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The OPEP coarse-grained protein model has been applied to a wide range of applications since its first 10 

release 15 years ago. The model, which combines energetic and structural accuracy and chemical 

specificity, allows studying single protein properties, DNA/RNA complexes, amyloid fibril formation and 

protein suspensions in a crowded environment. Here we first review the current state of the model and the 

most exciting applications using advanced conformational sampling methods. We then present the current 

limitations and a perspective on the on-going developments.  15 

INTRODUCTION 

 Proteins, DNA and RNA carry out a variety of biochemical 
and biological tasks. These systems are very challenging 
experimentally and numerically due to their number of degrees of 
freedom, and the wide range of relevant time scales from 20 

nanoseconds to days associated with fluctuations about the native 
states, diffusion, folding and formation of harmful aggregates. 
 Classical atomistic molecular dynamics (MD) with explicit 
solvent and ions can complement experiments.1,2 With the 
specially MD-designed Anton computer, performing MD 100-25 

500 times faster than the standard computer, it has been possible 
to break the millisecond barrier and gain insights on the 
mechanisms, thermodynamics and kinetics of the folding of 
diverse proteins with 10-80 amino acids.3 Anton has also proven 
useful in the development of allosteric inhibitors that target 30 

previously unknown binding sites.4 The dynamic processes of life 
at the molecular level require, however, knowledge of the 
structure, dynamics and thermodynamics of biomolecules in a 
crowded environment. Similarly, we cannot wait for faster 
computers to design engineered proteins with specific properties 35 

or new molecules able to interfere with protein-protein or protein-
DNA/RNA complexes associated with disease functions as a 
result of sporadic mutations or genetic risk factors. For instance, 
neurodegenerative diseases such as Alzheimer, Parkinson, 
Huntington challenge our society.5 The V600E mutation in the 40 

BRAF protein is known to be responsible for 50% of melanoma 
cases,6 and women with mutations in the BRCA1 and BRCA2 
genes have markedly elevated risks of breast and ovarian cancer.7 
 For all these reasons, it is necessary to design multiscale 
approaches, coarse-grained models and advanced sampling 45 

methods to converge rapidly to equilibrium and explore dynamics 

in the time scale of microseconds and beyond for large systems. 
 The development of coarse graining (CG) and multiscale 
modeling is not new. It was an exciting day for computational 
chemistry and biology when the 2013 Nobel Prize in Chemistry 50 

was awarded to Martin Karplus, Michael Levitt, and Arieh 
Warshel for the “development of multiscale models for complex 
chemical systems.” Among their contributions, Levitt and 
Warshel pioneered CG protein simulation, with atoms grouped 
into larger units or beads and normal modes to move the system 55 

on the energy landscape.8 Despite extensive efforts, coarse 
graining still remains a challenge and poses the problem of how 
to derive potentials for the selected number of beads that maintain 
the all-atom physical behavior in test tubes and cellular 
environments. Recently, two reviews summarized the state of 60 

coarse-graining of biomolecular systems so as to couple 
information from different scales.9,10 Marrink and Tieleman also 
presented the strengths and limitations of their CG Martini model, 
used for lipid membrane characterization, lipid polymorphism, 
membrane protein - lipid interplay, self-assembly of soluble 65 

proteins, and membrane protein oligomerization.11 
     The OPEP (Optimized Potential for Efficient protein structure 
Prediction) coarse-grained model with an implicit solvent model 
for soluble proteins in aqueous solution has evolved since its first 
version 15 years ago.12-24 This model which retains structural 70 

accuracy and chemical specificity is free of any biases in contrast 
to Martini that imposes secondary structure constraints.11,25,26 
While CG models have been developed by Sansom27,28 and 
Schulten29 for membrane proteins, Klein,30 Scheraga (UNRES),31-

33 Baker (Rosetta),34,35 Voth,36 Dokhloyan,37 Hall (PRIME),38 75 

Lavery (PaLaCe),39 Zacharias (ATTRACT),40,41 Feig (PRIMO),42 
Shea,43 Papoian (AWSEM)44 and other scientists45-48 for soluble 
proteins, to the best of our knowledge, none of these models 
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except Martini has been applied to a wide range of problems. 
Here, we present the design principles of the model and the state-
of-the-art sampling techniques used. Furthermore this review 
provides an in-depth understanding on four timely topics in the 
chemical sciences. 5 

     The first topic is the self-assembly of amyloid proteins 
associated with neurodegenerative diseases. Alzheimer’s disease 
affects 24 million people and drug after drug has failed to slow its 
progression.49 The second topic is computer-assisted de novo 
design and structure prediction of peptides up to 52 amino acids, 10 

as they represent a source of novel antibiotics and therapeutics.50-

52 To this end, we need a fast and accurate method able to play 
with he amino acid sequence. The third topic is RNA structure 
prediction which is still in its infancy compared to protein 
structure prediction.53 The small non-coding microRNA which 15 

regulate gene expression at a post-transcriptional level,54 or more 
generally all non-coding RNAs are increasingly attracting the 
attention of cancer investigators.55,56 The last topic concerns the 
effects of hydrodynamics and crowding which are mostly ignored 
in computer simulations and create a gap between the simulated 20 

and the real physics in the cell. We report an OPEP simulation of 
a system of unprecedented size and fully inclusive of 
hydrodynamic interactions, namely 18,000 flexible proteins and 
70 million particles,57 a breakthrough compared to the largest 
simulation of 1000 rigid proteins ignoring hydrodynamics.58 25 

     Finally, we present the current OPEP limitations and we sketch 
some on-going developments or applications. These include for 
instance understanding the physics behind the difference in the 
stability of thermophilic and mesophilic proteins, determining the 
effect of external conditions such as shear flows on the dynamics, 30 

kinetics and thermodynamics of non-amyloid and amyloid 
proteins, and interacting directly on the CG model system using 
virtual reality to probe the mechanical properties of molecular 
structures.  
    Overall, the review gives a state-of-the-art account of the 35 

various subjects treated and a well-balanced assessment of the 
current literature, comparing with previous computational results 
and experimental data when available.  

