphthyridine moiety and a 7,10diphenylfluoranthene moiety. Upon titration of Cr^{3+} in ethanol, a new fluorescent emission peak at about 447 nm appeared and the intensity dramatically enhanced, probably due to the prohibition of PET upon metal binding. Confocal laser scanning microscopy ⁸⁵ experiments have proven that **Cr-5** can be used to monitor intracellular Cr^{3+} . Sensor **Cr-6** reported by Wang *et al*³² is based on naphthalimide and [1,1'-binaphthalene]-2,2'-diol (BINOL) framework. Free **Cr-6** exhibited a slight fluorescence response with a maximum at 491 nm ($\Phi = 0.08$) in THF–H₂O (85:15, v/v).

Upon addition of Cr^{3+} , fluorescence enhancement and a slight red-shift of emission band centered at 498 nm were observed (Φ = 0.27). Das *et al*³³ have introduced a thiophene-coumarin hybrid molecule (**Cr-7**), which behaved as a Cr^{3+} -selective fluorescent *s* sensor in CH₃CN–HEPES buffer (4:6, v/v, pH 7.4). Addition of Cr^{3+} to the solution of **Cr-7** resulted in the enhancement of fluorescence intensity at 550 nm. Cr^{3+} assisted restricted rotation around the imine bond and inhibited PET from the N, S-donor sites to the coumarin unit were responsible for the fluorescence ¹⁰ enhancement. **Cr-7** was employed to monitor Cr^{3^+} in *Candida albicans cells*. By the combination of an anthracene group as a chromophore moiety and a phenol group as a binding moiety, Kim group³⁴ developed a "turn-on" fluorescent sensor **Cr-8** for trivalent cations (Al³⁺, Cr³⁺, Fe³⁺, Ga³⁺, and In³⁺) with a ¹⁵ prominent fluorescence enhancement and a slight red shift of the emission maxima from 411 to 421 nm.

Rhodamine dyes have been extensively used as fluorophores by virtue of their excellent photophysical properties, such as long ²⁰ absorption and emission wavelengths, high fluorescence quantum yield, large absorption coefficient, and exceptional stability against photobleaching. Furthermore, rhodamine frameworks have been considered as an ideal mode for the construction of the "turn-on" systems based on the structural change of the

²⁵ rhodamine moiety from spirocyclic to ring-opened forms³⁵⁻³⁶. The spirocyclic form is basically colorless and non-fluorescent, whereas ring-opening of the corresponding spirolactam by the addition of H⁺ or metal ions gives rise to strong fluorescence emission and a pink color. Next we will summary the Cr³⁺- ³⁰ selective rhodamine-based sensors.

Li *et al*³⁷ have introduced a multisignal sensor (**Cr-9**) for Cr^{3+} based on rhodamine B with a ferrocene substituent. Upon binding with Cr^{3+} , the absorption peak of **Cr-9** at 565 nm and the emission peak at 587 nm increased in intensity evidently in ³⁵ C₂H₃OH–H₂O (1:1, v/v, pH 7.4), clearly indicating the ring-

- opening process of the rhodamine B unit in **Cr-9**. The detection of Cr^{3+} by **Cr-9** could work in the pH range of 5.0–10.0. In addition, **Cr-9** showed a distinct current change of the electric currency in its reversible ferrocene/ferricinium redox cycles upon
- ⁴⁰ complexation with Cr³⁺. In the selectivity test, Hg²⁺ elicited a slight fluorescence enhancement except Cr³⁺, while the other metal ions did not cause any discernible changes. By means of confocal laser scanning microscopy experiments, Cr-9 was used as a fluorescent sensor for monitoring Cr³⁺ in HeLa cells.
- ⁴⁵ Sensor **Cr-10** was facilely synthesized from the reaction of rhodamine 6G with triethylenetetramine by Mao *et al*^{6, 38}. **Cr-10** formed nearly colorless and non-fluorescent in HEPES aqueous buffer solution (pH =7.2). With the addition of Cr^{3+} , the typical absorbance (527 nm) and fluorescence (552 nm) of rhodamine

50 6G appeared, resulting from the ring-opened form of Cr-10. The fluorescence intensity enhancement of this system was linearly proportional to Cr^{3+} concentration from 5.0×10^{-8} to 7.0×10^{-6} M with a detection limit of 1.6×10^{-8} M. Besides, the spirocyclic form of Cr-10 was stable between pH 5.5-8.5 with a minute 55 fluorescence intensity. By immobilizing Cr-10 within the channels of SBA-15, Duan et al³⁹ prepared a dye-functionalized silica nanomaterial, sensor Cr-11, for the determination of Cr³⁺ in water. Upon addition of Cr³⁺, Cr-11 showed strong fluorescence with an approximately 8-fold enhancement in the intensity at 553 60 nm. The Cr³⁺-loaded Cr-11 after isolation from the aqueous suspension underwent a color change from almost colorless to pink. Through isolating of the metal ions within the mesopores of the silica, Cr-11 can extract Cr^{3+} from the solution with only trace amounts remaining. Cr-11 was cell-permeable and could be 65 used to monitor Cr³⁺ in HeLa cells. Moreover, the functional material was successfully taken up into various parts, especially the head, of the zebrafish and a strong red fluorescence was emerged in the presence of external Cr^{3+} ions.

Sinn *et al*⁴⁰ presented sensor **Cr-12** which was capable of ⁷⁰ sensing Cr³⁺ *via* the carbonyl O, inamine N, and thiophene S as the binding sites. In CH₃CN, addition of Cr³⁺ resulted in a remarkably enhanced fluorescence at 583 nm accompanied by color changes from colorless to pink. However, sensor **Cr-12** also showed some fluorescence responses toward Hg²⁺, Zn²⁺ and Pb²⁺. ⁷⁵ By displacing thiophene with furfuran, another rhodamine-based Cr³⁺ sensor (**Cr-13**) was developed by Niu *et al*⁴¹. The spectroscopic investigations were carried in Tris-HCl (10 mM) aqueous buffer solution. **Cr-13** also displayed obvious fluorescence and absorption changes in the presence of Cr³⁺ with ⁸⁰ a working pH range of 5.0–9.0. Analysis of confocal images of Cr³⁺ utilizing **Cr-13** indicates that the sensor was cell permeable and capable of sensing Cr^{3+} in Arabidopsis guard cells and PC12 cells.

Sensor **Cr-14**, containing a quinoline ligand and developed by Das *et al*⁴² showed remarkable preference toward Hg²⁺ and Cr³⁺.

- ⁵ The spirocyclic form for **Cr-14** was retained for a pH range of 5.0–11.0 in a CH₃CN–HEPES buffer (3:2, v/v, pH 7.3) medium. **Cr-14** allowed detection of Hg^{2+} and Cr^{3+} by monitoring changes in the absorption and fluorescence spectral pattern. Further, **Cr-14** was used as an imaging reagent for detection of Hg^{2+} and Cr^{3+}
- ¹⁰ uptake in MCF-7 cells using laser confocal microscopic studies. By linking two rhodamine B moieties to the two amine sides of a 4,13-diaza-18-crown-6 ether, Bao and co-workers⁴³ developed a fluorescent sensor **Cr-15** for monitoring Cr^{3+} . In a CH₃OH-H₂O (3:2, v/v, pH 7.2) solution, sensor **Cr-15** formed a 1:2 complex
- ¹⁵ with Cr³⁺ resulting in absorption and fluorescence enhancement at 560 nm and 582 nm, respectively. In addition, Cr-15 was cellpermeable and used to detect Cr³⁺ in human L-02 hepatocytes. Sensor Cr-16 developed by Das *et al*⁴⁴ was found to bind specifically to Hg²⁺ and Cr³⁺ with a "turn-on" response at 531 nm ²⁰ for absorption spectra and at 557 nm for fluorescence spectra in

 $CH_3CN-HEPES$ buffer (1:1, v/v, pH 7.2).

In addition, some other attempts have been reported for the selective determination of Cr^{3+} by means of chelation-enhanced fluorescence (CHEF). By combining a dansyl unit as the ²⁵ fluorophore and carboxhydrazone derivatives as the ionophores

- into one conjugated molecule, Duan *et al*⁴⁵ developed two fluorescent sensors (**Cr-17** and **Cr-18**) for Cr^{3+} . **Cr-17** contained a pyridine-carboxhydrazone tridentate coordination site, forming a 2:1 stoichiometric complexation species with Cr^{3+} , and
- ³⁰ exhibited selectivity for Cr^{3+} over other metal ions in DMF-H₂O (9:1, v/v) solution. **Cr-17** displayed high quantum yield ($\Phi = 0.86$) and fluorescence enhancement following Cr^{3+} coordination within a pH range of 5.0 to 9.0. **Cr-18** contained a 8-hydroxyquinoline-carboxhydrazone tetradentate metal-binding
- ³⁵ moiety, forming a 1:1 complex with Cr^{3+} . **Cr-18** also exhibited fluorescence enhancement but a much lower quantum yield ($\Phi = 0.059$) after Cr^{3+} binding.

Yoon *et al*⁴⁶ reported two thiazolothiazole derivatives (**Cr-19** and **Cr-20**) as fluorescent sensors for Cr^{3+} and Al^{3+} , in which

- ⁴⁰ ether binding units were introduced. The photophysical properties of **Cr-19** and **Cr-20** were tested in CH₃CN–CHCl₃ (4:1, v/v) and CH₃CN, respectively. **Cr-19** showed large fluorescence enhancement with Cr^{3+} and Al^{3+} while Fe^{2+} , Cu^{2+} and Pb^{2+} induced relatively smaller enhancement. **Cr-20** bearing longer
- ⁴⁵ ethylene oxide unit showed selective fluorescence "turn-on" change upon the addition of Cr^{3+} , though Al^{3+} gave a mild response. Gil *et al*⁴⁷ introduced a phenanthrene-based bis-oxime sensor **Cr-20** for Fe³⁺ and Cr³⁺ discrimination in which oxime groups act as ligands for cation complexation. Addition of Cr³⁺
- $_{\rm 50}$ gave rise up to a 62% fluorescence enhancement of **Cr-20** in DMSO–CH₃OH (9:1, v/v) solution in the 1:2 complex. However, fluorescence quenching was observed in the presence of Fe³⁺ with the 1:1 complex.

Goswami *et al*⁴⁸ have developed a spirobenzopyran derivative ⁵⁵ (**Cr-22**) applied in simultaneous colorimetric and NIR fluorescence detection of Cr^{3+} . This spirobenzopyran receptor was normally colorless and weak fluorescent ($\Phi = 0.006$) in CH₃CN–HEPES buffer (7:3, v/v, pH 7.4), but the formation of merocyanine occurred by Cr^{3+} showing a yellow color ($\lambda_{abs} = 440$ ⁶⁰ nm) and strong NIR fluorescence emission ($\Phi = 0.161$) at 675 nm. The observed dramatic fluorescence enhancement could be a result of the combination effect of intramolecular charge transfer (ICT) and CHEF. The only cross interfering metal ion Cu^{2+} caused a new peak at 555 nm in the UV-vis spectra and it ⁶⁵ behaved as a fluorescence quencher in emission spectra. The fluorescence sensitivies of **Cr-22** towards Cr^{3+} become maximum at pH 7.4. **Cr-22** could permeate the plasma membrane and give specific fluorescence with Cr^{3+} in HeLa cells.

Chattopadhyay and co-workers⁴⁹ designed a fluorescent Cr^{3+} receptor, **Cr-23**, which underwent a solvent assisted 1,5- σ tropic shift leading to a benzimidazole derivative (**Cr-23**') of more chelating environment in the presence of Cr^{3+} and exhibited moderate fluorescence intensity due to internal electron transfer process. This sensor behaved a "turn-on" response at 426 nm for 75 Cr^{3+} in C₂H₅OH–HEPES buffer (1:5, v/v, pH 7.4), presumably due to the CHEF effect during chelation of **Cr-23'** toward the Cr^{3+} in a 1:1 complex mode. Other metal ions did not interfere except Cu²⁺. Sensor **Cr-23** was used to image Cr^{3+} in HeLa cells with low cytotoxicity.

Ratiometric fluorescent sensors for Cr(III)

Measuring fluorescence by a decrease or increase in the emission intensity without much shift of either excitation or emission wavelength can be influenced by many factors, such as ⁸⁵ the sensor concentration, changes of environment around the sensor (pH, polarity, temperature, and so forth), and the instrumental efficiency⁵⁰. To reduce these effects, ratiometric measurement is utilized, namely, simulaneous recording of the fluorescence intensities at two wavelengths and calculation of ⁹⁰ their ratio⁵¹. Several signalling mechanisms, such as ICT, excimer/exciplex formation, excited state intramolecular proton transfer (ESIPT), fluorescence resonance energy transfer (FRET), and through-bond energy transfer (TBET).

On the basis of FRET from 1,8-naphthalimide to rhodamine, ⁹⁵ Li *et al*⁵² developed a fluorophore dyad (**Cr-24**) as a Cr³⁺selective fluorescent sensor. Upon addition of Cr³⁺ to **Cr-24** in C₂H₅OH-H₂O (2:1, v/v) solution, the fluorescence intensity at 544 nm ($\lambda_{ex} = 405$ nm) gradually decreased and that of a new fluorescent band centered at 592 nm gradually increased. This is ¹⁰⁰ consistent with increased FRET from 1, 8-naphthalimide (donor) to the ring-open form of rhodamine (acceptor). Alkali and alkaline-earth metal ions gave no interference, whereas Ag⁺, Ni²⁺, Cd²⁺, Hg²⁺, Fe²⁺, Pb²⁺, and Al³⁺ gave a weak response. **Cr-24** was applied to detect intracellular Cr³⁺ with the FRET method under ⁵ excitation at 405 nm. Moreover, the two-photon spectral response of **Cr-24** to its interaction with Cr³⁺ ions was investigated by Xia *et al*⁵³. A 29-fold enhancement of two-photon excited ($\lambda_{ex} = 850$ nm) fluorescent intensity at 583 nm was observed when 10 eq. Cr³⁺ was added to the **Cr-24** solution. The two-photon excited ¹⁰ fluorescence "turn-on" behavior further extended the excitation to

near infrared regime, and showed more effective sensitivity.

Duan *et al*⁵⁴ designed a simple FRET-based approach to ratiometric fluorescence sensing of Cr^{3+} in aqueous solution using ¹⁵ glutathione and glucose as building blocks, inspired by the binding motifs of Cr^{3+} in GTF. Glutathione-based receptor (**CG1**) and glucose-based receptor (**RG1**) were combined into one system **Cr-25** for sensing Cr^{3+} . Upon gradual addition of Cr^{3+} ions in NaAc-HAc buffer solution (pH = 6.0), the intensity of the

²⁰ emission band centered at 475 nm decreased and that of a new fluorescent band centered at 555 nm increased. No significant spectral changes were observed in the presence of the other metal

ions except Hg^{2+} which induced a 2-fold fluorescence enhancement. Confocal experiments revealed that the combined ²⁵ CG1 and RG1 with Cr^{3+} ions exhibited green fluorescence signals localized in the perinuclear region of the cytosol in MCF-7 cells. Unfortunately, the ratiometric sensing of Cr^{3+} in living cells by this system was not obtained.

An imine-linked, benzimidazole-based sensor Cr-26, reported ³⁰ by Jang *et al*⁵⁵, was used for chromogenic recognition of Mg^{2+} and fluorescent recognition of Cr3+. Addition of Mg2+ to a solution of Cr-26 in CH₃CN-HEPES buffered (8:2, v/v, pH 7.0) led to a stepwise decrease in absorbance at 400 nm and an increase at 350 nm with a clear isosbestic point at 385 nm. Cr^{3+} 35 binding with sensor Cr-26 caused a change in the fluorescence spectra of Cr-26 with quenching at 415 nm and enhancement at 475 nm. In the absence of Cr^{3+} , the enol form of Cr-26 was in equilibrium with its keto tautomer in the excited state. The modulation of the fluorescence spectrum of Cr-26 with the 40 addition of Cr³⁺ was due to the formation of a stable Cr³⁺ complex with the keto form of Cr-26. In addition, Cr-26 was applicable for staining the cytoplasm of microbial cells enriched with Cr^{3+} . Das *et al*⁴⁴ have presented a rhodamine derivative Cr-27 used as a ratiometric sensor for the detection of Cr^{3+} and Hg^{2+} 45 based on the FRET process involving the donor naphthalimide $(\lambda_{abs} = 455 \text{ nm}, \lambda_{em} = 533 \text{ nm})$ and the receptor $\text{Cr}^{3+}/\text{Hg}^{2+}$ -bound xanthenes fragment ($\lambda_{abs} = 561$ nm, $\lambda_{em} = 583$ nm). Moreover, when used on epithelial cells like A431, the reagent Cr-27 could detect the cellular uptake of Cr^{3+} or Hg^{2+} .

50 2.1.2 Colorimetric sensors for Cr(III)

By the coupling of 8-aminoquinoline and 1hydroxynaphthalene-2-carbaldehyde, Kim group⁵⁶ developed a selective colorimetric sensor **Cr-28** for Cr^{3+} . Upon the addition of Cr^{3+} into the CH₃OH solution of **Cr-28**, the absorption bands at ⁵⁵ 278, 344, 467, and 494 nm significantly decreased, and two new bands at 262 and 382 nm appeared. Meanwhile, the solution color changed from yellow to colorless. In the presence of other metal ions, **Cr-28** showed either no change or a slight decrease in the absorption intensity except Fe^{2+} which induced a slight blue shift.

Scheme 1 Schematic depiction of AuNP-based colorimetric assays for metal ions.