Design principles of the OPEP model 

Granularity 40 

     Various levels of granularity for amino acids have been 
developed ranging from two to six beads, and beyond. The OPEP 
CG model represents each amino acid by six centers of force: the 
side-chain is represented by a unique bead located at the center of 
mass of nonhydrogen atoms in the all-atom side chains of 2250 45 

protein structures with sequence identity < 30%, while atomic 
resolution is used for the backbone that includes N, HN, Cα, C 
and O atoms. Proline is an exception represented by all its heavy 
atoms (Fig. 1A).20 The disulfide (S-S) bonds can be treated as 
two non-bonded beads or described at an atomic level using local  50 

terms. This OPEP CG strategy was chosen to represent a good 
compromise between energetic and structural accuracy and 
chemical specificity, even if this limits the use of large time steps 
compared to other CG models. Note that the Rosetta fragment 
assembly Monte Carlo program uses the same level of description 55 

in the first step of its hierarchical procedure.34,35 

 Our level of granularity varies from the Martini model with 
coarse-grained solvent in which the main chain atoms of each 
residue are represented by a unique bead and, on average, four 
heavy side-chain atoms are represented by a single interaction 60 

center, with the exception of ring-like molecules.25,26 Our 
representation varies also from eight other CG models in implicit 
solvent: (i) Klein’s model where three to four heavy atoms are 
represented by a single CG bead. Most side-chains use one CG 
bead, except lysine and arginine with a hydrophobic and a 65 

hydrophilic site and the tyrosine, phenylalanine, and tryptophan 
residues represented by two, two, and three beads respectively,30 
(ii) UNRES two-bead model with one unified bead for side-chain 
and the peptide center, p, located in the centers of Cα-Cα 
bonds,31-33 (iii) PRIMO using the Cα, Cβ and a combined CO 70 

particle for the backbone and one to several heavy side-chain 
atoms into CG sites,42 (iv) PRIME with the N, Cα, and carbonyl 
C backbone atoms and up to three side-chain beads,22 (v) Voth’s 
model with a Cα for the backbone and as many as four beads for 
the side-chains,36 (vi) ATTRACT with the N and O for the 75 

backbone and one or two beads for the side chains,40 though its 
most recent version is very similar to OPEP,41 (vii) AWSEM 
three-bead model with Cα, Cβ and O,44 and (viii) PaLaCe with 
one to three beads for the main non-bonded interactions, 
combined with atomistic peptide groups and some side-chain 80 

atoms.39  Scientists are also developing CG models for soluble 
proteins in simplified explicit solvent,59 or atomistic soluble 
proteins with CG water models.60,61 

Optimization Procedure and Analytical expression 

 There are multiple approaches to derive the bonded and non-85 

bonded potentials.9-11 The first approach, followed by PaLaCe 
and PRIMO, uses Boltzmann inversion of conformational 
probability distributions derived from a static or dynamic protein 
structure data set. The second one is to derive a CG potential 
from forces generated by atomistic simulations, referred to as 90 

force matching.36 The third thermodynamics-based approach 
consists of fitting and predicting free energies such as water/oil 
partitioning coefficients of the amino acid side-chain analogues 
(Martini),11 or density, surface tension (Klein)30 for the non-
bonded interactions and by using the distributions of bonds, 95 

bending angles and dihedral angles from the Protein Data Bank 
(PDB,) to optimize the bonded interactions. Another approach is 
the factor expansion method where the pairwise potentials of 
mean force (PMFs) between side-chains are obtained from 
atomistic simulations, and the torsional, double-torsional, 100 

backbone-electrostatic and correlation terms are fitted on 
quantum-mechanical ab initio calculations.31-33 Other methods for 
force field derivation and optimization include minimization of 
relative entropy38 and simulations to test whether hexapeptides 
form non-amyloid or amyloid fibrils (PRIME)22 or proteins fold 105 

into their native states.62 

 The latest OPEP version uses a structure/ thermodynamic/PMF 
approach, since the parameters and analytical forms are trained 
on bonded and non-bonded distances and angle distributions of 
native and non-native protein structures, are fitted to reproduce 110 

the experimental lowest free-energy conformations and the 
melting temperatures (TM) of a small set of peptides, and are 
derived from all-atom PMF simulations for the interactions 
between charged side-chains.23,24 
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 The OPEP energy function is defined as a sum of local, non-
bonded, and hydrogen bonding (H-bond) terms.15,21,24 All 
analytical expressions are given in Supplementary Material. The 
local interactions include bond length, angle bending, and 
improper and proper dihedral angles. The improper torsions 5 

maintain the desired chirality of amino acids, and control the out-
of plane motion of the C=O and N-H bonds about the peptide 
bond. All these terms were modeled on the analytical form of the 
AMBER63 force field with an additional term for the Φ,Ψ 
dihedral angles to render realistic Ramachandran plots.21,24 H-10 

bonds of backbone atoms are accounted for by two- and four-
body potentials, rather than Coulomb interactions. The two-body 
term for each H-bond is the product of a 10-12 term dependent on 
the O-H distance by the square of the cosine of the N-H..O 
angle.15,21 The four-body term takes the form of the product of 15 

two Gaussian functions each monitoring the existence of one H-
bond on the basis of distance criteria, and represents a 
cooperative energy if tight conditions on sequence-separation, ∆, 
between four residues are verified. If (i, j) and (k, l) are the 
residues involved in the two H-bonds, ∆(ijkl) =1 if (k, l) = (i+1, 20 

j+1) (α-helix), or ∆(ijkl) =1 if (k, l) = (i+2 ,j-2) or (i+2, j+2) (β-
sheets), otherwise ∆ is set to 0. These conditions stabilize 
secondary structures, independently of the Φ, Ψ angles, but also 
any segment satisfying the conditions on ijkl. 15,21,24 
 It is essentially the van der Waals potential that has evolved 25 

from OPEPv1 to OPEPv5 by distinguishing its form as a function 
of the center of forces.15,24 Each OPEP version does not have its 
own advantages, rather a new version is developed to solve 
unexpected failures of the previous version. In all versions, we 
use the 6-12 potential between the backbone atoms and between 30 

the backbone and side-chain atoms. In OPEPv3, the van der 
Waals energy between two side-chains was 6-12 if the interaction 
is hydrophobic or resulted from oppositely charged amino acids; 
otherwise an r-6 term was used.20 In OPEPv4, following our work 
on RNA, the r-6 term was replaced by r-8 for purely repulsive 35 

interactions; otherwise the 6-12 term was replaced by an 
analytical formulation to limit the energy values of the side-
chains at longer distances. We also distinguished 11 side-chain – 
side-chain interactions depending on their sequence-separation to 
stabilize α-helices.23 From OPEPv4 to OPEPv5, we only changed 40 

the ion pair interactions from all-atom PMF potentials, 
characterized by one minimum for the pairs Lys-Asp and Lys-
Glu and two minima for Arg-Asp and Arg-Glu.24 
 An overview of the optimization procedure is shown in the 
flowchart in Figure 2. The OPEPv1 and v2 parameters were 45 

adjusted by maximizing the energy gap between the native and 
misfolded states of six proteins, enabling the folding of 40 
peptides of 12-46 amino acids consistent with NMR data in most 
cases.12-18 OPEPv3, which used a training and validating set of 13 
and 16 proteins to optimize the parameters,20 was tested on a total 50 

of 11 proteins of 12-56 amino acids by MD,21 REMD21-22 or 
metadynamics64 starting from random or NMR structures. 
OPEPv4 passed two tests: 17 proteins of 37−152 amino acids 
remained within 3.1 Å root-mean-square deviation (RMSD) from 
their native states after 30-100 ns MD at 300 K, and REMD of 55 

five peptides with β-hairpin, α-helix or a WW domain, and 
REMD of the ccβ 51-residue peptide delivered structures 
consistent with experiment starting from random states.23  

 Finally, the OPEPv5 parameters were tested on structurally 
diverse proteins differing in the number of charged residues by 60 

REMD.24 These include two 13-residue α-helix and 16-residue β-
hairpin peptides and the ccβ-p2 peptide switching from a coiled-
coil structure at low T to amyloid fibrils at higher T and 
concentration. We also verified that MD preserved the structures 
of proteins with 37-75 residues at 300 K. The final test involved 65 

an 85-residue protein with 19 charged amino acids. Running 
REMD of 24 replicas, each of 300 ns, the predicted TM is 360 K 
vs. 336 K experimentally. Overall, the OPEPv5 parameters, by 
refining the packing of the charged amino acids, impact the 
stability of secondary structure motifs and the population of 70 

intermediate states during temperature folding/unfolding; they 
also improve the aggregation propensity of peptides.24 
  In OPEPv5, the ε0 value in kcal.mol-1 or well depth at the 
minimum is 3.89 for the Ile-Ile contact and 4.05 for a Lys-Glu 
salt-bridge. The ε0 value, at the minimum, of an intramolecular 75 

H-bond is 3.3 and 2.7 kcal.mol-1 for (i, i+4) and (i, j ≥ i+5) 
interactions vs. 2.7 kcal.mol-1 for an intermolecular H-bond. The 
ε0 values of the 4-body H-bond terms are 1.4 and 3.6 kcal.mol-1 
for α-helices and β-sheets, and any segments satisfying the 
conditions on ijkl. The two-body H-bond terms are cut off at an 80 

O-H distance of 0.3 nm and an angle N-H-O < 90° and the energy 
is modulated by a switching function of CHARMM-type65 from 
0.25 to 0.3 nm. All other non-bonded interactions are cut off at 
1.6 nm with a switching function starting at 1.3 nm. 

Simulation Techniques 85 

 In what follows, we review the methods coupled to OPEP. 
These include the diffusion-controlled Monte Carlo (DCMC),12,16 
the Activation-Relaxation Technique (ART-nouveau),66,67 
molecular21 and Langevin dynamics,68 replica exchange 
(REMD)22 or Hamiltonian (H-REMD) MD,69 metadynamics,64,70 90 

simulated tempering (ST),71 a greedy approach,72,73 MUPHY,57  

and interactive MD simulations. 
 