Plasmonic nanoparticles, such as gold nanoparticles (AuNPs) ⁶⁵ and silver nanoparticles (AgNPs), are a class of nanostructures whose optical properties are determined by their unique surface plasmon resonance (SPR)⁵⁷. The SPR of gold, for instance, exhibits a colorimetric behavior (red to blue) directly tuned by altering the interparticle distance and the size, shape, and composition of particles, which is suited for naked-eye assays⁵⁸ (Scheme 1). AuNPs possess distinct physical and chemical attributes: 1) ease of synthesis and monodispersity in aqueous media with large surface-to-volume ratio; 2) biocompatibility and

- ⁵ ease of chemical functionalization through surface chemistry; 3) high absorption extinction coefficient (*ca.* $10^8 \text{ cm}^{-1}\text{M}^{-1}$) and strong photostability⁵⁹. So far, several excellent AuNP-based colorimetric assays have been developed and widely applied in chemical and biological detection⁶⁰⁻⁶³.
- ¹⁰ Zhu and co-workers⁶⁴ have developed a colorimetric technique for the determination of Cr^{3+} in aqueous solution based on an aggregation-induced color transition of AuNPs. AuNPs were functionalized with a dithiocarbamate-modified *N*-benzyl-4-(pyridine-4-ylmethyl)aniline ligand (**Cr-29**) for the chelation of
- ¹⁵ Cr^{3+} . A solution of the modified AuNPs displayed a SPR absorption peak at 520 nm and showed a wine-red color. When Cr^{3+} was added, the absorbance at 520 nm decreased with the appearance of a new absorption band at around 630 nm, and the color changed to blue, indicating rapid aggregation of the AuNPs.
- ²⁰ In another approach, Wu *et al*⁶⁵ synthesized triazole functionalized AuNPs (**Cr-30**) through a click reaction for selective colorimetric Cr^{3+} detection. Aggregation of **Cr-30** was induced immediately in the presence of Cr^{3+} ions, yielding an absorption peak shift from 526 nm to 639 nm which could be ²⁵ observed by the naked eye as a color change from red to blue.

The optimal pH range for detecting Cr^{3+} by **Cr-30** is 4.0–7.0.

2.2 Cr(VI) sensors

2.2.1 Fluorescent sensors for Cr(VI)

30 "Turn-off" fluorescent sensors for Cr(VI)

Jie and co-workers⁶⁶ developed a fluorescence quenching method to determine chromium based on the oxidation of rhodamine 6G by $Cr_2O_7^{2-}$. The linear calibration graph was obtained in the range 8–80 ng mL⁻¹ $Cr_2O_7^{2-}$ and the detection ³⁵ limit was 0.8 ng mL⁻¹. Most of foreign ions do not interfere in the determination of $Cr_2O_7^{2-}$ except Ce^{4+} and nitrite ions. The optimum fluorescence quenching occurred in the presence of H₂SO₄ in the range 0.25–0.75 mol/L. Arnold *et al*⁶⁷ described a flow injection method for the measurement of $Cr_2O_7^{2-}$ in aqueous ⁴⁰ solutions based on the dynamic fluorescence quenching of a ruthenium (II) complex (**Cr-31**). The detection limit was 0.43 ppm. Some interference quenching was measured for cyanide and nitrate. The optimal working pH is at 8.0.

Compared to small organic molecules, the organic ⁴⁵ nanoparticles simultaneously provide efficient fluorescence, a great reduction in photobleaching, colloidal stability in a variety of environments. Based on the fluorescence quenching of organic

Cr-38

55 toward Cr₂O₇²⁻ except that H₂O₂, HNO₂, KMnO₄, KBrO₃ and NaClO influenced the determination by Cr-33-based nanopariticle sensor. In another approach, Trogler and coworkers⁷⁰ reported a fluorescent silole sensor Cr-34 for CrO_4^{2-1} and AsO_4^{3-} by functionalization of a silole monomer with anion 60 binding groups. Upon addition of CrO₄²⁻ and AsO₄³⁻ to the nanoparticle suspensions of Cr-34, the decrease in the fluorescence intensity at 485 nm was observed, which was due to electron transfer from the excited state of the silole to the analyte. Since AsO_4^{3-} is a weaker oxidant than CrO_4^{2-} , it is a weaker 65 quencher as well. The colloid sensor in a pH 7 phosphatebuffered suspension shows both higher sensitivity and greater selectivity to CrO₄²⁻ than other oxoanion interferents, such as NO₃, NO₂, SO₄², and ClO₄. By assembly of fluorescent aluminium complex of 8-hydroxyquionline (AlQ_x) within the ⁷⁰ channels of modified SBA-15, Hosseini *et al*⁷¹ have developed a fluorescence nanosensor Cr-35 for $Cr_2O_7^{2-}$ with working pH at 4.0. When the titrations with $Cr_2O_7^{2-}$ were performed, a

significant decrease in the fluorescence intensity at 486 nm was obtained. The lowest limit of detection was found to be 0.2 ng/mL.

 $_{5}$ Scheme 2 Reaction of CrO₄²⁻ with diphenylcarbazide to generate a chelate of Cr³⁺ and diphenylcarbazone.

Inner filter effect (IFE) of fluorescence results from the absorption of the excitation and/or emission light by absorbers. Actually it is a source of error in fluorimetry, but a few IFE-based ¹⁰ sensors have been developed. Ren *et al*⁷² reported a fluorimetric

method for determination of CrO_4^{-2} based on IFE of upconversion luminescent nanoparicles (NaYF₄: Yb³⁺, Er³⁺) as luminescent

sensors. The principle of this assay is based on the complementary overlap of the green emission band of 15 nanoparticles (NaYF₄: Yb³⁺, Er^{3+}) with the absorption spectrum of a pink chelate complex (Cr³⁺-diphenylcarbazone), which was generated by the quantitative reaction between diphenylcarbazide and CrO_4^{2-} in mineral acid solution (Scheme 2). The decrease in the upconversion luminescent nanoparticles was proportional to $_{20}$ the concentration of $\mathrm{CrO_4^{\ 2^-}}$ in the range of 0.07–10.0 \times 10⁻⁶ M and the detection limit is 2.40×10^{-8} M. Gao et al⁷³ developed another IFE-based sensor Cr-36 for the detection of $Cr_2O_7^{2-}$. Upon addition of $Cr_2O_7^{2-}$ to aqueous solution at pH 6.1 of sensor Cr-36, the emission intensity at 437 nm decreased significantly 25 when excited at 259 nm, which was ascribed to the strong absorption of $Cr_2O_7^{2-}$ to both the excitation and emission light of the acridine fluorophore. The fluorescence changes induced by other anions were negligible except for MnO₄⁻ which also has IFE on Cr-36. It is noteworthy that the sensing property of Cr-36 30 toward Cr₂O₇²⁻ was pH-insensitive (measurements with similar results were carried out at pH 4.0, 6.1 and 10.0).

Tong and co-workers⁷⁴ have developed a fluorogenic method ³⁵ for the determination of $Cr_2O_7^{2-}$ based on the oxidation of nonfluorescent rhodamine B hydrazide by $Cr_2O_7^{2-}$ in acidic aqueous conditions to give highly fluorescent rhodamine B. The fluorescence enhancement at 585 nm was linearly related to the concentration of $Cr_2O_7^{2-}$ in the range of 5.0×10^{-8} to 2.0×10^{-6} M ⁴⁰ with a detection limit of 5.5×10^{-9} M. However, this method is

invalid in the absence of H₂SO₄. In another approach, Ye *et al*⁷⁵ reported a BODIPY based "turn-on" fluorescent chemodosimeter **Cr-37** integrated with diaminomaleonitrile unit for the detection of $Cr_2O_7^{-2-}$. Sensor **Cr-37** displayed a rather weak fluorescence at 5 507 nm in DMF–PBS buffer (7:3, v/v, pH 6.8). Addition of $Cr_2O_7^{-2-}$ induced strong fluorescence, which can be ascribed to the de-diaminomaleonitrile leading to aldehyde by $Cr_2O_7^{-2-}$. **Cr-37** is cell membrane permeable and capable of fluorescent imaging of

 $Cr_2O_7^{2-}$ in living cells.

10 2.2.2 Colorimetric sensors for Cr(VI)

Tan *et al*⁷⁶ reported a colorimetric detection method based on 1,4-dithiothreitol functionalized AuNPs (**Cr-38**) for $\text{Cr}_2\text{O}_7^{2-}$ in aqueous solution. Addition of $\text{Cr}_2\text{O}_7^{2-}$ to the solution of **Cr-38** at pH 2.5 caused a notable red-shift (from 520 nm to 650 nm) of the 15 SPR peak and a rapid color change from rose-red to blue-purple.

- which reflected the aggregation of **Cr-38** in the presence of $Cr_2O_7^{2-}$. Under the optimized conditions, a good linear relationship was obtained between the ratio ($A_{650/520}$) and the concentration of $Cr_2O_7^{-2-}$ over the range of 100–600 nM, and the
- $_{\rm 20}$ detection limit was 20 nM. This method showed selective detection towards $\rm Cr_2O_7{}^{2-}$ against other common metal ions in water.

3. Manganese

Manganese is an essential transition metal that is required by ²⁵ organisms ranging from simple bacteria to humans⁷⁷. Manganese plays a critical role in multiple bodily functions including immunity, regulation of blood sugars and cellular energy, blood clotting, reproduction, digestion, and bone growth. The bestknown manganese-containing polypeptides may be arginase, the

³⁰ diphtheria toxin, and Mn-containing superoxide dismutase (Mn-SOD)⁷⁸. The majority of manganese is thought to be present as low molecular-weight Mn²⁺ complexes⁷⁹. The normal concentration of Mn²⁺ in organisms is very low, for instance 6–19 μg/L in the human blood⁸⁰. However, chronic overexposure of ³⁵ Mn²⁺ can result in movement disorders and mental disturbances and other brain-related toxicities⁸¹.

3.1 Fluorescent sensors for Mn(II)

Several commercially available chelating dyes produce strong fluorescence changes upon binding Mn²⁺, e.g. Mn-1 (Calcein) ⁴⁰ gave significant quenching towards Mn²⁺, while Mn-2 (Calcium

Green) and Mn-3 (Magnesium Green) exhibited markedly fluorescence enhancement in the presence of Mn^{2+82} . However, these dyes are also sensitive to other metal ions such as Ca^{2+} and Mg^{2+} . Recently, one method of ratiometric fluorescence detection

- ⁴⁵ (Mn-4) of Mn²⁺ was described by Canary and co-workers⁸³ based on a supramolecular metal displacement assay. Two commercially available dyes, calcein blue (CB) and fluozin-1 (Fz1), and Cd²⁺ were employed in the sensing system. Initially, Cd²⁺ was chelated by the strong ligand CB and the formed
- ⁵⁰ complex was strongly fluorescent, while free ligand Fz1 gave weak fluorescence. Added Mn²⁺ competed with Cd²⁺ for CB, and quenched CB. Simultaneously, Cd²⁺ formed a complex with ligand Fz1 whose fluorescence was consequently "turned on". The method was applied to detect Mn²⁺ in HEK and *DMT-1* cells
- ⁵⁵ treated with exogenous Mn^{2+} . Unfortunately, Cu^{2+} and Zn^{2+} showed obvious interference in the detection of Mn^{2+} .

In addition, Canary and co-workers⁸⁴ rationally designed a ligand A from bapta, a known Ca²⁺-selective ligand that serves as the chelating moiety of calcium green⁸⁵, using a "soft atom 60 poisoning" strategy to differentiate binding affinities to Mn²⁺ and Ca²⁺. Binding preferences were tuned by substitution of carboxylate groups of bapta with pyridines, resulting in much stronger Mn²⁺ selectivity over Ga²⁺. Ligand A was further functionalized to include a fluorescein fluorophore to realize the 65 goal of fluorescent Mn²⁺ sensors (Mn-5 and Mn-6). When excited at 493 nm, Mn-5 showed an emission maximum at 519 nm. Upon addition of Mn²⁺, an enhanced fluorescence was observed until saturation after 1 equivalent. Screening for selectivity against other metal ions showed no effect on 70 fluorescence intensity of Mn-5, except Ca²⁺ which caused fluorescence enhancement at higher concentration. Sensor Mn-6 showed a longer λ_{em} (530 nm) due to the two incorporated chlorine atoms on the fluorophore, and maintained high selectivity towards Mn²⁺. Furthermore, the ester precursor of $_{75}$ sensor **Mn-6** was used for Mn²⁺ detection in live cells.

Cui and co-workers⁸⁰ reported a pH-controlled recognition method for the discriminative detection of Mn^{2+} and Cu^{2+} ions *via* 1-thioglycerol (TG)-capped CdTe QD (**Mn-7**) fluorescence sensing. The sensitivity of **Mn-7** to Mn^{2+} strongly depends on the solution pH. No obvious fluorescence alteration occurred after the addition of Mn^{2+} into a pH 8.2 buffer solution, whereas a dramatic fluorescence decrease appeared at pH 11.0 with a detection limit of 10 nM. In comparison, the detection of Cu^{2+} was subject to a minor impact of solution pH. Therefore, the srecognizable detection of Mn^{2+} and Cu^{2+} could be realized by adjusting the solution pH. The peculiar pH-controlled sensitivity to Mn^{2+} was attributed to the pH-dependent diffusion and absorption of Mn^{2+} on the surface of **Mn-7** and the energy transfer from CdTe QDs to Mn^{2+} .

Li and co-workers⁸⁶ have developed a simple and convenient route for processing "turn-on" fluorescence sensor **Mn-8** for Mn^{2+} recognition: pyrene derivative ethane (NPEY) utilized as ideal fluorescent reporting groups for heavy metal ions, was ⁹⁵ brought to the surface of graphene nanosheets (GNs) *via* π - π stacking. The spectrum of the free **Mn-8** showed two weak emission bands at 376 and 396 nm, which could be the result of fluorescence quenching through the PET process. Among various heavy metal ions, only Mn^{2+} induced a dramatic increase in the fluorescence intensity of **Mn-8**. This sensor could be used to s image intracellular Mn^{2+} in live cells by using confocal fluorescence microscopy.

3.2 Colorimetric sensors for Mn(II)

Some early colorimetric methods⁸⁷⁻⁹⁰ have been used to detect Mn²⁺ based on photochemical oxidation reactions catalyzed by ¹⁰ Mn²⁺. Recently, Dai *et al*⁹¹ have developed a visible color displacement system (**Mn-9**) for the colorimetric and ratiometric detection of Mn²⁺ ions, which is composed of 2-(5-bromo-2-pyridylazo)-5-[*N*-propyl-*N*-(3-sulfopropyl)amino]phenol (5-Br-PAPS), ethylene glycol-bis(2-aminoethylether)-*N*, *N*, *N'*, *N'*-¹⁵ tetraacetic acid (EGTA) and Zn²⁺ at neutral pH. Upon presentation of Mn²⁺, Zn²⁺ is displaced from EGTA to bind 5-Br-PAPS to produce a pronounced color change from yellow to purple. The absorbance decreases at 449 nm and increases at 552 nm, both linearly to Mn²⁺ concentration at low micromolar levels.

20 **4.** Iron

Iron is the most abundant transition metal in the human body: the total cellular iron concentration is $0.3 \pm 0.1 \text{ mM}^{92}$. Under physiological conditions, iron exists in its stable redox states, ferrous ion (Fe²⁺) and ferric ion (Fe³⁺). The majority of cellular

²⁵ iron is tightly bound to enzymes and specialized transport and storage proteins⁹³, and labile iron is in a minor amount and bound loosely to anions, polyfunctional ligands *et al.*⁹⁴ Iron plays essential roles in various biological events, such as oxygen metabolism, electron transport, and DNA synthesis, which are ³⁰ based on its potent redox capacity⁹⁵. On the other hand, iron overload causes severe cell damage and organ dysfunction through the abnormal production of reactive oxygen species (ROS)⁹⁶⁻⁹⁷. Furthermore, disruption of iron homeostasis has been linked to a number of disease processes such as cancer⁹⁸, ³⁵ hepatitis⁹⁹, and neurodegenerative diseases¹⁰⁰.

4.1 Fe(II) Sensors

4.1.1 Fluorescent sensors for Fe(II) "Turn-off" fluorescent sensors for Fe(II)

- ⁴⁰ Cabantchik and co-workers¹⁰¹⁻¹⁰² have reviewed a series of fluorescein (FL)-based Fe²⁺ sensors, in which the fluorescein fluorophore was coupled to highly specific iron chelators, transferrin, deferoxamine (DFO), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentacetate acid (DTPA) or ⁴⁵ phenanthroline (phen). All of these fluorescent sensors underwent
- fluorescence quenching upon binding of iron, although they showed some variation in their iron-binding properties. The sensor: iron-binding stoichiometry was 1:1 for Fe-3 (Mn-1), Fe-4 and Fe-5, 1:2 for Fe-2, and 3:1 for Fe-1. The maximal quenching

 $_{\rm 50}$ efficiency of the metal varied between 70 and 90%, depending on

the sensor, with **Fe-1**, **Fe-3**, and **Fe-5** showing the highest values and negligible background, and **Fe-2** showing the lowest values with significant background signal. Fe²⁺ quenching of the FLbased sensors was found to follow an apparently mixed static and ⁵⁵ dynamic Stern-Volmer relationship, with linearity restricted to a relatively narrow range of quencher concentrations.

Fe-3 was employed to measure the labile iron pool (LIP) and the concentration of cellular free Fe²⁺¹⁰³⁻¹⁰⁷. Cells are loaded with **Fe-3** *via* its acetomethoxy precursor, and then the ester group was ⁶⁰ hydrolysed by intracellular esterases. Strong iron chelators, such as salicylaldehyde isonicotinoyl hydrazone (SIH) and DFO, were used to regenerate the fluorescence of the **Fe-3**-Fe²⁺ complex. LIP was assessed from the relative rise in fluorescence intensity. Similar to **Fe-3**, quantitative determination of LIP using **Fe-1**¹⁰⁸⁻¹¹⁰ is based on the fluorescence increased when cellular chelatable iron available to **Fe-1** was removed by the metal chelators, such as 2,2'-dipyridyl. Using fluorescence microscopy, Rauen and co-⁵ workers measured the LIP in isolated rat hepatocytes¹⁰⁸, single intact cells¹⁰⁹, and liver endothelial cells¹¹⁰.