DCMC and ART. The basic idea of DCMC is to limit the search 
to conformations that are thermodynamically accessible from a 95 

given conformation in a reasonable time.12 In principle; one has 
to determine the nearest saddle point, the energy barrier and the 
contribution of entropy. Here, we assume that the motion results 
from the diffusion in (Φ,Ψ) space and the transition time scales as 
Θ2/D’η, where Θ is the angular deviation of the residue from one 100 

state to another, D’ is a diffusion parameter and η is related the 
ruggedness of the energy landscape. DCMC was used to fold 40 
structurally diverse proteins. 13-18,74-75 

 ART-nouveau goes one step beyond by generating non-biased 
pathways connecting adjacent local minima via exact first-order 105 

saddle points and was first developed for hard spheres.66 Coupled 
to OPEP, the procedure works as follows (Fig. 1B). First, the 
system is deformed from its current minimum in a random 
direction (all atoms for a peptide up to 15 amino acids, and a 
subset of atoms for larger proteins or oligomers) until the lowest 110 

eigenvalue of the Hessian becomes negative, and the system is 
pushed along this direction while the energy is minimized in the 
orthogonal directions. Once the saddle point is reached, the 
system is relaxed to the other side of the barrier and minimized, 
and finally the move is accepted depending on the Metropolis 115 

criterion.67,76-85 
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 The advantage of ART, as any activated methods,86-88 is that it 
is not sensitive to the energy barriers allowing the system to 
move rapidly on the energy landscape. Even if ART lacks a 
proper thermodynamics basis, in contrast to a discrete sampling 
method,89 ART-OPEP simulations revealed frustration in the 5 

energy landscape of the 60-residue protein A with multiple 
funnels,85 consistent with global optimization of a 69-residue 
protein using basin-hopping and genetic algorithms with Gō 
energy models.90 ART-OPEP also predicted conformations of the 
Aβ21-30 peptide consistent with NMR,83 and located new 10 

minima and mechanisms for amyloid oligomers that were 
validated experimentally. 
 
Molecular and Langevin Dynamics. Newton’s equations of 
motion are integrated using the velocity-Verlet method. Each 15 

main atom has its standard mass while the side-chain beads have 
a mass equal to the total mass of their atomic constituents.21 MD 
runs are performed with a time step of 1 fs or 2 fs using the 
SHAKE algorithm.91 The system is first minimized and then 
heated to the desired temperature. Production runs in the NVT 20 

ensemble are performed either with Berendsen thermostat92 and a 
coupling parameter τ = 0.5 ps or the Langevin thermostat68 with a 
collision frequency γ = 1 ps−1. Note we found little variation in 
the equilibrium structures and heat capacity curves of two model 
monomer and trimer peptides using the two thermostats.68 25 

Simulations can be performed either in a sphere with reflecting 
boundary conditions or in a box with periodic boundary 
conditions. Presently, the non-bonded interactions are updated at 
each time step, but the code can be easily improved in terms of 
CPU efficacy by using a multiple time step framework. 30 

 
REMD and H-REMD. REMD simulations are carried out with a 
number of replica running in parallel and a temperature range 
dependent on the system size.22,93 For instance, we found that 8 
replicas for 50 ns, 20 replicas for 600 ns and 22 replicas for 1200 35 

ns are sufficient for the dimers of Aβ16-2294 and Aβ16-35,95 and 
the trimer of Aβ16-35,96 respectively to reach equilibrium. An 
exponential temperature distribution is used and exchanges 
between two consecutive replicas are attempted every 5.0 to 
7.5 ps, leading on average to an acceptance ratio of 30-40%.22 To 40 

enhance sampling, it is useful to combine REMD with a 
Hamiltonian exchange procedure,97 where we use at the highest 
temperature several replicas with reduced non-bonded energies.69 
 We assess convergence of the simulations near the 
physiological temperature by using different time intervals and 45 

metrics. These metrics are the distributions of the radius of 
gyration and end-to-end distances, the secondary structure along 
the amino acid sequence and the total number of clusters.95,98 
Convergence is also verified by the curves of the heat capacity 
and conformational entropy using different time windows.95,99 50 

 
ST. In simulated tempering, temperature is a dynamical variable 
taking discrete values Tn. Standard ST requires the determination 
of a priori unknown weight parameters to ensure a random walk 
in T space, the Helmholtz free energies at Tn.100,101 Recently, we 55 

developed an ST algorithm with on-the-fly weight determination. 
The weights are self-updated via a trapezoid rule during the run,71 
eliminating the need of trial simulations,102 or complicated update 
schemes.103,104 The advantage of our ST method over REMD was 

demonstrated using OPEP on Ala20 and the Aβ16-22 trimer.101 60 

The same efficiency is observed in explicit solvent for Ala10, the 
20-residue Trp-cage and the 37-residue WW-domain starting 
from random states and deviating by less than 0.2 nm RMSD 
from the NMR structure after less than 700 ns (in preparation). 
 65 