Rauen and co-worker¹¹¹ reported a fluorescent indicator (**Fe-6**) to determine mitochondrial chelatable ("redox-active") iron pool. In **Fe-6**, deprotonated rhodamine B was chosen for mitochondrial

- In Fe 6, depretentied incombine *B* was chosen for internetination to targeting and as a fluorophore, and phen as the iron-chelating component. The addition of Fe²⁺ strongly decreased the fluorescence intensity at 602 nm ($\lambda_{ex} = 564$ nm) of **Fe-6** in a "simple buffered solution" and a "mitochondrial medium". Besides Fe²⁺, **Fe-6** fluorescence was markedly quenched by Cu²⁺.
- ¹⁵ Fe-6 selectively accumulated in the mitochondria indicated by its co-localization with the mitochondria marker, rhodamine 123. The intramitochondrial fluorescence of Fe-6 was quenched and increased upon addition of iron and the metal chelators pyridoxal isonicotinoyl hydrazone (PIH) and phen, respectively. Finally, the
- 20 sensor was applied to the mitochondrial chelatable iron pool after inhibition of haem synthesis in hepatocytes and K562 cells.

A green fluorescent polyvinylcarbazole polymer with 1,8naphthalimide side chains (Fe-7), reported by Grabchev *et al*¹¹², was demonstrated as a Fe²⁺ sensor. In DMF solution, the addition

- ²⁵ of Fe²⁺ leads to a decrease in the fluorescence intensity of the polymer system. The Fe²⁺ sensing property of Fe-7 was also investigated in solid state, which has a similar behavior as in DMF solution. In addition, Yan and co-workers¹¹³ developed a kinetic method based on glutathione capped CdTe quantum dots
- ³⁰ (QDs) (Fe-8) for discriminating Fe²⁺ and Fe³⁺. Both Fe²⁺ and Fe³⁺ could quench the fluorescence of Fe-8, however the quenching kinetics was quite different for Fe²⁺ and Fe³⁺ resulting from the different electronic structures and redox potentials of metal ions. Trace H₂O₂ was introduced to establish a QDs-Fenton hybrid
- ³⁵ system for selective determination of Fe^{2+} . The Fenton reaction between Fe^{2+} and H_2O_2 resulted in hydroxyl radicals which effectively quench the fluorescence of the QDs through electron transfer from the conduction band of the QDs to the single occupied molecular orbit of hydroxyl radicals. The detection limit ⁴⁰ of this method for Fe^{2+} was 5 nM.

"Turn-on" fluorescent sensors for Fe(II)

On the basis of the tmeda-PPETE/Cu²⁺ hybrid system, Jones and co-workers¹¹⁴ developed a "turn-on" fluorescence sensor (**Fe-9**) for Fe²⁺. Cu²⁺ was preloaded onto tmeda-PPETE to quench the ⁴⁵ initial background fluorescence (quenched by more than 98%). A greater than 100-fold enhancement in the fluorescence intensity at 494 nm was observed upon titration of Fe²⁺ in THF, in which Fe²⁺ displaced Cu²⁺ from the receptor. The sensory system showed insignificant response toward the other cations, with the ⁵⁰ exception of Hg²⁺ (10-fold enhancement) and H⁺ (21-fold

so exception of Fig. (10-told eminatement) and Fi (21-told enhancement). In another approach, Varma and co-workers¹¹⁵ developed a dansyl-styrylquinoline conjugate (**Fe-10**) as a Fe²⁺-selective sensor. The fluorescence spectrum of **Fe-10** in CH₃CN-H₂O (9:1, v/v) showed very weak emission band ⁵⁵ centered at 450 nm, which was attributed by the ICT from quinoline nitrogen to nitrostyryl group upon excitation. On binding with Fe²⁺, the ICT process was disrupted thereby and the fluorescence intensity was remarkably enhanced (15-fold).

Zhu et al¹¹⁶ developed a fluorescence method for the 60 determination of Fe²⁺ based on specific redox reaction between spin fluorescence sensor pyrene-tetramethylpiperidinyl (Fe-11) and Fe^{2+} . The pyrene characteristic fluorescence of Fe-11 was almost fully quenched, presumably owing to efficient 65 intramolecular quenching of fluorophore by the nitroxide. The fluorescence intensity at 430 nm and the absorbance at 354 nm of **Fe-11** enhanced gradually with the addition of Fe^{2+} . The fluorescence enhancement is proportional to the concentration of Fe^{2+} in range of 2.4 × 10⁻⁷ to 3.6 × 10⁻⁶ M with a detection limit 70 of 4.0×10^{-8} M. However, this reaction must be carried out in acidic solution. Another N-oxide chemistry based fluorescent sensor (Fe-12) for the selective detection of Fe^{2+} was developed by Nagasawa et al^{96} . Fluorescence quenching ($\Phi = 0.010$) of Fe-12 occurred in a physiological buffer (50 mM HEPES buffer, pH 75 7.4), which was attributed to nonradiative deactivation of the excited state of tertiary amine N-oxide substituted xanthene involving a twisted internal charge transfer (TICT) process and partially due to PET from the N-oxide group. Upon addition of Fe²⁺, the fluorescence intensity of the sensor increased by 30-fold ⁸⁰ via Fe²⁺-mediated deoxygenation of the N-oxide group. Fe-12 could visualize not only externally supplemented Fe²⁺ but also the endogenous labile Fe²⁺ in living cells. Co-staining experiments revealed that this sensor localized to the Golgi apparatus. Very recently, Nagasawa group¹¹⁷ reported a series of Fe^{2+} -selective 85 fluorescent sensors (Fe-13, Fe-14, Fe-15, Fe-16, Fe-17) based on the spirocyclization of hydroxymethylrhodamine

hydroxymethylrhodol scaffolds. Compared with **Fe-12**, the spirocyclization strategy improved the "turn-on" rate dramatically and enhanced the reaction rate against Fe²⁺. Finally, **Fe-14** was applied in monitoring the accumulation of labile iron in the ⁵ lysosomes induced by transferring-mediated endocytosis.

Chang group¹¹⁸ also reported a reaction-based Fe^{2+} fluorescent sensor that exploits a iron-mediated oxidative C-O bond cleavage reaction. **Fe-18** is weakly fluorescent in aqueous buffer (50 mM Tris, pH 7.6), and addition of Fe^{2+} leads to a 6-fold emission

- ¹⁰ "turn-on" response within 1 h of reaction. Other cellular metal ions gave almost no response except Co²⁺. **Fe-18** can detect changes in exchangeable iron stores within living cells upon iron supplementation or depletion, including labile iron pools at endogenous, basal levels. Co-staining experiments demonstrated
- ¹⁵ that Fe-18-AM (Fe-18 masked as an acetoxymethyl ester) localized to lysosomes. Moreover, Fe-18 was used to identify reversible expansion of labile iron pools by stimulation with vitamin C or the iron regulatory hormone hepcidin.

20 Ratiometric fluorescent sensors for Fe(II)

The first ratiometric Fe²⁺ fluorescent sensor (Fe-19) was reported by Tang *et al*¹¹⁹. 4'-(aminomethylphenyl)-2,2',6',2''terpyridine (Tpy) was linked to a near-infrared fluorophore cyanine (Cy) as the Fe²⁺ responsive fragment, and BODIPY was ²⁵ harnessed as the insensitive fragment. When Fe²⁺ bound to the receptor-Tpy, an efficient PET process happened from the Fe²⁺-Tpy complex to the Cy group. As a result, the fluorescence intensity of Cy-Tpy fragment (F_{635nm}) could be quenched instantaneously, whereas the fluorescence intensity of BODIPY ³⁰ fragment (F_{507nm}) was basically unchanged. The intensity ratio

- ³⁰ fragment (F_{507nm}) was basically unchanged. The intensity ratio (F_{507nm}/F_{635nm}) showed a linear relationship toward the concentrations of Fe²⁺ (1.0×10^{-7} to 7.0×10^{-6} M) with a detection limit of 12 nM. Other competitive, biologically relevant metal ions did not interfere the fluorescence intensity ratio of Fe-
- $_{35}$ **19**. Finally, this sensor was applied to fluorescence ratiometric imaging of Fe^{2+}, including adscititious and intracellular Fe^{2+} converted by ascorbic acid in live HL-7702 cells.

4.1.2 Colorimetric sensors for Fe(II)

Kim and co-workers¹²⁰ introduced a cap-type Schiff base **Fe**-⁴⁰ **20** acting as a colorimetric sensor for Fe²⁺, Cu²⁺, and Zn²⁺ in HEPES–CH₃OH (99:1, v/v). **Fe-20** showed color changes from yellow to red in the presence of Fe²⁺ and from yellow to colorless in the presence of Cu²⁺ and Zn²⁺. In the corresponding UV-vis spectra, a new absorption peak at 509 appeared for Fe³⁺ and the absorption peak at 400 nm decreased for Cu²⁺ and Zn²⁺. Based on juloidine-imidazole moieties as binding and signalling unit, Kim *et al*¹²¹ developed an optical receptor **Fe-21** for metal ions. **Fe-21** showed instantaneous color changes from colorless to orange and to purple in the presence of Fe²⁺ and Fe³⁺, respectively. ⁵⁰ Meanwhile, the absorption peaks at 440 nm for Fe²⁺ and at 450 nm for Fe³⁺ increased in intensity. In another approach, the same group¹²² developed a colorimetric sensor **Fe-22** for the detection of Fe²⁺ and Cu²⁺ in bis-tris–DMF (8:2, v/v, pH 7.0). The addition of Fe²⁺ and Cu²⁺ into **Fe-22** caused the significant spectral schanges (new peaks at 455 nm for Fe²⁺ and 660 nm for Cu²⁺ appeared), which were accompanied with visual color changes from colorless to light orange and green, respectively.

4.1.3 MRI contrast agents for Fe(II) sensing

The efficacy of a contrast agent is expressed by its relaxivity, 60 r_1 , defined as the longitudinal proton relaxation enhancement referred to 1 mM Gd3+ concentration. The factors contributing to the relaxivity value include the number of inner-sphere water molecules (q), the rotational tumbling time ($\tau_{\rm R}$), and the residence 65 lifetime of inner-sphere water molecules ($\tau_{\rm m}$). The relaxivity of a responsive contrast agent is supposed to be selectively altered by the target analyte. Several self-assembly heterotrinuclear Gd(III)-Fe(II) complexes have been reported as MRI contrast agents. The ligand design was based on the combination of two different 70 complexing moieties, each with structural characteristics for a preferential coordination mode¹²³. The terpyridine¹²³⁻¹²⁴, phenantroline¹²⁵⁻¹²⁶, and bipyridine¹²⁷ units were employed to bind Fe²⁺. On the other hand, DTTA^{123, 127}, DTPA¹²⁵, and DOTA^{124, 126}-based ligands were used for Gd³⁺ complexing. 75 These supramolecular assemblies were formed in the presence of Gd³⁺ and Fe²⁺, resulting in a reduced rotational mobility and a relaxivity enhancement^{4, 13}. Despite the fact that these agents were mainly studied as MRI contrast agents with high relaxivities, they could be potentially used as Fe^{2+} -responsive 80 MRI sensors.

Merbach and co-workers¹²³ reported a trinuclear complex [Fe(tpy-DTTA)₂Gd₂] (**Fe-23**) which has significantly increased relaxivity ($r_1 = 17.4 \text{ mM}^{-1} \text{ s}^{-1}$ at 40 MHz, 37 °C), compared to the low molecular weight [GdH(TTAHA)]²⁻ ($r_1 = 7.3 \text{ mM}^{-1} \text{s}^{-1}$ at 20 ⁸⁵ MHz, 40 °C). **Fe-23** has a well-defined topology with favourable features to attain high relaxivities, *i.e.* a rigid Fe²⁺(tpy)₂ core,

reduced flexibility at the periphery thanks to a short linker, and efficient separation of the two Gd^{3+} centres. The direct linkage of the polyaminocarboxylate moiety to the terpyridine part, although enchancing the rigidity, reduces the stability of the Gd^{3+}

⁵ complex¹⁴. In addition, the [Ru(tpy-DTTA)₂Gd₂] complex was also obtained, possessing a solution behavior similar to that of the iron complex¹⁴.

In another approach, Merbach *et al*¹²⁷ developed a bipyridine-¹⁰ based heterotritopic ligand which could self-assemble with Fe²⁺ and Gd³⁺ into a metallostar {Fe[Gd₂bpy(DTTA)₂]₃}⁴⁻ (Fe-24) structure. A large increase in the relaxivity upon formation of Fe-24 from [Gd₂bpy(DTTA)₂]²⁻ (~100% at 30–60 MHz) was observed, and the molar relaxivity per Gd for Fe-24 at 20 MHz

- ¹⁵ and 37 °C was determined to be 20.17 mM⁻¹s⁻¹. Furthermore, MRI studies conducted at 4.7 T in mice confirmed that the metallostar displayed approimately four times higher *in vivo* relaxivity than the commercially available GdDOTA¹²⁸. The pharmacokinetics of the metallostar was found to be similar to
- ²⁰ that of GdDOTA, involving fast renal clearance, a leakage to the extracellular space in the muscle tissue and no leakage to the brain. In addition, a high-molecular weight tetrametallic supramolecular complex [Fe(Gd-DTPA-phen)₃]⁻ (Fe-25) was obtained upon self-assembly around one Fe²⁺ ion of three 1,10-
- ²⁵ phenantroline-based molecules by Parac-Vogt *et al*¹²⁵. Compared to Gd-DTPA, Fe-25 exhibited significant higher relaxivity (9.5 s⁻¹mM⁻¹) at 20 MHz and 37 °C, slower elimination from rats, reduced volume of distribution, and more organ accumulation according to the biodistribution profile.
- ³⁰ Desreus and co-workers¹²⁶ prepared a ditopic ligand which exhibited the sought characteristics and was able to form a stable Gd^{3+} complex that easily self-assembles around Fe²⁺. The alcohol group of the dihydro-phenanthroline unit remained coordinated to the encapsulated metal ion. Despite rather slow water-exchange
- ³⁵ rates, a 90% relaxivity increase was observed upon the formation of the heterometallic tris complexes (**Fe-26**) with high rigidity. Another DOTA-based ligand was reported by Chen *et al*¹²⁴. This Gd₂Fe (**Fe-27**) array was prepared by incorporation of two Gdcontaining units with a Fe²⁺ ion by self-assembly coordination.
- ⁴⁰ Relaxivity studies showed that **Fe-27** exhibited higher relaxation efficiency ($r_1 = 7.56 \text{ mM}^{-1}\text{s}^{-1}$) compared to Gd-DTPA, arsing from the rigidity of the low-spin Fe(tpy)₂ unit.

4.2 Fe(III) Sensors

Similar to Cr^{3+} , the hydrolysis of Fe^{3+} is a fundamental process that occurs in neutral or alkaline conditions. The pH value of Fe^{3+} -containing (500 µM) water is around 3.47^{23} . Therefore, no proton interference is also particularly important for the selective detection of Fe^{3+} in the aqueous solution.

4.2.1 Fluorescent Fe(III) sensors

- 50 "Turn-off" fluorescent sensors for Fe(III) Shen group¹²⁹ developed two 2-(thiophen-2-yl)quinoline appended BODIPY sensors (Fe-28 and Fe-29) for Fe^{3+} , with large Stokes' shift via TBET. Upon excitation of 5-(quinolin-2yl)thiophen-2-yl at 334 nm, the fluorescence intensities from the 55 BODIPYs of Fe-28 at 532 nm and Fe-29 at 732 nm decrease remarkably. The explanation for the fluorescence quenching is that the energy transfer from 2-(thiophen-2-yl)quinoline to the BODIPY is inhibited after binding with Fe³⁺. Moreover, Fe-28 can be used as a fluorescence "turn-off" sensor for Fe³⁺ in live 60 MCF-7 cells. Cazier-Dennin and co-workers¹³⁰ reported a Nazacrown carbazole fluoroionophore Fe-30 as a Fe³⁺-selective sensor. The non-pH dependence of the fluorescence properties of Fe-30 provides an effective mean for Fe³⁺ sensing in water. A 2,2'-bisbenzimidazole derivative Fe-31, reported by Wei and co-65 workers¹³¹, displayed fluorescence quenching with high selectivity toward Fe³⁺ in DMSO-H₂O (6:4, v/v) solutions. Gao and co-workers¹³² demonstrated a 8-hydroxyquinoline derivative Fe-32 possessing a highly selective response of fluorescence quenching toward Fe3+ in DMF-H2O (98:2, v/v) containing 70 Britton-Robison buffer (10 mM, pH = 7.0). Wang and coworkers¹³³ have developed a dansyl-based Fe³⁺-selective fluorescent sensor Fe-33 with an electron-rich di-(2-picoly)amine (DPA) moiety as a receptor. In C₂H₅OH-H₂O (1:1, v/v) solution,
- the addition of Fe³⁺ ion caused the quenching effect on the ⁷⁵ fluorescence intensity of **Fe-33**, and the fluorescence of **Fe-33** is pH insensitive in the range from 3.0 to 11.0. A coumarin-derived

fluorescent sensor (**Fe-34**) for Fe^{3+} , developed by Guo *et al*¹³⁴, showed a decrease in the emission intensity at 448 nm upon treatment with Fe^{3+} in the Na₂HPO₄-citric acid buffer solution at pH 4.8. The sensor can be applied to the monitoring of Fe^{3+} with s a pH span of 3.0–8.0. In addition, biological imaging, membrane permeability and nontoxicity demonstrate that **Fe-34** could act as a fluorescent sensor for Fe^{3+} in living cells. Very recently, Huo *et al*¹³⁵ have encapsulated a phenothiazine-derived shiff base in silica cross-linked micellar nanoparticles to build a water-soluble 10 fluorescent sensor (**Fe-35**) for the selective detection of Fe^{3+} by

fluorescence quenching through an electron transfer (ET) process. Calix[4]arenes/thiacalix[4]arenes are one of the most actively studied molecular scaffolds used in molecular recognition of cations and anions¹³⁶. Kumar *et al*¹³⁷⁻¹³⁹ have developed a series ¹⁵ of pyrene-appended sensors **Fe-36**, **Fe-37** and **Fe-38** for Fe³⁺ based on thiacalix[4]arene. The fluorescence spectrum of compound **Fe-36** gave strong monomer emission at 386 nm and there was no excimer emission band. Upon addition of Fe³⁺ ions to the solution of receptor **Fe-36**, a significant quenching in the ²⁰ fluorescence emission was observed which was attributed to paramagnetic nature of Fe³⁺ and reverse PET from pyrene units to the carbonyl oxygen of which the electron density was diminished upon metal ion complexation. Sensor **Fe-37** shows remarkably quenching of monomer and excimer emission bands ²⁵ in the presence of Fe³⁺ or Ag⁺. In the case of sensor **Fe-38**, the addition of Fe³⁺ results in significant quenching in the excimer emission. Evaluation of the **Fe-38**-Fe³⁺ complex prepared in situ demonstrated the detection of Fe³⁺ in the presence of amino acids, blood serum and bovine serum albumin. Furthermore, compound ³⁰ **Fe-38** has suitable permeability into the PC3 cells and can be utilized as a Fe³⁺ sensor in living cells.

"Turn-on" fluorescent sensors for Fe(III)

Firstly, we introduce several examples of Fe³⁺-selective ³⁵ fluorescent sensors based on rhodamine in recent years. Li and co-workers¹⁴⁰ reported a series of rhodamine-aminobenzothiazole conjugates as "turn-on" sensors (Fe-39, Fe-40, and Fe-41) for Fe³⁺. No obvious absorption and fluorescence emission were observed in the absence of Fe³⁺ because the spirocyclic form of ⁴⁰ rhodamine prevailed. However, upon treating with Fe³⁺, an intense absorption band centered at 558 nm, and concomitantly, a strong orange fluorescent emission band appeared at 580 nm, which was reasonably assigned to the delocalized xanthenes tautomer of the rhodamine group. Confocal laser scanning ⁴⁵ microscopy experiments have proven that these sensors could respond to the changes of Fe³⁺ concentrations in living cells.

Mandal and co-workers¹⁴¹ designed a bis-rhodamine based sensor **Fe-42** which showed high selectivity to Fe^{3+} . The absorbance and fluorescence emission of **Fe-42** were highly so enhanced upon injection of Fe^{3+} in CH₃CN–Tris-HCl (1:1, v/v, pH 7.4). Other competitive metal ions did not show any considerable influence except Cu²⁺ which showed a little interference. The pH titration experiment suggested that the spirolactam ring of **Fe-42** was stable above pH 4.0. Finally, ⁵⁵⁵ sensor Fe-42 was applied in the imaging of live fibroblast cells exposed to Fe³⁺. In addition, the same group¹⁴² developed another sensor Fe-43 for the detection of Fe³⁺ by incorporating a triazole unit into a quinoline-rhodamine conjugate. Injection of equimolar concentrations of Fe³⁺ led to the development of a 744-fold ⁶⁰ intense absorption band with a maximum at ~530 nm and a 427-fold intense fluorescence emission band with a maximum at ~552 nm as compared to free Fe-43. The spirolactam ring of Fe-43 was stable in the pH range 6.0–10.0. Moreover, sensor Fe-43 could be used to image Fe³⁺ in live fibroblast cells and formulated into a ⁶⁵ polymeric thin film sensor for Fe³⁺ detection.

Zeng and co-workers¹⁴³ have developed a Fe^{3+} -selective fluorescent sensor **Fe-44** by binding a quinoline moiety to rhodamine 6G hydrazide. Upon addition of Fe^{3+} to **Fe-44** in C₂H₅OH–H₂O (3:7, v/v), significant enhancements in absorbance 70 at 532 nm and fluorescence at 559 nm were observed. Bioimaging and micro computed tomography (MCT) studies demonstrated that **Fe-44** had good cell-membrane permeability and was applied in the detection of intracellular Fe^{3+} . Sensor **Fe-45** was synthesized by the condensation of rhodamine-B 75 hydrazine and 2-(*N*-methylpiperazinylimino)acetaldehyde¹⁴⁴, which exhibited Fe^{3+} -selective enhancement in the fluorescence at a pH range of 6.0–7.5. Tfouni and co-workers¹⁴⁵ reported a rhodamine-based sensor **Fe-46** for Fe³⁺ containing a salicyladehyde moiety. Biological assays with confocal microscopy showed the sensor could be used to image iron pools ⁵ in B16-F10 cells. A bistriazole-appended rhodamine conjugate (**Fe-47**) reported by Liu group¹⁴⁶ displayed Fe³⁺- and Cu²⁺- selective dual channel fluorescence in CH₃CN–H₂O (1:1, v/v, pH 7.8). Kumar and co-workers¹⁴⁷ have designed a bis-rhodamine

based sensor **Fe-48** for the determination of Fe³⁺ in THF, with a ¹⁰ detection limit of 1.1×10^{-9} M. As an alternative, sensor **Fe-49** containing two rhodamine fluorophores linked through a cystamine moiety acting as recognition site, was reported by Li *et* al^{148} . The response behavior of **Fe-49** towards Fe³⁺ is pH independent in neutral condition (pH 6.0–8.0). The fluorescence ¹⁵ imaging experiments demonstrated its practical application in Fe³⁺ imaging in living cells.

conjugate (Fe-50) as a Fe³⁺-selective fluorogenic and colormetric 20 sensor in CH₃CN-H₂O (1:1, v/v, pH 7.2). The pH-emission plot showed insignificant changes in emission intensity of Fe-50 in the pH range 7.0–10.5. **Fe-51**¹⁵⁰ is water-soluble "turn-on" fluorescent sensor for Fe³⁺ based on rhodamine B, in which the 2picolylamine was chosen as the recognition group. Fe-51 kept 25 non-fluorescent in the pH range 6.0-9.0. The confocal fluorescence imaging indicated that Fe-51 is cell permeable and can be used for monitoring intracellular Fe³⁺. By integrating rigid 8-aminoquinoline moiety to rhodamine chromophore, Qian group¹⁵¹ reported a fluorescent sensor for Fe³⁺ (Fe-52) in HEPES 30 buffer solution (20 mM, pH 6.95) contained 50% CH₃CN as the cosolvent. Cu²⁺ and Cr³⁺ induced a mild response, while other metal ions had minor interference. The acid-base titration experiments revealed that Fe-52 was insensitive to pH in the range from 6.0 to 12.0. The live cell imaging experiments

³⁵ demonstrated that **Fe-52** was cell-compatible and would serve as a Fe^{3+} -responsive bioimaging sensor.

have also been developed recently. Schiff bases with a bridged C=N structure easily isomerize in the excited state which usually 40 results in weak fluorescence of the attached fluorophore. But when they form complexes with some special metal ions, the C=N isomerisation is inhibited and fluorescence enhancement can be achieved. Wang et al¹⁵² reported a coumarin Schiff base compound (Fe-53) evaluated as a "turn-on" Fe³⁺ and Al³⁺ sensor. 45 Fe-53 showed weak fluorescence signal in MeOH, whereas significant enhancements of fluorescence at 488 nm and 516 nm were present with addition of Fe3+/Al3+. Li and co-worker153 designed a carbazole-based Schiff base (Fe-54) behaving as a fluorescent sensor for Fe³⁺ and Cu²⁺. In CH₃CN solution, Fe-54 50 exhibited weak fluorescence at 423 nm and a dramatic enhancement was observed in the presence of Cu^{2+}/Fe^{3+} . A coumarin-naphthalimide conjugate (Fe-55) with Schiff base as bridge reported by Ren and co-workers¹⁵⁴ was used for the selective detection of Fe^{3+} . Upon addition of Fe^{3+} ion to the 55 THF-H₂O (1:1, v/v) solution of Fe-55, a remarkable

enhancement of emission intensity was observed at 504 nm.

Hydroxylamine can be easily oxidized by Fe³⁺ while other metal ions have almost no interference. Chen and co-workers¹⁵⁵ used this reaction to develop a Fe³⁺-selective "turn-on" fluorescent sensor (Fe-56). In the HEPES aqueous buffer (pH 7.40, 40 mM), the fluorescence intensity ($\lambda_{em} = 615$ nm) increased significantly upon the addition of Fe³⁺, indicating that the PET process is regulated in the molecule. The fluorescence profiles of Fe-56 were unchanged in the presence of other metal

- ¹⁰ ions tested except Cu²⁺ which gave a limit enhancement at higher concentration. Confocal microscopy images established that Fe-56 could respond to intracellular Fe³⁺ level. Another PET-based sensor Fe-57¹⁵⁶, synthesized by linking three 1,8-naphthalimide fluorophores with a tris(aminoehylamine) ligand, displayed high
 ¹⁵ selectivity to Fe³⁺. In DMF–H₂O (2:3, v/v) solution, Fe³⁺ caused an outstanding enhancement in fluorescence intensity at 493 nm of Fe-57. However, the pH titration experiment indicated that the Fe³⁺-sensing behavior of Fe-57 is available only in acidic
- ³⁵ polyphenyl derivative **Fe-59** developed by Li *et al*¹⁵⁸ exhibited a Fe³⁺-selective ratiometric fluorescent signalling behavior. Upon addition of Fe³⁺ to the solution of Fe-59 in C₂H₅OH-H₂O (10:1, v/v), a new fluorescence emission peak at about 455 nm appeared and the intensity dramatically enhanced with that at 361 nm 40 decreasing. The red-shift and enhancement of the emission can be ascribed to the reformed orbital and the inhibition of the rotation of C-C bonds between each two aromatic rings, respectively. Liu and co-workers¹⁵⁹ reported a benzothiazole derivative Fe-60 which behaves as a Fe^{3+} -selective fluorescent sensor in CH₃CN. ⁴⁵ Upon binding with Fe³⁺, the emission band of **Fe-60** red-shifted from 370 nm to 420 nm and the fluorescence intensity was enhanced ~103-fold. The lowest Fe3+ concentration detected by **Fe-60** was down to 6.04×10^{-8} M. These results were mainly caused by CHEF mechanism. In mixed solvent (CH₃CN-H₂O, $_{50}$ 98:2, v/v), the fluorescence enhancement of **Fe-60** caused by Fe³⁺

was much lower than that in pure CH₃CN.

Ratiometric fluorescent sensors for Fe(III)

20

Chattopadhyay and co-workers¹⁵⁷ designed a ratiometric fluorescent sensor **Fe-58** which can discriminate between the two oxidation states (II/III) of iron depending on the pH of the ²⁵ medium. **Fe-58** undergoes a solvent assisted 1,5- σ tropic shift leading to a benzimidazole derivative (**Fe-58**'). In the CH₃CN–HEPES buffer (1:4, v/v, pH 4.5) solution of **Fe-58**', addition of Fe²⁺ caused a decrease in fluorescence at 412 nm and an increase in fluorescence at 472 nm due to the formation of ³⁰ mononuclear Fe²⁺ complex. However, a decrease at 412 nm and an increase at 482 nm were observed during titration of Fe³⁺ to **Fe-58'** solution at pH 7.4 due to the formation of binary Fe³⁺ complex. Moreover, the sensor is efficient for detecting Fe³⁺ *in vitro* by developing fluorescence images of living cells. A

Next, we discussed some FRET-based ratiometric Fe³⁺ sensors. Zhao group¹⁶⁰ designed a coumarin-rhodamine system ⁵⁵ Fe-61. In C₂H₅OH–HEPES (99:1, v/v, pH 7.2), Fe-61 showed an emission at 460 nm attributed to the coumarin moiety. Upon addition of Fe³⁺, the peak at 460 nm increased slightly, and a new fluorescence peak appeared at 580 nm attributed to rhodamine B part. The Fe³⁺-sensitive behavior of Fe-61 is due to the ring-⁶⁰ opening process of the rhodamine B unit along with the PET process suppressed simultaneously. Fe-61 did not give obvious response for other metal ions except Cu²⁺ and Ni²⁺ which induced some fluorescence quenching. Sensor Fe-62 reported by Thennarasu and co-worker¹⁶¹ was used for the selective

ratiometric detection of Fe^{3+} . The triazole appended quinolinerhodamine conjugate acts as an ionophore as well as the FRET energy acceptor and 8-piperzaino naphthalimide moiety as the donor. Upon addition of Fe^{3+} ions to sensor **Fe-62** in a CH₃CN– ⁵ Tris-HCl (1:1, v/v, pH 7.4) buffer solution, the emission at ~532 nm decreased and a new emission band centered at ~580 nm appeared. The detection limit calculated using the emission at 532 nm was ~5.0 × 10⁻⁸ M. The spirocyclic form of **Fe-62** was stable in the pH range 5.0–10.0. The fluorescence microscopic ¹⁰ experiments demonstrated the ability of sensor **Fe-62** in ratiometric monitoring intracellular Fe³⁺ ions. By combining a rhodamine spirolactam with a water-soluble ionic conjugated polymer (CP), Tan and co-workers¹⁶² designed a FRET-based ratiometric sensing platform (**Fe-63**) for Fe³⁺. In Tris-HCl (pH = ¹⁵ 7.2) buffer solution, the introduction of Fe³⁺ induced a clear see-saw-type dual-emission change, suggesting the recovery of FRET from the CP backbones (donor) (I_{max} 442 nm) to the rhodamine 6G (I_{max} 538 nm). The good response of **Fe-63** toward Fe³⁺ was observed in the neutral pH range (7.0–8.0). Finally, this sensor ²⁰ was applied to ratiometric imaging of Fe³⁺ in HeLa cells.

Anslyn and co-workers¹⁶³ developed an artificial siderophore in the form of a squaraine dye (Fe-64) which acted as a Fe^{3+} -25 selective chelator. On the addition of Fe³⁺ to a DMSO solution of Fe-64 containing one equivalent of 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU), a decrease in absorbance intensity at 555 nm with an increase at 651 nm through a pseudo-isobestic point at 580 nm was observed, which was due to a subtle geometry change of Fe- $_{30}$ 64 on chelation to Fe³⁺. However, the optical response was seen to a lesser extent for the other metals, with the exception of Zn^{2+} . Interestingly, another band at 970 nm appeared in the UV-Vis-NIR spectrum for all of the metal titrations, which was good evidence that squaraine Fe-64 was chelating to the metal ions, (MLCT) 35 and that the metal-to-ligand-charge-transfer phenomenon was responsible for the hyperchromic shift observed. Sensor Fe-65, containing terpyridine for the selective detection of Fe²⁺ and Fe³⁺, was reported by Yang and coworkers¹⁶⁴. Upon the addition of Fe²⁺ or Fe³⁺ in aqueous solution

⁴⁰ at pH 6, the sensor displayed a unique new peak around 567 nm in its absorption spectra, and the color of the solution changed from light yellow to light magenta, which was caused by MLCT. In contrast, other metal ions did not produce significant changes in the UV-vis spectra at 567 nm, except that Ag⁺ induced a new 45 band at 450 nm.

Rao and co-workers¹⁶⁵ reported a glucose-based C2derivatived colorimetric sensor (**Fe-66**) for the recognition of Fe²⁺ and Fe³⁺. Among the metal ions studied, only the Fe²⁺ or Fe³⁺ ions gave distinct visual color changes in an aqueous HEPES ⁵⁰ buffer (pH 7.2). In the absorption spectra, the changes observed with 300, 420 and 550 nm bands were suggestive of the metal ion complex formation. Inspired by their work, Du and co-workers¹⁶⁶ designed another two sugar-functionalized Fe³⁺-selective colorimetric sensors (**Fe-67** and **Fe-68**). Both **Fe-67** and **Fe-68** ⁵⁵ had good solubility in pure water and high selectivity toward Fe³⁺. Addition of other cations, including Fe²⁺ caused no detectable color changes to the naked eye.