Greedy Algorithm. This method differs from MC and genetic 
algorithms by growing a chain one fragment after another.105-107 
Our procedure for structure prediction performs a rigid assembly 
of fragments of 4-residue length by superimposing the first three 
α-carbons of the new fragment onto the last three of the 70 

previously built structure. Our early version used forward (from 
N- to C-terminal) and backward (from C- to N-) operators to 
grow the chain.108,109 Our new version uses a zip operator to start 
the building process at any randomly chosen position, 
alternatively adding one residue at each side of the growing 75 

structure.110 At each position, the algorithm keeps 3000 states, the 
1000 energetically best OPEP states and 2000 randomly selected 
ones in the pool of the remaining generated conformations.110 

 

Metadynamics. Metadynamics is an advanced technique for 80 

enhancing sampling in MD simulations,70 with widespread 
applications in material science and chemical reactivity,111 
protein-drug recognition,112 protein aggregation,113 and allosteric 
pathways.114 Enhanced sampling is achieved by introducing an 
external, history-dependent bias potential affecting few selected 85 

degrees of freedom, usually referred to as collective variables 
(CVs). The bias is adaptively constructed as a sum of Gaussians 
deposited along the system trajectory in CV space to discourage 
the system from revisiting regions that have already been 
explored (Fig. 1C).  If the CVs capture all the slow, relevant 90 

degrees of freedom of the system, metadynamics provides a 
correct estimate of the system free-energy surface. An appropriate 
application of metadynamics requires the identification of a 
limited yet effective set of CVs. This may represent an 
intimidating task when dealing with extremely complex 95 

molecular processes. This limitation can be circumvented by 
combining metadynamics with replica exchange methods.115 This 
scheme, where several metadynamics runs are performed using 
the same CV set at different temperatures and are swapped 
following a Metropolis criterion, has been applied to assess the 100 

quality of the OPEPv3 potential with respect to the all-atom 
OPLS and AMBER99SB force fields in explicit solvent.64 Using 
two β-hairpin and α-helix peptides and an intrinsically disordered 
peptide, and by comparing the free energy surfaces (FES), the 
free energy differences between the folded and unfolded states 105 

and between the folded state and the transition state, we found 
remarkable agreement between the OPEP FES at 345-360 K and 
those using all-atom calculations in explicit solvent at 300 K.64 
This information was used to improve the model during the 
refinement of OPEPv4 and OPEPv5. 110 

 
MUPHY. This name refers to a way to embed molecules of 
generic complexity in a hydrodynamic solvent. The interaction of 
proteins with the surrounding solvent implies accounting for the 
hydrodynamic interactions exerted between particles of the 115 

macromolecules. As one particle moves in space, it creates a 
velocity field in the environment that acts on other particles, 
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therefore generating effective, solvent-mediated interactions. One 
way to include hydrodynamics is the Brownian Dynamics 
technique developed by McCammon.116 However, because 
hydrodynamic interactions are in principle long-range, the basic 
technique has a computational cost proportional to cube of the 5 

number of particles, so that it is computationally extremely 
difficult even to handle a small set of proteins in suspension.  
 The MUPHY software has been developed to study generic 
biofluidics systems117 and, in order to specialize to protein 
suspensions, has implemented OPEP.57 MUPHY handles the 10 

dynamical evolution of generic fluids and particles treated via the 
dual mechanism, a mesh-based Lattice Boltzmann method for 
fluids, and specialized versions of MD for particles.117 Indeed, a 
powerful alternative to McCammon’s method is provided by 
explicitly solving for the evolution of the solvent, as encoded by 15 

the Navier-Stokes equations, by using the Lattice Boltzmann 
(LB) numerical method.118 In this approach, the coupling between 
fluid and particles takes place via specifically designed kernels 
based on kinetic modeling, significantly distinct from methods 
based on macroscopic hydrodynamics. Such a methodology is 20 

genuinely multiscale as it entails different levels of physical 
description (such as field-based for the fluid and particle-based 
for the proteins) within a single unifying framework.119 
In LB, the solvent is described via the “populations” 
f��x��, t		representing the probabilities of finding solvent molecules 25 

at a given position x�� and time t and moving along a discrete 
direction p. The populations, represented over a mesh, evolve as: 
f��x��  c��, t  1� � ωf����x��, t	  �1 � ω	f��x��, t	  Δf��x��, t	, 
where f��� � w�n �1  3u�� ∙ c��  �9�u�� ∙ c���

� � 3u� /2#$ is the 
discrete Maxwell-Boltzmann equilibrium, associated to the 30 

weight w� and discrete speed c��, with n � ∑ f��  and u�� �
∑ c��f�� /n being the fluid density and velocity, respectively. The 
term Δf� is proportional to the drag force exerted by the fluid on 
the particle and vice versa, being a bidirectional of fluid and 
particles according to the action-reaction principle. Thus the drag 35 

force, together with a stochastic force, is included in the particles’ 
evolution besides the mechanical forces stemming from the 
OPEP force field.  
 The fluid-proteins concurrent evolution can be specialized to 
hybrid situations, such that the hydrodynamic interactions are 40 

decomposed into intra- and intermolecular components, the first 
ones evaluated analytically and the second ones handled via an 
under-resolved version of the LB fluid. Such a decomposition 
proves further advantageous in terms of CPU efficiency as it 
ideally balances the cost of computing intra- and intermolecular 45 

hydrodynamic interactions.120 Finally, MUPHY is fully parallel 
and distributes the computational load on multiple cores or 
multiple Graphical Processing Units (GPUs).  
 
Interactive Molecular Dynamics (IMD). Using our previously 50 

developed MDDriver software library,121 we rendered the CG 
simulation engine interactive by implementing the IMD network 
protocol and interactive steering modules. Using a TCP 
(transmission control protocol) network socket, any IMD-
protocol-aware frontend is able to connect to the running 55 

OPEP/Hire-RNA simulation engine and inject additional user-
forces to drive the experiment. For initial validation, we used 
both our custom UnityMol122 and the more widely distributed 

VMD123 frontends. Simulation and frontend may be run on the 
same machine or remotely to optimize performance and fluidity. 60 

OPEP applications 

 Though OPEP was used to explore large-scale motions, such 
as the pathways from the holo to the apo states of two EF-hand 
proteins,124 or the conformations of 8-20 amino acid loops,125 we 
focus here on the following timely topics: self-assembly of 65 

amyloid proteins, structure prediction of linear and disulfide 
bonded cyclic peptides, thermodynamic properties of RNA, and 
protein dynamics in a crowded environment with hydrodynamics. 
Table 1 gives a summary of the different systems simulated with 
OPEP indicating the methodology adopted and the total time 70 

lengths. 

Understanding the self-assembly of amyloid proteins 

Alzheimer’s disease (AD) is marked by atrophy of cerebral 
cortex and loss of cortical and subcortical neurons. Autopsy 
reveals accumulation of amyloid plaques and numerous 75 

neurofibrillary tangles made of filaments of the phosphorylated 
tau proteins. The major constituents of plaques are made of the 
amyloid-β (Aβ) peptides of 40 and then 42 amino acids formed 
from the amyloid precursor protein via the actions of the β- and γ-
secretases.126 But many truncated variants, such as Aβ1-30 and 80 

Aβ1-26, and Aβ with proteolytic removal of D1 and A2 and 
subsequent cyclization of E3 to a pyroglutamate, have been 
detected by mass spectrometry in human AD brains.127,128 The 
human Aβ1-42 sequence, designated Aβ42, is 
DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGV85 

VIA with a charged N-terminus (A1-K16) and two hydrophobic 
patches L17-A21 (central hydrophobic core, CHC) and A30-A42 
(C-terminus) separated by a hydrophilic patch E22-G29. Despite 
many clinical trials, drug after drug has failed to slow the 
progression of AD for three main reasons.49 90 

   While the experimental sigmoidal kinetics of amyloid formation 
with a lag-phase can be accounted for by means of primary 
classical nucleation theory (CNT) and/or secondary 
(fragmentation or lateral) nucleation processes,129,130 we lack 
information on the topology, structure and size of the primary 95 

nucleus (N*). 
 Secondly, though the low molecular weight (LMW) Aβ40/42 
aggregates are the most critical players in the pathology, we have 
little information on their structure, rate and extent of formation. 
Due to their high aggregation propensity, the LMW oligomers are 100 

not amenable to solution nuclear magnetic resonance (NMR) and 
X-ray crystallography. As a result, only low-resolution structural 
data from circular dichroism (CD),131 Fourier transform infrared 
spectroscopy (FTIR),132 ion-mobility mass spectrometry (IM-
MS),133 solid-state NMR,134 pulsed hydrogen-deuterium exchange 105 

coupled to MS,135 transmission electron (TEM) and atomic force 
microscopies (AFM) are available.136 The final Aβ40/42 products 
are insoluble and only solid-state NMR models are available. 
While fibrils of synthetic Aβ40/42 peptides display perfect U-
shaped forms with β-strands spanning the CHC and the C-110 

terminus, and the N-terminus disordered, fibrils of AD-brain 
derived Aβ40 peptides show deformed U-shaped states and, 
remarkably, the structure varies from one patient to another.137 A 
common feature of all fibrils is the inter-digitation of the side- 
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chains, the so-called steric zipper.138 
     Thirdly, though the general consensus is that drugs are given 
too late,49 we lack the structures of Aβ40/42 peptides with known 
inhibitors of aggregation and toxicity, paving the way for the 
design of specific drugs with the highest affinities for Aβ40/42 5 

oligomers. Overall, OPEP simulations have played a significant 
role to complement experiment on five aspects. 
 (1) Independently of the force field and the sampling method, 
self-assembly starts by a hydrophobic collapse and the formation 
of molten oligomers, which is modulated by the degree of 10 

hydrophobicity of the peptide. Then, the H-bonds drive the 
system to highly flexible and transient β-rich oligomers.139-141 

These β-rich oligomers have various topologies, and we were the 
first using OPEP simulations to (i) observe assemblies with 
various sheet-to-sheet pairing angles79,81,94 that were confirmed 15 

by structures of macrocyclic β-sheet mimics,142 and other force 
field calculations,43,140,141 (ii) evidence β-barrels (Fig. 3A)79,143 
that were validated by the X-ray structure of a toxic hexamer of a 
11-residue amyloid peptide (Fig. 3B),144 (iii) predict formation of 
antiparallel double stranded poly-L-glutamine nanotubes with 22 20 

residues per turn (Fig. 3C),145 reminiscent of the water-filled 
model proposed by Perutz,146 and (iv) identify reptation moves of 
the β-strands in the late steps of aggregation78 that were validated 
by FTIR147 and atomistic simulations.140,148 
 (2) The aggregates of 7- to 20-mers of GNNQQNY, NNQQ, 25 