Using per-6-amino- β -cyclodextrin (**B**) as a supramolecular host and *p*-nitrophenol (**C**) as a spectroscopic probe, Pitchumani and co-workers¹⁶⁷ developed a colorimetric method for Fe³⁺ and Ru³⁺ in water. When **C** formed a complex with **B**, the phenolic proton of **C** is abstracted by the amino groups of **B** resulting in intense yellow colour (λ_{max} 402 nm). Upon addition of Fe³⁺ or Ru^{3+} to a solution of **Fe-69** in water, the absorbance at 402 nm decreased significantly with the emergence of a band at 318 nm, accompanied by a color change from intense yellow to colorless. This phenomenon could be explained by that complexation of

- ⁵ metal ions with the amino groups of **Fe-69** resulted in simultaneous back transfer of the proton from **Fe-69** to *p*-nitrophenolate anion regenerating the colorless CD-*p*-nitrophenol complex.
- Okoro and co-workers¹⁶⁸ have developed a spectrophotometric ¹⁰ method for the determination of Fe^{3^+} using 8-hydroxyquinoline as a chromogenic reagent (**Fe-70**). The proposed method was based on the reaction of Fe^{3^+} with **Fe-70** in chloroform solution to form a metal-oxine complex having a maximum absorption at 359 nm. The method gave good recovery and the determination of Fe^{3^+}
- ¹⁵ using the method was accurate as the sophisticated AAS. In another approach, an aldazine-based colorimetric sensor **Fe-71** for Fe^{3+} was reported by Govindaraju and co-workers¹⁶⁹. Addition of Fe^{3+} led to a change in the color of **Fe-71** solution from pale yellow to violet and absorption band at 445 nm red-
- ²⁰ shifted to 575 nm, which was due to deprotonation of phenolic– OH which allowed the charge transfer from ligand to metal ions. There was no significant change in the absorption band of Fe-71 in the presence of various other metal ions tested except Al³⁺ which induced a slightly red shift.
- ²⁵ Kaur *et al*¹⁷⁰ described a pH stable hetarylazo dye (Fe-72) equipped with binding sites consisting of N, S and N, O combinations which showed selectivity towards Hg^{2+} and Fe^{3+} . In the titrations of Hg^{2+} or Fe^{3+} with Fe-72 in CH₃CN, a decrease in the intensity of the absorption band of Fe-72 at 480 nm was
- ³⁰ attended by appearance of the twin absorption bands at 531 and 564 nm. Meanwhile, distinct naked-eye color changes for Hg²⁺ (yellow to purple) and Fe³⁺ (yellow to red) were observed. Yen and co-workers¹⁷¹ introduced a coumarin derivative **Fe-73** possessing dual sensing ability for Fe³⁺ and Mg²⁺. The sensor

- ³⁵ exhibited selective and sensitive recognition towards Fe^{3+} in CH₃CN *via* color change from colorless to brown. In the UV-vis spectra, the addition of Fe^{3+} caused an increase in absorbance at 280, 298, 345 nm and appearance of a new absorption peak at 538 nm. Also it showed a significant fluorescence enhancement ⁴⁰ (70-fold) towards Mg²⁺ in CH₃CN-H₂O (8:2, v/v) solution.
- Chen and co-workers¹⁷² reported two push-pull molecules **Fe**-74 and **Fe-75** containing a donor 1,3-dithiole ring and an acceptor carbonyl group behaving as a colorimetric sensor for the detection of Fe^{3+} and Cu^{2+} . The orange solution of **Fe-74** or **Fe**-
- ⁴⁵ **75** was bleached completely to colorless after the addition of Cu^{2+} and Fe^{3+} . In the corresponding UV-vis spectra, a dramatic decrease of the absorption band at 467 nm was observed. The NMR spectra and EI mass illuminated that the sensing mechanism of **Fe-74** and **Fe-75** was that the oxidative activation ⁵⁰ of Cu^{2+} and Fe^{3+} induced the breaking of the double bond between the anthraquinone moiety and the 1, 3-dithiole ring,
- destroying the conjugated system and consequently leading to the color changes. Sensor **Fe-76**, bearing naphthol O–H and imine group and ⁵⁵ reported by Zhang and co-workers¹⁷³ showed both colorimetric detection for Fe³⁺ and fluorescence "turn-on" response for Zn²⁺. When Fe³⁺ was added to the DMSO solution of **Fe-76**, a dramatic color change from yellow to colorless was observed. In the corresponding UV-vis spectrum, a strong and broad absorption ⁶⁰ band from 413 to 480 nm disappeared. On the other hand, it led to a prominent fluorescence enhancement at 483 nm upon the addition of Zn²⁺ to **Fe-76**. Sensor **Fe-77** was developed by Yan and co-workers¹⁷⁴ for colorimetric determination of Fe³⁺ from brick-red to light red in aqueous solution at pH 7.0. Meanwhile, a ⁶⁵ decrease in the absorption intensity at 478 nm was observed, Under the optimum conditions, the detection possessed a linear

range of 9.5 to 400×10^{-8} M and a detection limit of 4.2×10^{-9} M.

Next, a few examples of colorimetric Fe^{3+} sensors based on ⁷⁰ AuNPs will be discussed. Wu *et al*¹⁷⁵ have introduced a selective colorimetric Fe^{3+} detection method using pyrophosphate ($P_2O_7^{4-}$) functionalized AuNPs (**Fe-78**). The absorbance of **Fe-78** at 535 nm decreased with increasing Fe^{3+} concentration, accompanied by the formation of a new band at 750 nm as a result of the ⁷⁵ induced aggregation of AuNPs. Kailasa and co-workers¹⁷⁶ developed *p*-amino salicylic acid dithiocarbamate functionalized AuNPs (**Fe-79**) as colorimetric sensors for Fe^{3+} . **Fe-79** was aggregated rapidly by addition of Fe^{3+} ions, yielding a color change from red to blue. In the corresponding UV-vis spectral, the characteristic SPR peak (520 nm) was shifted to 700 nm. In addition, and element is head to reach a spectral spectra

- ⁵ addition, a colorimetric, label-free, and non-aggregation-based AuNP sensor (**Fe-80**) for the highly selective detection of Fe³⁺ was reported by Han and co-workers¹⁷⁷. UV-vis spectroscopy of an aqueous dispersion of AuNPs in the presence of HCl and thiourea yielded a distinct surface plasmon (SP) absorbance peak
- ¹⁰ at 525 nm. The addition of Fe^{3+} ions caused the absorbance peak to sharply decrease in intensity, which was attributed to the Fe^{3+} catalyzed leaching of AuNPs in the acidic thiourea system.

Different from AuNPs, gold nanorods (AuNRs) possess two plasmon absorption bands: longitudinal plasmon absorption band

- ¹⁵ (LPAB) and transverse plasmon absorption band (TPAB). Liu *et* al^{178} developed a non-aggregation colorimetric sensor (**Fe-81**) for the determination of Fe³⁺ based on the signal amplification effect of catalyzing H₂O₂ to oxidize AuNRs. The initial AuNRs exhibited two Plasmon absorption bands located at 716 nm for
- ²⁰ LPAB and at 520 nm for TPAB, respectively. When Fe^{3+} was added in the AuNRs-H₂O₂-HCl system, the blueshift of LPAB was observed with decrease of the corresponding absorbance, resulting in that plasmon absorption bands located at 558 nm for TPAB. The phenomenon could be explained as Fe^{3+} had strong ²⁵ catalytic effect on the oxidation reaction between H₂O₂ and
- AuNRs, leading to the changes in the gold nanostructures from rods to spheres.

Compared with AuNPs, AgNPs are much less stable due to the chemical degradation of AgNPs under the functionalization

³⁰ conditions and the exposure of the silver surface to oxidation¹⁷⁹. However, the benefit of using AgNPs rather than AuNPs is that the molar extinction coefficient is 100-fold greater, which increases sensitivity and leads to improved visibility. Li and coworkers¹⁸⁰ employed a pyridyl-appended calyx[4]arene to modify ³⁵ AgNPs with a distinct colorimetric response to Fe³⁺. Free Fe-82 in solution showed one major absorption band centered at 414 nm. Among various metal ions, only Fe³⁺ ions induced the anticipated color change from yellow to colorless, corresponding to an absorbance peak at 364 nm, which was attributed to the ⁴⁰ Fe³⁺-induced aggregation of AgNPs. In a similar approach, Menon and co-workers¹⁸¹ reported a highly selective and ultrasensitive calyx[4]arene modified silver nanosensor (Fe-83) for Fe³⁺ recognition. The color of Fe-83 was vivid yellow and displayed a characteristic absorption band at 422 nm. However, a

- ⁴⁵ color change to pale red and the appearance of a new band at 554 nm took place due to the aggregation of AgNPs in the presence of Fe³⁺. The linear range for Fe³⁺ using **Fe-83** was found to be 10–100 nM, and the detection limit was 9.4 nM. In addition, Sahoo and co-workers¹⁸² have developed a nanosensing system ⁵⁰ (**Fe-84**) by the surface functionalization of AgNPs with β -alanine
- ⁵⁰ (Pe-6+) by the surface functionalization of AgIATS with *p*-atainlife dithiocarbamate for the selective recognition and monitoring of Hg²⁺ and Fe³⁺ ions. Addition of Hg²⁺ and Fe³⁺ to Fe-84 solution resulted in the instantaneous decoloration accompanying the disappearance of the SPR absorption maxima at 402 nm.
 ⁵⁵ However, the addition of other metals showed no obvious color or spectral changes except Al³⁺ which resulted in a slight red shift in the SPR band of AgNPs. The DLS analyses suggested the aggregation of AgNPs upon addition of Hg²⁺ and Fe³⁺.

Aime *et al*¹⁸³ have developed a DTPA-bis-salicylamide based ligand [DTPA(PAS)₂] (**Fe-85**), able to form stable heterobimetallic complexes with Gd^{3+} and Fe^{3+} ions. The Gd-Fe complex ([Gd-DTPA(PAS)₂]₂Fe or [Gd-DTPA(PAS)₂]₃Fe

⁶⁵ depending on the pH of the aqueous solution) exhibited a slight increased relaxivity respect to the precursor complex [Gd-DTPA(PAS)₂]²⁻ (from 4.6 to 5.7 mM⁻¹s⁻¹ at 25 °C and 20 MHz), which might be ascribed to the increased molecular size of the complex. In a similar approach, Parac-Vogt *et al*¹⁸⁴ reported a DTPA-bis(3-hydroxytyramide) [DTPA(HTA)₂] ligand (**Fe-86**) for complexing with Gd³⁺ and Fe³⁺. Special attention was paid to avoid the formation of polymeric species by using tripodal nitrilotriacetic acid (NTA) ligand. A tris-hydroxamate ligand 5 (**Fe-87**) was exploited to complex with Fe³⁺ in another Fe³⁺ sensitive MRI contrast agent¹⁸⁵. The Fe³⁺ chelation restricted free rotation at the Gd³⁺ center, thereby increasing the relaxivity of the contrast agent (from 5.4 to 8.5 mM⁻¹s⁻¹ at 20 MHz) without changing its molecular weight. In addition, Raymond and co-

- ¹⁰ workers¹⁸⁶ developed a series of bis-bidentate ligands (Fe-88, Fe-89, and Fe-90) designed comprising two different binding sites, hydroxypridinone-based ligand HOPO selective for Gd³⁺ and terephthalamide-baed ligand TAM for Fe³⁺. Relaxivity studies indicated that the high-molecular-weight clusters effectively 15 slowed the molecular tumbling. This and the fast water exchange
- produce high relaxivity at the high magnetic fields (the relaxivity of $[Gd_2(Fe-80)_3Fe)]$ is $r_{1p} = 21 \text{ mM}^{-1}\text{s}^{-1}$ per Gd(III) at 90 MHz).

5. Cobalt

Cobalt is an essential trace element in both prokaryotes and ²⁰ eukaryotes. Cobalt occurs less frequently in metalloproteins than other transition metals due to its low abundance in nature as well as competition with iron¹⁸⁷. Generally, biological cobalt is used as a cofactor in the corrinoid form. For example, cobalt is a core component of vitamin B12 which is involved in DNA synthesis, ²⁵ formation of red blood cells and maintenance of the nervous system¹⁸⁷⁻¹⁸⁹. However, unregulated cobalt is toxic to cells: the deficiency leads to anemia, retarded growth, loss of appetite and is one of the main risk factors for cardiovascular diseases¹⁹⁰⁻¹⁹¹; excess dose causes diarrhea, giddiness cardiomyopathy, ³⁰ hyperglycemia, cancer and so on¹⁹¹, the maximum tolerable level

of Co is *ca*. 10 ppm¹⁹².

5.1 Fluorescent sensors for Cobalt

"Turn-off" fluorescent sensors for Cobalt

Zamochnick and Rechnitz¹⁹³ developed a fluorescence ³⁵ extinction method for the determination of Co^{2+} in the ppb range, which is based on the reaction between Co^{2+} and the fluorescent aluminium-Superchrome Blue Black Extra (**Co-1**) complex. The fluorescence intensity of the complex decreases sharply in the presence of Co^{2+} , the decrease being linear over a concentration ⁴⁰ range of 0.001 µg to 0.02 µg per ml of final solution. Although the method exhibited high sensitivity and reproducibility (the average error is 1.29% when reading the fluorescent intensities from the potentionmetric recorder), the selectivity could be improved further (Cr^{3+} , Cu^{2+} , Ni^{2+} , Fe^{3+} , Al^{3+} and Cd^{2+} all ⁴⁵ showed some interference).

Monteil-Rivera¹⁹⁴ studied the fluorescence quenching of a Leonardite humic acid (LHA) by Co²⁺ at different pH. The interaction was monitored by emission fluorescence and by synchronous fluorescence with two different offsets ($\Delta\lambda_1 = 20$ nm ⁵⁰ and $\Delta\lambda_2 = 80$ nm). It was found that synchronous fluorescence performed with $\Delta\lambda_1$ resolves the individual components of the heterogeneous material better than emission or synchronous fluorescence performed with $\Delta\lambda_2$; however, it gives rise to fluctuating values rather than steadily decreasing values as ⁵⁵ expected for pure quenching curves. The quenching profiles obtained for pH 5.0, 6.0, and 7.0 by emission and synchronous ($\Delta\lambda_2$) fluorescence were analyzed by two methods: 1. a non-linear least-squares procedure first proposed by Weber *et al*¹⁹⁵⁻¹⁹⁶; and 2. a pH-dependent discrete logK spectrum model initially ⁶⁰ introduced by Westall *et al*¹⁹⁷.

Montalti *et al*¹⁹⁸ have developed a fluorescent nanosensor for heavy metal ion by incorporating small-molecule sensors (Co-2) into silica colloids. These moieties possess a dansyl unit as a ⁶⁵ fluorophore and a polyamine chain as a receptor. The addition of Cu^{2+} , Co^{2+} or Ni^{2+} induces a strong quenching of the fluorescence intensity even at nanomolar concentrations. The high sensitivity is possible because the nanoparticle structure, in which a high density of sensor units is present, allows the occurrence of 70 multicomponent cooperative photophysical processes. Sensor **Co-3** was synthesized by Zhang and co-workers¹⁹⁹ for sensing Co^{2+}

using DPA as a recognition group and quinazoline as a reporting group. The fluorescence intensities of **Co-3** at 467 nm decrease with increasing concentration of Co²⁺, which is attributed to ⁷⁵ cation-induced inhibition of ESIPT. Shamsipur *et al*²⁰⁰ developed a cobalt sensing system by incorporating **Co-4** as a neutral cobaltselective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a lipophilic anionic additive. The response of the sensor is based on the fluorescence ⁸⁰ quenching of **Co-4** by Co²⁺. The optode membrane revealed good selectivity, reproducibility and high stability. An amidelinked complex $Co-5^{201}$ designed by Zhang and co-workers, was used to recognize Co^{2+} in $C_2H_5OH-H_2O$ (1:1, v/v) solution, with the ruthenium(II) tris(bipyridine) moiety selected as a fluorophore and the multi-substituted phenol unit chosen as a

- ⁵ receptor. Addition of Co^{2+} to **Co-5** resulted in a remarkable quenching of fluorescence signal. Other transition metal ions showed no obvious interference for Co^{2+} detection except Cu^{2+} . Wang *et al*²⁰² presented an ICT-based chromophore **Co-6** used as a sensor with a "turn-off" sensing capability for Co^{2+} . With the
- ¹⁰ addition of Co²⁺ to Co-6 in DMF under buffered conditions, a remarkable quenching of fluorescence signal was observed. Soon after, another phenanthroline-based compound (Co-7)²⁰³ was designed by replacing pyridine with thiophene. Co-7 could be used to detect K⁺ ratiometricly and Co²⁺ with the phenomenon of ¹⁵ fluorescence quenching.

"Turn-on" fluorescent sensors for Cobalt

Some fluorimetric methods²⁰⁴⁻²⁰⁹ for the determination of cobalt were based on its fluorescence reactions with fluorophores and oxidizing agents such as hydrogen peroxide²⁰⁵⁻²⁰⁹ and

- ²⁰ bromate²⁰⁴. These oxidization reactions can be divided into two types: one is the cobalt-catalytic oxidation of reduced fluorescein²⁰⁶ or spiro form fluorescein-hydrazide²⁰⁷ with hydrogen peroxide; the other is the oxidation of a ligand (PAPH²⁰⁴, p-hydroxy-2-anilinopyridine²⁰⁵, APTSQ²⁰⁸, CPBSQ ²⁵ and FCPBSQ²⁰⁹) to a fluorescent product as the complex
- formation with cobalt ions. These proposed methods can output "turn-on" fluorescence signals and show high sensitivity (the detection limit was at nM/ng mL⁻¹ level); however, oxidizing agents and the basic medium are required.
- ³⁰ Besides, sensor **Co-8** along the lines of ICT concept, reported by Mashraqui and co-workers²¹⁰, exhibited Co²⁺ selective optical responses, which include 112 nm red shift in absorption (from 368 to 480 nm) and a dramatic 37-fold emission enhancement at 428 nm in the buffered CH₃OH–H₂O (1:1 v/v) system. Further,
- ³⁵ Chang *et al*²¹¹ developed a reaction-based sensor **Co-9** for selective "turn-on" fluorescence detection of Co^{2+} . **Co-9** displays weak fluorescence in 50 mM Tris buffer at pH 7.4, but treatment with Co^{2+} triggers a *ca*. 18-fold fluorescence increase within 2h resulting from cobalt-mediated oxidative C–O bond cleavage.
- ⁴⁰ The highly specific response of **Co-9** for Co²⁺ results from the dual requirement for metal binding and O₂ reactivity. Confocal experiments established that **Co-9** can reliably monitor increases or decreases in exchangeable Co²⁺ pools in living cells.

⁴⁵ *Ratiometric fluorescent sensors for Cobalt* The only example of ratiometric fluorescent cobalt sensors,

coumarin-zinc porphyrin-bipyridine **Co-10**²¹², was developed by Lin and co-workers. The addition of cobalt induces a marked decrease (overall 7.5 fold) in the zinc porphyrin acceptor ⁵⁰ emission intensity around 606 nm and tremendous increase (overall 85.2 fold) in the coumarin donor fluorescence intensity around 432 nm. The EET efficiency of the sensor is modulated by the energy acceptor molar absorptivity variations upon cobalt binding, which is then transformed into a large ratiometric ⁵⁵ fluorescence response at two wavelengths. However, as paramagnetic Co²⁺ has fluorescence quenching nature, Co²⁺ needs to be oxidated to diamagnetic Co³⁺ by H₂O₂ in the assay experiment.