Aβ16-22, KFFE and NHVTLSQ using OPEP are mostly 
amorphous and consist of a heterogeneous ensemble of β-rich 
states.99,149-153 In all systems, the transition at the melting 
temperature involves a change in the distributions of oligomer 
and β-sheet sizes, but mixed parallel/antiparallel (P/AP) β-strands 30 

dominate.99 This β-strand mismatch, observed with various force 
fields,38,139,154 provides strong evidence that one limiting-factor 
for fibril formation is the transition from mixed P/AP to fully P or 
AP strands. This was confirmed by bias-exchange metadynamics 
of 18Val8 and 18Aβ35-40 peptides in explicit solvent, where the 35 

crossing of the highest free energy involves the transition from 
mixed P/AP to P β-strands that can be accompanied by the 
formation of the steric zipper.113,155 
  (3) A fundamental question pertains to the size of the primary 
nucleus, N*. Recently, two atomistic simulations in explicit 40 

solvent and one OPEP simulation have provided insights into N*. 
In the first study, an effective nucleus size on the order of 14 was 
proposed for 18 Val8 peptides by metadynamics.113 In the second 
atomistic study, the aggregation of 16Aβ37-42 peptides was 
investigated by REMD,156 and the population of 4-5 fully P β-45 

strands, consistent with the fibril structure, was 1-2% at 300 K. 
Whether N* is around 15 for Aβ37-42 as for the Val8 system 
cannot be determined, due to finite-size effects and the fact that 
fibril formation is under kinetic and not thermodynamic control 
as evidenced experimentally157 and by Langevin dynamics of a 50 

mesoscopic model.48 Using unbiased MD-OPEP, we investigated 
the onset of aggregation in a 20-mer of GNNQQNY.158 Running 
16.9 µs at 280 K and 300 K, we showed that aggregation follows 
the CNT and N* is 4-5 at 280 K and 5-6 at 300 K. The kinetics of 
growth cannot be fully described by the CNT, however, because 55 

there are important rearrangements after the nucleus is formed, as 
the aggregates attempt to optimize their organization.158 
 OPEP simulations do not systematically show fibril formation. 

One reason found for the peptide spanning the residues 144−153 
of the prion protein is that oligomerization is not 60 

thermodynamically favorable, in agreement with a turbidimetric 
experiment.23 Another reason is the presence of a proline which 
can either destabilize the β-strand conformation of the monomer 
and totally prevent aggregation, or reduce the packing of β-sheets 
rendering fibril formation a slow process,80,150 consistent with 65 

experiments.159 Overall, many factors, in addition to pH and T, 
modulate amyloid formation (N* size, fibril topology and lag-
phase) ranging from the energy landscape of the monomer,43,48,160 
the entropy of the loops161 or the intrinsic disorder of the whole 
peptide,162,163 to the supersaturation of the protein solution.164,165 70 

 (4) The solution NMR structure of the Aβ42 monomer reveals 
weak β-strand propensities at the CHC and the residues I31–V36 
and V39–I41, and turns at D7–E11 and F20–S26.166 NMR 
relaxation data reveal that Aβ42 is more rigid at the C-terminus 
than Aβ40. IM-MS reports a collision cross-section of 1256 Å2 75 

for Aβ42 dimers.133 Using different preparation methods, CD 
leads to a β-strand between 12% and 25% and an α-helix between 
3% to 9% at 295 K, pH 7 and day 0, i.e. for an heterogeneous 
ensemble of oligomers.131,133 Remarkably, the Aβ40-D23N 
peptide forms fibrils with in-register antiparallel and parallel β-80 

sheets under quiescent and strong agitations, respectively.157  
 To get insights into Aβ flexibility, we determined the free 
energy landscapes of the monomers167 and dimers168 of Aβ40, 
Aβ42, and with D23N using H-REMD-OPEP. We found that if 
the three monomeric alloforms are mostly disordered, in 85 

agreement with experimental data166 and confirmed by all-atom 
simulations,169-171 they display distinct morphologies. Aβ42 and 
Aβ40-D23N have higher β-strand propensities at residues 30–42 
than Aβ40. D23N changes the Aβ40 structures; the residues 1–16 
becoming more independent of the rest of the protein,167  which 90 

may explain in part why the kinetics and the final products vary 
between Aβ40 and Aβ40-D23N under quiescent agitation. Our 
results on the dimers showed that Aβ42 has a higher propensity 
than Aβ40 to form β-strands at the CHC and residues 30-42, 
explaining the higher Aβ42 aggregation kinetics.168 In none of the 95 

systems we observed any parallel β-sheet structure between the 
two CHC’s. D23N impacts the free energy landscape by 
increasing the population of states with higher β-strand 
propensities at the C-terminal and antiparallel β-sheet between 
the two C-termini, and this motif could be important in the 100 

nucleation of Aβ40-D23N toward parallel β-sheets. Our results 
also revealed many configurations stabilized by N-terminal 
interactions168 that were observed by single-molecule atomic 
force spectroscopy172 and all-atom REMD simulations.173 
 (5) Based on the microcrystal structure of Aβ16-21 fibrils with 105 

the dye Orange G, Eisenberg designed compounds that reduce 
toxicity by preventing fragmentation of the Aβ42 fibrils without 
binding to the oligomers.174 Despite many experimental attempts, 
scientists have not succeeded to provide the structures of 
Aβ40/42 monomers or Aβ40/42 oligomers with inhibitors. Using 110 

a shorter fragment, Segal solved the NMR structure of NQTrp 
bound to the Aβ12-28 monomer, revealing three dominant 
binding sites between NQTrp and the Aβ18-21 region.175 As a 
first step toward understanding the interaction of Aβ oligomers 
with NQTrp we focused on the Aβ17-42 peptide also found in 115 