5.2 Colorimetric sensors for Cobalt

- Kumar and co-workers²¹³ reported a differential chromogenic 60 sensor Co-11 for multi-ion (Co²⁺ and Ni²⁺/Cu²⁺) analysis. A solution of Co-11 in sodium acetate-acetic acid buffer (pH 4.0) on addition of Co²⁺, Ni²⁺ and Cu²⁺ gave respective blue (λ_{max} 620 nm), yellowish pink (λ_{max} 380, 460 and 510 nm) and yellow (λ_{max} 65 460 nm) colors. Govindaraju et al¹² developed a selective colorimetric sensor (Co-12) for Co2+ based on coumarinconjugated thiocarbanohydrazone. Upon the addition of Co^{2+} , the absorbance band of Co-12 at 470 nm red-shifted to 510 nm and the color of the solution changed from yellow to deep pink ⁷⁰ ascribed to the formation of a push-pull Co^{2+} Schiff base complex $[(\text{Co-12})_2\text{Co}]^{2+}$. *E. coli* exposed to Co^{2+} followed by Co-12 developed a deep-pink color, indicating that the sensor could be used as a staining agent for Co²⁺ in microorganisms. A spiropyran-amide-DPA linkage (Co-13), developed by Shiraishi 75 et al^{214} , showed selective colorimetric response to Co²⁺. Co-13 exists as a colorless spirocyclic (SP) form in the dark or under UV irradiation. UV irradiation of Co-13 with Co²⁺, however, leads to coloration with a strong merocyanine (MC) band at 472 nm. This is promoted by strong coordination of Co^{2+} with amide
- ⁸⁰ oxygen, leading to efficient photoisomerization of the spiropyran moieties. The isomerisation occurs at pH 7.0–12.0 and terminates within 1h. Other metal ions did not promote coloration and affect Co^{2+} -promote isomerisation except that addition of Cu^{2+} leads to significant decrease in the MC band.

A metal ion receptor **Co-14**, reported by Kim *et al*²¹⁵ and containing quinoline and pyridylaminophenol, acts as a colorimetric sensor for Co²⁺ by changing color from colorless to yellow. The color change is selective for Co²⁺ and found to be due to an absorption band that grows in at 465 nm. In a similar ⁹⁰ approach, the same group²¹⁶ developed a Co²⁺-selective colorimetric sensor **Co-15** in a bis-tris buffer (10 mM, pH 7.0) solution containing 0.1% CH₃OH by the combination of julolidine and quinoline. Among the various metal ions, only Co²⁺ caused a distinct color change from yellow to orange. In the ⁹⁵ corresponding spectra, the absorption bands at 441 and 459 nm decreased and two new bands at 390 and 500 nm appeared.

Huang *et al*²¹⁷ developed leaf-like poly (*p*-phenylenediamine) (**Co-16**) microcrystal applied to the visual detection of Co^{2+} . **Co-16** could specifically interact with Co^{2+} , which results in a new ¹⁰⁰ strong absorption peak at 454 nm following the disappearance of the two absorption peaks at 342 and 540 nm. A noticeable purpleto-brown color change occurred within five minutes if Co^{2+} solution was mixed with **Co-16**, and Co^{2+} in the range 0.5–100 μ M could be spectrometrically detected with the limit of detection of 0.35 μ M. The interaction between **Co-16** and Co²⁺ is identified to be an etching process. Etch cracks appear on the smooth surface of **Co-16** with the addition of Co²⁺ seen from the

SEM images. Finally, a practical application of Co-16 for light ${}_{5}$ scattering imaging of Co²⁺ in fish tissues was developed.

Li *et al*²¹⁸ developed bifunctionalized (triazole-carboxyl) AgNPs (Co-17) that have a cooperative effect on recognition of Co^{2+} over other metal ions tested. The presence of Co^{2+} ion 10 induces a distinct color change from yellow to red. In the corresponding UV-vis spectra, Co2+ led to a decrease in absorption intensity at 405 nm, and a dramatic increase at 550 nm. Co-17 became aggregated in solution in the presence of Co^{2+} through cooperative metal-ligand interaction. Jain and co-15 workers²¹⁹ developed water dispersible stable AuNPs as colorimetric sensors (Co-18) for selective signalling of Co²⁺, in which calix[4]pyrrole octa-hydrazide (CPOH) acts as a reducing and stabilizing agent. Among all the metal ions investigated, only Co²⁺ ions gave sharp color change from ruby red to blue. The 20 color change with Co²⁺ ions could be easily noticed even at nanomolar concentration. In the corresponding UV-vis spectrum, a 55 nm red shift was observed in the presence of Co^{2+} . In addition, Co-18 showed fluorescence quenching at 698 nm towards Co^{2+} .

25 6. Nickel

Nickel plays important roles in the biology of microorganisms and plants²²⁰ where it participates in a variety of cellular processes, particularly in energy and nitrogen metabolism²²¹. Of the eight known nickel-containing enzymes, all but glyoxylase I ³⁰ catalyze the use and/or production of gases central to the global carbon, nitrogen, and oxygen cycles²²¹. The average intake of nickel by humans ranges from 300–600 µg day^{-1,222-223} Loss of nickel homeostasis is harmful to both prokaryotic and eukaryotic organisms²²⁴. Nickel toxicity can result in adverse health effects ³⁵ ranging from allergic dermatitis to lung and nasal sinus cancers²²⁵.

6.1 Fluorescent sensors for Nickel

"Turn-off" fluorescent sensors for Nickel

A series of fluorescent sensors for Cu²⁺ and Ni²⁺ were designed by Fabbrizzi *et al*²²⁶⁻²²⁷ using a supramolecular approach: an anthracene fragment (the signalling subunit) has been linked to either a cyclic (**Ni-1** and **Ni-3**) or a noncyclic (**Ni-2** and **Ni-4**) ⁵ quadridentate ligand (the receptor). Occurrence of the metalreceptor interaction is signalled through the quenching of anthracene fluorescence based on a PET (**Ni-1** and **Ni-2**) or an

- energy-transfer (Ni-3 and Ni-4) mechanism. However, one major drawback of these sensors is the need for organic/aqueous solvent ¹⁰ mixtures as the working media due to the pronounced
- lipophilicity of the anthracene fragment. To improve this system's analytical practicability, the noncyclic dioxotetramine ligand of Ni-2 was appended to the water-soluble $[Ru^{II}(bipy)_3]^{2+}$ unit (bipy = 2, 2'-bipyridine) to generate an efficient "turn-off" ¹⁵ fluorescent sensor Ni-5²²⁸ for sensing Ni²⁺ and Cu²⁺ in water. In
- addition, Luo *et al*²²⁹ reported a ligand (Ni-6) consisting of fluorenyl and dioxotetraaza units. Ni-6 can form a stable complex

with Ni²⁺ accompanied by fluorescence quenching of the ligand, which is ascribed to electron transfer from the Ni²⁺ center to ²⁰ fluorenyl.

Daunert and co-workers²³⁰ developed a sensing system (**NBP**-**Ni-7**) for Ni²⁺ based on the nickel binding protein (NBP) from *Escherichia coli* labelled with the fluorophore (**Ni-7**). When the NBP binds nickel, it undergoes a conformational change that can ²⁵ be used as the basis for an optical sensing system for nickel. In a spectrofluorimetric assay, there was a maximum of 65% quenching of the fluorescence signal produced by **NBP-Ni-7** in the presence of Ni²⁺. Selectivity studies conducted with other divalent metals showed that fluorescence quenching for Co²⁺ was ³⁰ similar in magnitude but with much lower sensitivity than for Ni²⁺. **NBP-Ni-7** was also used to develop assays in microtiter plate and fiber optic bundle formats.

"Turn-on" fluorescent sensors for Nickel

- ³⁵ Newport Green DCF (Ni-8), a commercial metal-specific fluorescent indicator, has been demonstrated an exceptionally sensitive probe for Ni²⁺ in solution²³¹. 100 μ M Ni²⁺ enhances the fluorescence of Ni-8 approximately 13-fold without a spectral shift⁷⁹. The binding of metal ions at the DPA receptor unit will
- ⁴⁰ block the PET between DPA and the fluorophore and thus restore the fluorescence. Ni-8 have been used to detect intracellular Ni²⁺ accumulation²³², measure the cellular uptake of Ni²⁺ in human monocyte-derived dendritic cells²³³ and quantify Ni²⁺-binding metalloproteins involved in human nickel allergy which is the ⁴⁵ most common form of human contact hypersensitivity²³⁴.

Su and co-workers²³⁵⁻²³⁶ synthesized an acrylic monomer bearing coumarin moieties, 7-hydroxy-4-methyl-8-(4'acryloylpiperazin-1'-yl)methylcoumarin (Ac-HMPC). It was then copolymerized with acrylamide (AM)²³⁵ or N-vinylpyrrolidone ⁵⁰ (VP)²³⁶ to obtain water-soluble blue fluorescent materials, poly(Ac-HMPC-co-AM) (Ni-9) and poly(Ac-HMPC-co-VP) (Ni-10), respectively. The polymer sensors are selective to Ni²⁺, with the increase in the fluorescence intensity depending on Ni²⁺ concentrations. The fluorescence enhancement was due to the ⁵⁵ piperazine ring acting as a ligand for Ni²⁺ and as a PET switch.

Chang and co-workers²³⁷ have developed a "turn-on" fluorescent sensor Ni-11 for the detection of Ni²⁺. Ni-11 combines a BODIPY dye reporter with N, N-bis[2-(carboxylmethyl) thioethyl]amine (CTEA) receptor to satisfy 60 Ni²⁺. It was proposed that the lone pair on the tertiary amine of CTEA was engaged in PET with the excited BODIPY fluorophore, which was responsible for the weak fluorescence of Ni-11 ($\Phi = 0.002$). Addition of 50 equiv of Ni²⁺ triggers a ca. 25fold fluorescence enhancement ($\Phi = 0.055$) with no emission 65 maxima ($\lambda_{em} = 507$ nm) in 20 mM HEPES at pH 7.1. Ni-11 did not yield a response in the presence of other biologically relevant metal ions. Confocal microscopy experiments show that this indicator can reliably monitor changes in Ni²⁺ levels within living mammalian cells. Cho *et al*²³⁸ also chose CTEA as Ni²⁺ receptor 70 and reported two fluorescent sensors (Ni-12 and Ni-13). When Ni²⁺ was added to Ni-12 or Ni-13 in HEPES buffer, the fluorescence intensity increased gradually without affecting the absorption spectrum, presumably because of the blocking of PET by the complexation with the metal ion. **Ni-13** gave much larger fluorescence enhancement factors (26) to Ni²⁺ for the one- and two-photon processes than **Ni-12** (5), which can be attributed to ⁵ the introduction of the prolinamide ring reducing the vibrational relaxation pathways compared to the open-chain analogue (**Ni-12**). Both **Ni-12** and **Ni-13** showed high selectivity for Ni²⁺ over other metals. Finally, **Ni-13** was used to detect Ni²⁺ ions in fresh

¹⁰ **Table 1** Fluorescent peptidyl sensors

fish organs at 90–175 µm depth through TPM.

Peptide	Sequence ^a
Ni-14	$Dap(LR^b)GlyHisDap(DE^c)SerSer-NH_2$
Ni-15	$Dap(DE)GlyHisDap(LR)SerSer-NH_2$
Ni-16	$Dap(LR)GlyHisDapSer(DE)Ser-NH_2$
Ni-17	Dap(LR)GlyHisSerSerDap(DE)-NH ₂
Ni-18	Dap(LR)AspHisDap(DE)SerSer-NH ₂

a Fluorophores attached to the β -amine of the Dap residue are listed in brackets.

In addition, hexapeptides (Ni-14~Ni-18) incorporating two ¹⁵ fluorophores (7-diethylaminocoumarin-3-carboxylic acid, DE, and lissamine rhodamine B sulfonyl chloride, LR) flanking a tripeptide sequence that binds Ni²⁺ and Cu²⁺ with high affinity were reported by Imperiali *et al*²³⁹. The fluorescence response of the peptides to each species is distinctly different: binding of Cu²⁺

²⁰ by the sensor generates fluorescence quenching of both fluorophores, whereas binding of Ni²⁺ by the same species produces a FRET signal (the peak due to emission at 588 nm increased significantly).

6.2 Colorimetric sensors for Nickel

25

Kumar and co-workers²⁴⁰ developed a colorimetric sensor (Ni-19) for simultaneous estimation of Cu²⁺ and Ni²⁺. The absorbance properties of Ni-19 were carried in 10 mM HEPES buffered CH₃OH–H₂O (4:1, v/v, pH 7.0 ± 0.1). On addition of Cu²⁺, Ni-19 ³⁰ shows ~100 nm red shift from λ_{max} 500 nm to 600 nm which induces a color change from red to blue. In the case of Ni²⁺, a red shift ~250 nm from λ_{max} 500 nm to 750 nm with concomitant appearance of a new band at 385 nm is observed, which caused the color change from red to green. Zhang *et al*²⁴¹ described a ³⁵ quinoline derivative (**Ni-20**) which was used for the selective colorimetric detection of Ni²⁺. A dramatic color change from yellow to red was observed by the naked eye upon the addition of Ni²⁺ to **Ni-20** in DMSO–HEPES buffer (1:1, v/v, pH 7.4). In the corresponding UV-vis spectra, the formation of a new absorption ⁴⁰ band at 525 nm and the decrease at 464 nm are consistant with this color change.

7. Conclusions

This critical review covers the chemical sensors for the first-row d-block metals (except Cu and Zn): Cr, Mn, Fe, Co, and Ni. 45 Attention is given to the contributions of fluorescent sensors which are classified into three types: "turn-off", "turn-on", and ratiometric, colorimetric sensors, and responsive MRI contrast agents. Fluorescence imaging is a highly selective and sensitive technique with fast response times; colorimetry allows on-site 50 and real-time detection and can be carried out by naked eyes; MRI offers the ability to capture three-dimensional images of living specimens with exquisite anatomical resolution. The successful development of systems that can detect the first-row transition metals based on these methods is clearly demonstrated. 55 Duan et al⁵⁴ presented a simple FRET-based approach to ratiometric fluorescence sensing of Cr3+ in aqueous solution using glutathione and glucose as building blocks, inspired by the binding motifs of Cr³⁺ in GTF. Canary and co-workers⁸⁴ rationally designed a Mn2+-selective ligand from bapta, which 60 was further linked to a fluorescein fluorophore for the fluorescent sensing of Mn²⁺. On the basis of hydroxylamine oxidization by Fe³⁺, Chen et al¹⁵⁵ developed a BODIPY-based sensor for the selective detection of Fe³⁺. Nagasawa et al⁹⁶ presented a Golgitargeted fluorescent sensor for Fe²⁺ based on N-oxide chemistry. 65 The only example of ratiometric fluorescent cobalt sensors, coumarin-zinc porphyrin-bipyridine, was reported by Lin and coworkers²¹². Huang *et al*²¹⁷ applied leaf-like poly (pphenylenediamine) microcrystal to the visual detection of Co²⁺ in fish tissues based on an etching process. Chang et al^{237} developed 70 a Ni2+-selective "turn-on" fluorescent sensor which combined a BODIPY dye with a CTEA receptor and was applied to imaging in living cells. Further, Cho group²³⁸ linked the CTEA receptor to acedan, a two-photon fluorophore, for the detection of Ni²⁺ in fish organs. Merbach et al^{127} developed a bipyridine-based 75 heterotritopic ligand which could self-assemble with Fe²⁺ and Gd³⁺ into a metallostar structure, with a much larger relaxivity compared with its parent Gd^{3+} complex.

However, there is still much scope to improve theses sensors: 1) sensors for Sc, Ti, and V need further investigation; 2) 80 responsive MRI contrast agents for Cr, Mn, Co, Ni are still blank; 3) further development of ratiometric fluorescent sensors for Cr⁶⁺, Mn^{2+} , and Ni^{2+} is necessary; 4) many of the sensors for Cr^{3+} and Fe³⁺ only work in pure organic or unbuffered aqueous solutions, while Cr³⁺ and Fe³⁺ are known to hydrolyze in water releasing 85 protons which may interfere the metal sensing; 5) it is still a challenge to apply MRI sensors in living systems. In addition, given that fluorescence imaging is difficult at more than a few millimetres in depth within a tissue specimen and MRI has low selectivity and sensitivity, dual-modality (combined 90 MRI/fluorescence) imaging can provide more information on targeted molecules than a single imaging modality and is useful for biomedical research and clinical practice²⁴². On the basis of the advantages of the fluorometric, MRI, and colorimetric methods and these existing challenges, we hope further *s* investigation and development of sensors for the first-row dblock metal ions.

Acknowledgements

This work was financially supported by NSF of China (21136002, 21422601 and 21421005), National Basic Research ¹⁰ Program of China (2013CB733702), Ministry of Education (NCET-12-0080), Liaoning NSF (2013020115) and Fundamental Research Funds for the Central University (DUT14ZD214).

Notes and references

^a State Key Laboratory of Fine Chemicals, Dalian University of 15 Technology, No. 2 Linggong Road, High-tech District, Dalian 116024, China. Fax: +86 411 84986306; Tel:+86 411 84986327; E-mail: <u>fanjl@dlut.edu.cn</u> pengxj@dlut.edu.cn

- 1 K. P. Carter, A. M. Young and A. E. Palmer, *Chem. Rev.*, 2014, 114, 4564-4601.
- 2 T. McKee and J. R. McKee, *Biochemistry: An Introduction*, McGraw-Hill Companies, Inc. New York, China Science Press, 2nd edn, 1999.
- 3 C. K. Mathews and K. E. Van Holde, Biochemistry, The
- 25 Benjamin/Cummings Publishing Company, Inc. Menlo Park, 2nd edn, 1996.
- 4 C. S. Bonnet and É. Tóth, Future Med. Chem., 2010, 2, 367-384.
- 5 T. W. Bell and N. M. Hext, Chem. Soc. Rev., 2004, 33, 589-598.
- J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan and W. Liu, Org. Lett.,
 2007, 9, 4567-4570.
- 7 X. Lu, W. Zhu, Y. Xie, X. Li, Y. Gao, F. Li and H. Tian, *Chem. Eur. J.*, 2010, 16, 8355-8364.
- 8 R. Y. Tsien, Fluorescent and Photochemical Probes of Dynamic Biochemical Signals inside Living Cells, ed. A. W. Czarnik,
 ¹⁵ American Chemical Society, Washington DC, 1993.
- 9 M. Formica, V. Fusi, L. Giorgi and M. Micheloni, *Coord. Chem. Rev.*, 2012, 256, 170-192.
- 10 S. K. Sahoo, D. Sharma, R. K. Bera, G. Crisponi and J. F. Callan, *Chem. Soc. Rev.*, 2012, 41, 7195-7227.
- ⁴⁰ 11 D. Xiong and H. Li, *Nanotechnology*, 2008, 19, 465502-465508.
- 12 D. Maity and T. Govindaraju, *Inorg. Chem.*, 2011, 50, 11282-11284.
- 13 E. L. Que and C. J. Chang, Chem. Soc. Rev., 2010, 39, 51-60.
- 14 J. Costa, R. Ruloff, L. Burai, L. Helm and A. E. Merbach, J. Am. Chem. Soc., 2005, 127, 5147-5157.
- ⁴⁵ 15 M. C. Heffern, L. M. Matosziuk and T. J. Meade, *Chem. Rev.*, 2013, 114, 4496-4539.
 - 16 A. Zayed and N. Terry, Plant Soil, 2003, 249, 139-156.
 - 17 W. T. Cefalu and F. B. Hu, Diabetes Care, 2004, 27, 2741-2751.
 - 18 A. K. Singh, V. K. Gupta and B. Gupta, *Anal. Chim. Acta*, 2007, 585, 171-178.
 - 19 J. B. Vincent, Nutr. Rev., 2000, 58, 67-72.
 - 20 M. Zhang, Z. Chen, Q. Chen, H. Zou, J. Lou and J. He, *Mutat. Res-Genet. Toxicol. E. M.*, 2008, 654, 45-51.

- 21 M. Costa and C. B. Klein, CRC Crit. Rev. Toxicol., 2006, 36, 155-55 163.
- 22 F. Y. Saleh, G. E. Mbamalu, Q. H. Jaradat and C. E. Brungardt, *Anal. Chem.*, 1996, 68, 740-745.
- 23 L. Zhang, J. Wang, J. Fan, K. Guo and X. Peng, *Bioorg. Med. Chem. Lett.*, 2011, 21, 5413-5416.
- 60 24 B. Tang, T. Yue, J. Wu, Y. Dong, Y. Ding and H. Wang, *Talanta*, 2004, 64, 955-960.
 - 25 D. Karak, A. Banerjee, A. Sahana, S. Guha, S. Lohar, S. S. Adhikari and D. Das, *J. Hazard. Mater.*, 2011, 188, 274-280.
- A. P. de Silva, T. Gunnlaugsson and T. E. Rice, *Analyst*, 1996, 121,
 1759-1762.
 - 27 R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, *Chem. Soc. Rev.*, 1992, 21, 187-195.
- 28 J. F. Callan, A. P. de Silva and D. C. Magri, *Tetrahedron*, 2005, 61, 8551-8588.
- 29 M. Sarkar, S. Banthia and A. Samanta, *Tetrahedron Lett.*, 2006, 47, 7575-7578.
- 30 D. Wang, Y. Shiraishi and T. Hirai, *Tetrahedron Lett.*, 2010, 51, 2545-2549.
- 75 31 Z. Li, W. Zhao, Y. Zhang, L. Zhang, M. Yu, J. Liu and H. Zhang, *Tetrahedron*, 2011, 67, 7096-7100.
 - 32 S. Wu, K. Zhang, Y. Wang, D. Mao, X. Liu, J. Yu and L. Wang, *Tetrahedron Lett.*, 2014, 55, 351-353.
 - 33 S. Guha, S. Lohar, A. Banerjee, A. Sahana, I. Hauli, S. K. Mukherjee, J. S. Matalobos and D. Das, *Talanta*, 2012, 91, 18-25.
- 34 H. Kim, K. B. Kim, E. J. Song, I. H. Hwang, J. Y. Noh, P.-G. Kim, K.-D. Jeong and C. Kim, *Inorg. Chem. Commun.*, 2013, 36, 72-76.
- 35 X. Chen, T. Pradhan, F. Wang, J. S. Kim and J. Yoon, *Chem. Rev.*, 2011, 112, 1910-1956.
- 85 36 H. N. Kim, M. H. Lee, H. J. Kim, J. S. Kim and J. Yoon, *Chem. Soc. Rev.*, 2008, 37, 1465-1472.
 - 37 K. Huang, H. Yang, Z. Zhou, M. Yu, F. Li, X. Gao, T. Yi and C. Huang, Org. Lett., 2008, 10, 2557-2560.
- 38 J. Mao, Q. He and W. Liu, *Anal Bioanal Chem*, 2010, 396, 1197-1203.
- 39 Q. Meng, W. Su, X. Hang, X. Li, C. He and C. Duan, *Talanta*, 2011, 86, 408-414.
- 40 A. J. Weerasinghe, C. Schmiesing and E. Sinn, *Tetrahedron Lett.*, 2009, 50, 6407-6410.
- 95 41 Y. Zhou, J. Zhang, L. Zhang, Q. Zhang, T. Ma and J. Niu, Dyes Pigm., 2013, 97, 148-154.
 - 42 S. Saha, P. Mahato, U. R. G, E. Suresh, A. Chakrabarty, M. Baidya, S. K. Ghosh and A. Das, *Inorg. Chem.*, 2011, 51, 336-345.
- 43 D. Liu, T. Pang, K. Ma, W. Jiang and X. Bao, *RSC Adv.*, 2014, 4, 2563-2567.
 - 44 P. Mahato, S. Saha, E. Suresh, R. Di Liddo, P. P. Parnigotto, M. T. Conconi, M. K. Kesharwani, B. Ganguly and A. Das, *Inorg. Chem.*, 2012, 51, 1769-1777.
- 45 H. Wu, P. Zhou, J. Wang, L. Zhao and C. Duan, *New J. Chem.*, 2009,
 33, 653-658.
- 46 J. Y. Jung, S. J. Han, J. Chun, C. Lee and J. Yoon, *Dyes Pigm.*, 2012, 94, 423-426.

- V. Bravo, S. Gil, A. M. Costero, M. N. Kneeteman, U. Llaosa, P. M. E. Mancini, L. E. Ochando and M. Parra, *Tetrahedron*, 2012, 68, 4882-4887.
- 48 S. Goswami, A. K. Das, A. K. Maity, A. Manna, K. Aich, S. Maity, P.
- Saha and T. K. Mandal, Dalton Trans., 2014, 43, 231-239.
- 49 M. Mukherjee, B. Sen, S. Pal, M. S. Hundal, S. K. Mandal, A. R. Khuda-Bukhsh and P. Chattopadhyay, *RSC Adv.*, 2013, 3, 19978-19984.
- 50 J. Fan, M. Hu, P. Zhan and X. Peng, *Chem. Soc. Rev.*, 2013, 42, 29-10 43.
- 51 R. Y. Tsien and A. T. Harootunian, Cell Calcium, 1990, 11, 93-109.
- 52 Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi and C. Huang, *Chem. Commun.*, 2008, 3387-3389.
- 53 Y. Wan, Q. Guo, X. Wang and A. Xia, *Anal. Chim. Acta*, 2010, 665, 215-220.
 - 54 X. Hu, X. Zhang, G. He, C. He and C. Duan, *Tetrahedron*, 2011, 67, 1091-1095.
 - 55 P. Saluja, H. Sharma, N. Kaur, N. Singh and D. O. Jang, *Tetrahedron*, 2012, 68, 2289-2293.
- 20 56 Y. J. Jang, Y. H. Yeon, H. Y. Yang, J. Y. Noh, I. H. Hwang and C. Kim, *Inorg. Chem. Commun.*, 2013, 33, 48-51.
 - 57 L. Jiang, Y. Sun, F. Huo, H. Zhang, L. Qin, S. Li and X. Chen, *Nanoscale*, 2012, 4, 66-75.
- 58 R. Klajn, J. F. Stoddart and B. A. Grzybowski, *Chem. Soc. Rev.*, 2010,
 25 39, 2203-2237.
- 59 J. Du, Q. Shao, S. Yin, L. Jiang, J. Ma and X. Chen, *Small*, 2012, 8, 3412-3416.
- 60 K. Saha, S. S. Agasti, C. Kim, X. Li and V. M. Rotello, *Chem. Rev.*, 2012, 112, 2739-2779.
- 30 61 Y.-W. Lin, C.-C. Huang and H.-T. Chang, *Analyst*, 2011, 136, 863-871.
 - 62 H. Jans and Q. Huo, Chem. Soc. Rev., 2012, 41, 2849-2866.
 - 63 D. Liu, Z. Wang and X. Jiang, Nanoscale, 2011, 3, 1421-1433.
 - 64 L. Zhao, Y. Jin, Z. Yan, Y. Liu and H. Zhu, Anal. Chim. Acta, 2012,
- 35 731, 75-81.
- 65 Y.-C. Chen, I. L. Lee, Y.-M. Sung and S.-P. Wu, Sens. Actuators, B, 2013, 188, 354-359.
- 66 N. Jie, Q. Zhang, J. Yang and X. Huang, Talanta, 1998, 46, 215-219.
- 67 T. M. A. Razek, S. Spear, S. S. M. Hassan and M. A. Arnold, *Talanta*,
 ⁴⁰ 1999, 48, 269-275.
- 68 L. Wang, L. Wang, T. Xia, L. Dong, H. Chen and L. Li, *Spectrochim. Acta, Part A*, 2004, 60, 2465-2468.
- 69 L. Wang, L. Wang, T. Xia, L. Dong, G. Bian and H. Chen, *Anal. Sci.*, 2004, 20, 1013-1017.
- ⁴⁵ 70 S. J. Toal, K. A. Jones, D. Magde and W. C. Trogler, J. Am. Chem. Soc., 2005, 127, 11661-11665.
 - 71 M. Hosseini, V. K. Gupta, M. R. Ganjali, Z. Rafiei-Sarmazdeh, F. Faridbod, H. Goldooz, A. R. Badiei and P. Norouzi, *Anal. Chim. Acta*, 2012, 715, 80-85.
- 50 72 H. Chen and J. Ren, Talanta, 2012, 99, 404-408.
 - 73 D. Zhang, Z. Dong, X. Jiang, M. Feng, W. Li and G. Gao, Anal. Methods, 2013, 5, 1669-1675.
 - 74 Y. Xiang, L. Mei, N. Li and A. Tong, Anal. Chim. Acta, 2007, 581, 132-136.
- 55 75 J.-H. Ye, Y. Wang, Y. Bai, W. Zhang and W. He, *RSC Adv.*, 2014, 4, 2989-2992.

- 76 F. Tan, X. Liu, X. Quan, J. Chen, X. Li and H. Zhao, *Anal. Methods*, 2011, 3, 343-347.
- A. Sigel and H. Sigel, *Metal Ions In Biological Systems*, Marcel
 Dekker Inc. New York, 2000.
 - 78 N. A. Law, M. T. Caudle and V. L. Pecoraro, in *Advances in Inorganic Chemistry*, ed. A. G. Sykes, Academic Press, 1998.
- 79 F. Galiazzo, J. Pedersen, P. Civitareale, A. Schiesser and G. Rotilio, *Biol. Metals*, 1989, 2, 6-10.
- 65 80 S. Xu, C. Wang, H. Zhang, Q. Sun, Z. Wang and Y. Cui, J. Mater. Chem., 2012, 22, 9216-9221.
 - 81 J. A. Roth, Biol. Res., 2006, 39, 45-57.
 - 82 R. P. Haugland, Handbook of Fluorescent Probes and Research Products, Molecular Probes, chap. 19.
- 70 83 F. Gruppi, J. Liang, B. B. Bartelle, M. Royzen, D. H. Turnbull and J. W. Canary, *Chem. Commun.*, 2012, 48, 10778-10780.
 - 84 J. Liang and J. W. Canary, Angew. Chem. Int. Ed., 2010, 49, 7710-7713.
 - 85 R. Y. Tsien, Biochemistry, 1980, 19, 2396-2404.
- 75 86 X. Mao, H. Su, D. Tian, H. Li and R. Yang, ACS Appl. Mater. Interfaces, 2013, 5, 592-597.
- 87 F. B. Serrat, Microchim. Acta, 1998, 129, 77-80.
- 88 K. L. Mutaftchiev, Anal. Lett., 2004, 37, 2869-2879.
- 89 J. Maly and H. Fadrus, Analyst, 1974, 99, 128-136.
- 80 90 W. F. Beyer Jr and I. Fridovich, Anal. Biochem., 1988, 170, 512-519.
 - 91 Z. Dai, N. Khosla and J. W. Canary, *Supramol. Chem.*, 2009, 21, 296-300.
 - 92 S. Epsztejn, H. Glickstein, V. Picard, I. N. Slotki, W. Breuer, C. Beaumont and Z. I. Cabantchik, *Blood*, 1999, 94, 3593-3603.
- 85 93 S. J. Lippard and J. M. Berg, *Principles of Bioinorganic Chemistry*, University Science Books, Mill Valley, CA, 1994.
 - 94 A. Jacobs, Blood, 1977, 50, 433-439.
- 95 R. C. Hider and X. Kong, Dalton Trans., 2013, 42, 3220-3229.
- 96 T. Hirayama, K. Okuda and H. Nagasawa, *Chem. Sci.*, 2013, 4, 1250-90 1256.
 - 97 J. Xu, Z. Jia, M. D. Knutson and C. Leeuwenburgh, Int. J. Mol. Sci., 2012, 13, 2368-2386.
 - 98 S. Toyokuni, Cancer Sci., 2009, 100, 9-16.
 - 99 K. V. Kowdley, Gastroenterology, 2004, 127, S79-S86.
- 95 100 F. Molina-Holgado, R. Hider, A. Gaeta, R. Williams and P. Francis, *BioMetals*, 2007, 20, 639-654.
 - 101 W. B. a. Z. I. C. B. P. Esposito, *Biochem. Soc. Trans.*, 2002, 30, 729-732.
- 102 B. P. Espósito, S. Epsztejn, W. Breuer and Z. I. Cabantchik, *Anal. Biochem.*, 2002, 304, 1-18.
 - 103 W. Breuer, S. Epsztejn and Z. I. Cabantchik, J. Biol. Chem., 1995, 270, 24209-24215.
 - 104 W. Breuer, S. Epsztejn, P. Millgram and I. Z. Cabantchik, Am. J. Physiol. Cell Physiol., 1995, 268, C1354-C1361.
- 105 W. Breuer, S. Epsztejn and Z. Ioav Cabantchik, *FEBS Lett.*, 1996, 382, 304-308.
 - 106 S. Epsztejn, O. Kakhlon, H. Glickstein, W. Breuer and Z. I. Cabantchik, *Anal. Biochem.*, 1997, 248, 31-40.
 - 107 A. Ali, Q. Zhang, J. Dai and X. Huang, BioMetals, 2003, 16, 285-293.
- 110 108 F. Petrat, U. Rauen and H. de Groot, *Hepatology*, 1999, 29, 1171-1179.

75

105

- 109 F. Petrat, H. de Groot and U. Rauen, *Arch. Biochem. Biophys.*, 2000, 376, 74-81.
- 110 F. Petrat, H. de Groot and U. Rauen, *Biochem. J.*, 2001, 356, 61-69.
- 111 F. Petrat, D. Weisheit, M. Lensen, H. de Groot, R. Sustmann and U. Rauen, *Biochem. J.*, 2002, 362, 137-147.
- 112 I. Grabchev, J.-M. Chovelon and V. Bojinov, *Polym. Adv. Technol.*, 2004, 15, 382-386.
- 113 P. Wu, Y. Li and X.-P. Yan, Anal. Chem., 2009, 81, 6252-6257.
- 114 L.-J. Fan and W. E. Jones, J. Am. Chem. Soc., 2006, 128, 6784-6785.
- 10 115 L. Praveen, M. L. P. Reddy and R. L. Varma, *Tetrahedron Lett.*, 2010, 51, 6626-6629.
- 116 J.-L. Chen, S.-J. Zhuo, Y.-Q. Wu, F. Fang, L. Li and C.-Q. Zhu, *Spectrochim. Acta, Part A*, 2006, 63, 438-443.
- 117 M. Niwa, T. Hirayama, K. Okuda and H. Nagasawa, Org. Biomol.
 Chem., 2014, 12, 6590-6597.
- 118 H. Y. Au-Yeung, J. Chan, T. Chantarojsiri and C. J. Chang, J. Am. Chem. Soc., 2013, 135, 15165-15173.
- 119 P. Li, L. Fang, H. Zhou, W. Zhang, X. Wang, N. Li, H. Zhong and B. Tang, *Chem. Eur. J.*, 2011, 17, 10520-10523.
- 20 120 K. B. Kim, H. Kim, E. J. Song, S. Kim, I. Noh and C. Kim, *Dalton Trans.*, 2013, 42, 16569-16577.
 - 121 Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You and C. Kim, Sens. Actuators, B, 2014, 194, 343-352.
- 122 H. Kim, Y. J. Na, E. J. Song, K. B. Kim, J. M. Bae and C. Kim, *RSC Adv.*, 2014, 4, 22463-22469.
 - 123 R. Ruloff, G. v. Koten and A. E. Merbach, Chem. Commun., 2004, 842-843.
 - 124 W.-S. Li, J. Luo and Z.-N. Chen, *Inorg. Chem. Commun.*, 2011, 14, 1898-1900.
- ³⁰ 125 T. N. Parac-Vogt, L. Vander Elst, K. Kimpe, S. Laurent, C. Burtéa, F. Chen, R. Van Deun, Y. Ni, R. N. Muller and K. Binnemans, *Contrast Media Mol. Imaging*, 2006, 1, 267-278.
 - 126 J. Paris, C. Gameiro, V. Humblet, P. K. Mohapatra, V. Jacques and J. F. Desreux, *Inorg. Chem.*, 2006, 45, 5092-5102.
- 35 127 J. B. Livramento, É. Tóth, A. Sour, A. Borel, A. E. Merbach and R. Ruloff, *Angew. Chem. Int. Ed.*, 2005, 44, 1480-1484.
- 128 J. B. Livramento, C. Weidensteiner, M. I. M. Prata, P. R. Allegrini, C. F. G. C. Geraldes, L. Helm, R. Kneuer, A. E. Merbach, A. C. Santos, P. Schmidt and É. Tóth, *Contrast Media Mol. Imaging*, 2006, 1, 30-39.
- 129 X. Qu, Q. Liu, X. Ji, H. Chen, Z. Zhou and Z. Shen, *Chem. Commun.*, 2012, 48, 4600-4602.
- 130 P.-E. Danjou, J. Lyskawa, F. Delattre, M. Becuwe, P. Woisel, S. Ruellan, S. Fourmentin and F. Cazier-Dennin, Sens. Actuators, B,
- $45 \qquad 2012, 171-172, 1022-1028.$
 - 131 J. Liu, Y.-Q. Xie, Q. Lin, B.-B. Shi, P. Zhang, Y.-M. Zhang and T.-B. Wei, *Sens. Actuators, B*, 2013, 186, 657-665.
 - 132 S. Hu, G. Wu, C. Xu, J. Dong and Q. Gao, J. Photochem. Photobiol. A, 2013, 270, 37-42.
- ⁵⁰ 133 M. Yang, M. Sun, Z. Zhang and S. Wang, *Talanta*, 2013, 105, 34-39. 134 D. En, Y. Guo, B.-T. Chen, B. Dong and M.-J. Peng, *RSC Adv.*, 2014, 4, 248-253.
 - 135 F. Gai, X. Li, T. Zhou, X. Zhao, D. Lu, Y. Liu and Q. Huo, *J. Mater. Chem. B*, 2014, 2, 6306-6312.
- 55 136 J. S. Kim and D. T. Quang, Chem. Rev., 2007, 107, 3780-3799.

- 137 M. Kumar, R. Kumar and V. Bhalla, *Tetrahedron Lett.*, 2010, 51, 5559-5562.
- 138 M. Kumar, R. Kumar and V. Bhalla, Org. Lett., 2010, 13, 366-369.
- 139 M. Kumar, R. Kumar, V. Bhalla, P. R. Sharma, T. Kaur and Y.
 Qurishi, *Dalton Trans.*, 2012, 41, 408-412.
 - 140 Z. Yang, M. She, B. Yin, J. Cui, Y. Zhang, W. Sun, J. Li and Z. Shi, J. Org. Chem., 2011, 77, 1143-1147.
 - 141 N. R. Chereddy, K. Suman, P. S. Korrapati, S. Thennarasu and A. B. Mandal, *Dyes Pigm.*, 2012, 95, 606-613.
- 65 142 N. R. Chereddy, S. Thennarasu and A. B. Mandal, *Dalton Trans.*, 2012, 41, 11753-11759.
 - 143 L. Huang, F. Hou, J. Cheng, P. Xi, F. Chen, D. Bai and Z. Zeng, Org. Biomol. Chem., 2012, 10, 9634-9638.
- 144 S.-R. Liu and S.-P. Wu, Sens. Actuators, B, 2012, 171–172, 1110-70 1116.
- 145 J. Bordini, I. Calandreli, G. O. Silva, K. Q. Ferreira, D. P. S. Leitão-Mazzi, E. M. Espreafico and E. Tfouni, *Inorg. Chem. Commun.*, 2013, 35, 255-259.
- 146 B. Rathinam, C.-C. Chien, B.-C. Chen and J.-H. Liu, *Tetrahedron*, 2013, 69, 235-241.
- 147 V. Bhalla, N. Sharma, N. Kumar and M. Kumar, *Sens. Actuators, B*, 2013, 178, 228-232.
- 148 C.-Y. Li, C.-X. Zou, Y.-F. Li, J.-L. Tang and C. Weng, *Dyes Pigm.*, 2014, 104, 110-115.
- 80 149 S. Goswami, S. Das, K. Aich, D. Sarkar, T. K. Mondal, C. K. Quah and H.-K. Fun, *Dalton Trans.*, 2013, 42, 15113-15119.
 - 150 S. Ji, X. Meng, W. Ye, Y. Feng, H. Sheng, Y. Cai, J. Liu, X. Zhu and Q. Guo, *Dalton Trans.*, 2014, 43, 1583-1588.
 - 151 J. Huang, Y. Xu and X. Qian, Dalton Trans., 2014, 43, 5983-5989.
- 85 152 L. Wang, H. Li and D. Cao, Sens. Actuators, B, 2013, 181, 749-755.
 - 153 L. Yang, W. Zhu, M. Fang, Q. Zhang and C. Li, Spectrochim. Acta, Part A, 2013, 109, 186-192.
 - 154 Z. Li, Y. Zhou, K. Yin, Z. Yu, Y. Li and J. Ren, *Dyes Pigm.*, 2014, 105, 7-11.
- 90 155 R. Wang, F. Yu, P. Liu and L. Chen, *Chem. Commun.*, 2012, 48, 5310-5312.
 - 156 L. Yang, W. Yang, D. Xu, Z. Zhang and A. Liu, *Dyes Pigm.*, 2013, 97, 168-174.
- 157 S. Sen, S. Sarkar, B. Chattopadhyay, A. Moirangthem, A. Basu, K.
 ⁹⁵ Dhara and P. Chattopadhyay, *Analyst*, 2012, 137, 3335-3342.
- 158 Z.-X. Li, W. Zhou, L.-F. Zhang, R.-L. Yuan, X.-J. Liu, L.-H. Wei and M.-M. Yu, *J. Lumin.*, 2013, 136, 141-144.
- 159 S.-d. Liu, L.-w. Zhang and X. Liu, New J. Chem., 2013, 37, 821-826.
- 160 F. Ge, H. Ye, H. Zhang and B.-X. Zhao, *Dyes Pigm.*, 2013, 99, 661-665.
- 161 N. R. Chereddy, S. Thennarasu and A. B. Mandal, *Analyst*, 2013, 138, 1334-1337.
- 162 Y.-X. Wu, J.-B. Li, L.-H. Liang, D.-Q. Lu, J. Zhang, G.-J. Mao, L.-Y. Zhou, X.-B. Zhang, W. Tan, G.-L. Shen and R.-Q. Yu, *Chem. Commun.*, 2014, 50, 2040-2042.
- 163 K. J. Wallace, M. Gray, Z. Zhong, V. M. Lynch and E. V. Anslyn, *Dalton Trans.*, 2005, 2436-2441.
- 164 Z.-Q. Liang, C.-X. Wang, J.-X. Yang, H.-W. Gao, Y.-P. Tian, X.-T. Tao and M.-H. Jiang, *New J. Chem.*, 2007, 31, 906-910.
- 110 165 A. Mitra, B. Ramanujam and C. P. Rao, *Tetrahedron Lett.*, 2009, 50, 776-780.

35

Chemical Society Reviews

- 166 D. Wei, Y. Sun, J. Yin, G. Wei and Y. Du, Sens. Actuators, B, 2011, 160, 1316-1321.
- 167 P. Suresh, I. A. Azath and K. Pitchumani, Sens. Actuators, B, 2010, 146, 273-277.
- 5 168 S. A. BK Adebayo, HK Okoro, BJ Ximba, Afr. J. Biotechnol., 2011, 10, 16051-16057.
- 169 N. Narayanaswamy and T. Govindaraju, Sens. Actuators, B, 2012, 161, 304-310.
- 170 P. Kaur and D. Sareen, Dyes Pigm., 2011, 88, 296-300.
- 10 171 S. Devaraj, Y.-k. Tsui, C.-Y. Chiang and Y.-P. Yen, Spectrochim. Acta, Part A, 2012, 96, 594-599.
 - 172 R.-L. Liu, H.-Y. Lu, M. Li, S.-Z. Hu and C.-F. Chen, *RSC Adv.*, 2012, 2, 4415-4420.
- 173 T.-B. Wei, P. Zhang, B.-B. Shi, P. Chen, Q. Lin, J. Liu and Y.-M.
 Schang, Dyes Pigm., 2013, 97, 297-302.
- 174 L. Hu, L. Nie, G. Xu, H. Shi, X. Xu, X. Zhang and Z. Yan, *RSC Adv.*, 2014, 4, 19370-19374.
- 175 S.-P. Wu, Y.-P. Chen and Y.-M. Sung, *Analyst*, 2011, 136, 1887-1891.
- 20 176 V. N. Mehta, S. K. Kailasa and H.-F. Wu, New J. Chem., 2014, 38, 1503-1511.
 - 177 S. K. Tripathy, J. Y. Woo and C.-S. Han, Sens. Actuators, B, 2013, 181, 114-118.
- 178 J.-M. Liu, X.-X. Wang, L. Jiao, M.-L. Cui, L.-P. Lin, L.-H. Zhang and S.-L. Jiang, *Talanta*, 2013, 116, 199-204.
 - 179 H. Wei, C. Chen, B. Han and E. Wang, *Anal. Chem.*, 2008, 80, 7051-7055.
 - 180 J. Zhan, L. Wen, F. Miao, D. Tian, X. Zhu and H. Li, New J. Chem., 2012, 36, 656-661.
- 30 181 A. Pandya, P. G. Sutariya, A. Lodha and S. K. Menon, *Nanoscale*, 2013, 5, 2364-2371.
 - 182 S. Bothra, J. N. Solanki, S. K. Sahoo and J. F. Callan, RSC Adv., 2014, 4, 1341-1346.
 - 183 S. Aime, M. Botta, M. Fasano and E. Terreno, *Spectrochim. Acta, Part A*, 1993, 49, 1315-1322.
 - 184 T. N. Parac-Vogt, K. Kimpe and K. Binnemans, J. Alloys Compd., 2004, 374, 325-329.
 - 185 V. Jacques and J. Desreux, in *Contrast Agents I*, ed. W. Krause, Springer Berlin Heidelberg, 2002.
- 40 186 V. C. Pierre, M. Botta, S. Aime and K. N. Raymond, J. Am. Chem. Soc., 2006, 128, 9272-9273.
 - 187 S. Okamoto and L. D. Eltis, Metallomics, 2011, 3, 963-970.
 - 188 E. Raux, H. L. Schubert and M. J. Warren, Cell. Mol. Life Sci., 2000, 57, 1880-1893.
- ⁴⁵ 189 M. Kobayashi and S. Shimizu, *Eur. J. Biochem.*, 1999, 261, 1-9. 190 Z. Y. Zhang, *Stud. Trace Elem. Health*, 1996, 21, 3.
 - 191 B. Venugopal and T. D. Luckey, *Metal Toxicity In Mammals*, Plenum Press, New York, 1979.
 - 192 I. Paris and J. J. B. Jones, *The Handbook of Trace Elements*, St. Lucie Press, Florida, 1997.
 - 193 S. B. Zamochnick and G. A. Rechnitz, Z. Anal. Chem., 1964, 199, 424-429.
 - 194 F. Monteil-Rivera and J. Dumonceau, Anal Bioanal Chem, 2002, 374, 1105-1112.
- ⁵⁵ 195 R. A. Saar and J. H. Weber, *Anal. Chem.*, 1980, 52, 2095-2100. 196 D. K. Ryan and J. H. Weber, *Anal. Chem.*, 1982, 54, 986-990.

- 197 J. C. Westall, J. D. Jones, G. D. Turner and J. M. Zachara, *Environ. Sci. Technol.*, 1995, 29, 951-959.
- 198 M. Montalti, L. Prodi and N. Zaccheroni, J. Mater. Chem., 2005, 15,
 2810-2814.
- 199 H.-Y. Luo, X.-B. Zhang, C.-L. He, G.-L. Shen and R.-Q. Yu, *Spectrochim. Acta, Part A*, 2008, 70, 337-342.
- 200 M. Shamsipur, M. Sadeghi, K. Alizadeh, H. Sharghi and R. Khalifeh, *Anal. Chim. Acta*, 2008, 630, 57-66.
- 65 201 C.-Y. Li, X.-B. Zhang, Z. Jin, R. Han, G.-L. Shen and R.-Q. Yu, *Anal. Chim. Acta*, 2006, 580, 143-148.
- 202 X. Wang, W. Zheng, H. Lin, G. Liu, Y. Chen and J. Fang, *Tetrahedron Lett.*, 2009, 50, 1536-1538.
- 203 X. Wang, W. Zheng, H. Lin and G. Liu, *J. Fluoresc.*, 2010, 20, 557-70 561.
 - 204 F. G. Sánchez, A. Navas, J. J. Laserna and M. R. Martinez de la Barrera, Z. Anal. Chem., 1983, 315, 491-495.
 - 205 I. Mori, Y. Fujita, M. Toyoda, M. Hamada and M. Akagi, *Fresenius*. J. Anal. Chem., 1992, 343, 902-904.
- 75 206 G. Zhang, S. Feng and D. Cheng, Microchem. J., 1996, 53, 308-315.
- 207 I. Mori, K. Takasaki, Y. Fujita and T. Matsuo, *Talanta*, 1998, 47, 631-637.
- 208 Z. Zeng and R. A. Jewsbury, Analyst, 1998, 123, 2845-2850.
- 209 Q. Ma, Q.-E. Cao, Y. Zhao, S. Wu, Z. Hu and Q. Xu, *Food Chem.*, 2000, 71, 123-127.
- 210 S. H. Mashraqui, M. Chandiramani, R. Betkar and K. Poonia, *Tetrahedron Lett.*, 2010, 51, 1306-1308.
- 211 H. Y. Au-Yeung, E. J. New and C. J. Chang, *Chem. Commun.*, 2012, 48, 5268-5270.
- 85 212 W. Lin, L. Yuan, L. Long, C. Guo and J. Feng, Adv. Funct. Mater., 2008, 18, 2366-2372.
 - 213 N. Kaur and S. Kumar, Tetrahedron Lett., 2008, 49, 5067-5069.
- 214 Y. Shiraishi, Y. Matsunaga and T. Hirai, *Chem. Commun.*, 2012, 48, 5485-5487.
- 90 215 E. J. Song, J. Kang, G. R. You, G. J. Park, Y. Kim, S.-J. Kim, C. Kim and R. G. Harrison, *Dalton Trans.*, 2013, 42, 15514-15520.
 - 216 G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee and C. Kim, *Dalton Trans.*, 2014, 43, 6618-6622.
- 217 S. J. Zhen, F. L. Guo, L. Q. Chen, Y. F. Li, Q. Zhang and C. Z. ⁹⁵ Huang, *Chem. Commun.*, 2011, 47, 2562-2564.
- 218 Y. Yao, D. Tian and H. Li, ACS Appl. Mater. Interfaces, 2010, 2, 684-690.
- 219 K. D. Bhatt, D. J. Vyas, B. A. Makwana, S. M. Darjee and V. K. Jain, Spectrochim. Acta, Part A, 2014, 121, 94-100.
- 100 220 A. Sydor and D. Zamble, in *Metallomics and the Cell*, ed. L. Banci, Springer Netherlands, 2013.
 - 221 S. W. Ragsdale, J. Biol. Chem., 2009, 284, 18571-18575.
 - 222 E. J. Calabrese, A. T. Canada and C. Sacco, *Annu. Rev. Public Health*, 1985, 6, 131-146.
- 105 223 A. Sharma, Indian J. Dematol. Venereol. Leprol., 2007, 73, 307-312.
 - 224 A. Sigel, H. Sigel and R. K. O. Sigel, Nickel and Its Surprising Impact in Nature, John Wiley & Sons Ltd.: U. K., 2007.
 - 225 S. S. Brown and F. W. Sunderman, 1988, 1-4.
- 226 L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti and D. Sacchi,Angew. Chem. Int. Ed., 1994, 33, 1975-1977.
 - 227 L. Fabbrizzi, M. Licchelli, P. Pallavicini, A. Perotti, A. Taglietti and D. Sacchi, *Chem. Eur. J.*, 1996, 2, 75-82.

- 228 F. Bolletta, I. Costa, L. Fabbrizzi, M. Licchelli, M. Montalti, P. Pallavicini, L. Prodi and N. Zaccheroni, J. Chem. Sci. Dalton Trans., 1999, 1381-1386.
- 229 L.-J. Jiang, Q.-H. Luo, Z.-L. Wang, D.-J. Liu, Z. Zhang and H.-W. Hu, *Polyhedron*, 2001, 20, 2807-2812.
- 230 L. Salins, E. Goldsmith, M. Ensor and S. Daunert, Anal Bioanal Chem, 2002, 372, 174-180.
- 231 J. Zhao, B. A. Bertoglio, M. J. Devinney Jr, K. E. Dineley and A. R. Kay, Anal. Biochem., 2009, 384, 34-41.
- 10 232 Q. Ke, T. Davidson, T. Kluz, A. Oller and M. Costa, *Toxicol. Appl. Pharmacol.*, 2007, 219, 18-23.
 - 233 D. Cadosch, J. Meagher, O. P. Gautschi and L. Filgueira, J. Neurosci. Meth., 2009, 178, 182-187.
- 234 H.-J. Thierse, S. Helm, M. Pink and H. U. Weltzien, J. Immunol.
 Meth., 2007, 328, 14-20.
- 235 B. Wang, Y. Hu and Z. Su, *React. Funct. Polym.*, 2008, 68, 1137-1143.
- 236 B.-Y. Wang, X.-Y. Liu, Y.-L. Hu and Z.-X. Su, *Polym. Int.*, 2009, 58, 703-709.
- 20 237 S. C. Dodani, Q. He and C. J. Chang, J. Am. Chem. Soc., 2009, 131, 18020-18021.
 - 238 M. Y. Kang, C. S. Lim, H. S. Kim, E. W. Seo, H. M. Kim, O. Kwon and B. R. Cho, *Chem. Eur. J.*, 2012, 18, 1953-1960.
- 239 D. A. Pearce, G. K. Walkup and B. Imperiali, *Bioorg. Med. Chem. Lett.*, 1998, 8, 1963-1968.
- 240 N. Kaur and S. Kumar, Chem. Commun., 2007, 3069-3070.
- 241 X. Liu, Q. Lin, T.-B. Wei and Y.-M. Zhang, New J. Chem., 2014, 38, 1418-1423.
- 242 K. Hanaoka, Chem. Pharm. Bull., 2010, 58, 1283-1294.

30

5