AD plaques and used a multiscale procedure.96 Our extensive 
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OPEP-REMD simulation of the Aβ17-42 trimer, followed by all-
atom docking of five molecules on the most populated Aβ 
structures, showed that NQTrp is a more favorable inhibitor than 
EGCG, 2002-H20 and resveratrol. In agreement with the NMR 
structure of NQTrp/Aβ12-28,175 NQTrp binds to Aβ through the 5 

side chains of F19 and F20 and the main chain atoms of F19-E22. 
Our simulations reveal, however, many transient binding sites 
(Fig. 3D),96 consistent with all-atom REMD of the Aβ1-42 dimer 
with 2NQTrp,176 indicating that the design of more efficient drugs 
targeting the Aβ42 dimer is not an easy task. 10 

Fast and Accurate 3D Peptide Structure Prediction 

 Peptides have regained considerable interest as they represent 
alternative ways to design therapeutics, vaccines or molecular 
probes. However, fast and accurate peptide structure 
determination remains a long-standing goal in structural biology 15 

and peptide engineering.34 Pep-Fold is an innovative approach 
aimed at de novo structure prediction of linear and disulfide 
bonded cyclic peptides with 9-52 amino acids (aa).177-178 Pep-
Fold relies on a Hidden Markov Model derived structural 
alphabet (SA) of 27 letters to describe proteins as series of 20 

overlapping fragments of four aa.179 The SA letters can be 
assimilated to a generalized secondary structure, extending the 
number of states from 4 (α-helix, coil, turn or bend, and β-strand) 
to 27, but not all transitions are possible between two consecutive 
letters. The Pep-fold procedure consists in three steps. First, Pep-25 

fold predicts a limited set of SA letters at each position from the 
sequence, and then performs a progressive assembly of the 
prototype fragments associated with each selected SA letter using 
our greedy algorithm108-110 driven by OPEP. As Pep-Fold uses a 
rigid assembly, we found necessary to smooth the OPEP side 30 

chain - side chain potential.177 The third step refines the CG 
models by Monte-Carlo before generating all-atom models and 
performing a clustering of all models returned by the simulations. 
 Pep-Fold1 efficiency was shown on 24 linear peptides of 9-25-
aa in aqueous solution and neutral pH by predicting lowest-35 

energy states with a mean 2.5 Å RMSD from the NMR rigid 
cores (RC, excluding the flexible parts).110 Pep-fold2, which 
revisited the prediction of the SA letters from the sequence and 
considers several filters to generate a variety of SA trajectories, 
was tested on peptide lengths up to 36-aa.178 The server allows 40 

the biologists or chemists to define S-S bonds or any residue-
residue contact. Using 34 peptides with one to three S-S bonds, 
the best Pep-Fold2 models had a RMSD of 2.7 Å from the full 
NMR structures. Using 37 linear peptides, Pep-Fold2 located 
lowest-energy states with a 3 Å RMSD from the NMR RCs. We 45 

also showed the gain in the identification of the native state by 
filtering the Pep-Fold2 models using the backbone proton 
chemical shifts easily available from 2D NMR.180 

 Finally, Pep-Fold2 was compared to the state-of-the-art 
Rosetta program on 56 peptides with 25-52-aa.180 Rosetta starts 50 

sampling with a CG model and fragment assembly MC, and then 
through successive steps, selects models for all-atom 
refinement.18-19 By using a total of 200 Rosetta and Pep-fold runs 
for each peptide, and a new Binet-Cauchy (BC) score,181 the 
mean BC score of the best models (lowest RMSD with respect to 55 

NMR) generated by Rosetta and Pep-fold are 0.83 and 0.87 (in 
preparation). While Rosetta generates high quality models (BC 
score > 0.9) for 34 targets vs. 29 for Pep-fold, suggesting that 

Pep-fold could benefit from an all-atom sampling refinement, 
Pep-fold generates near-native or native states for 53 peptides vs. 60 

49 for Rosetta (BC score > 0.6). Fig. 4 shows the predicted 
structures of four peptides.  
 Pep-Fold is freely available as a web server110,178 and has 
proven to be very useful by many scientists for different 
applications that can be broadly classified into six categories. The 65 

first application is predicting the conformations of protein 
fragments.182 Structural characterization of the C-terminal 27-aa 
tail of HIV gp41 remained relatively limited and contradictory. 
Pep-Fold tail models showed conserved α-helix structures despite 
significant sequence variations among diverse clades, and this is 70 

supported by CD.183 3D models of the N-terminal 20-aa of human 
cytochrome c and several cytochrome c2 variants from R. 
capsulatus were also generated by Pep-Fold and helped 
understand why the insertion of an alanine residue between 
Phe11 and Cys15 and substitution of residues Glu8 and Glu10 are 75 

critical for heme attachment by the mitochondrial protein 
holocytochrome c synthase.184 Pep-Fold was also used to 
generate protein N- and C-terminal conformations.185 Certain 
immune-driven mutations in HIV-1, such as those arising in 
p24Gag, decrease viral replicative capacity. In HIV-1 subtype B, 80 

the p24Gag M250I mutation is a rare variant, while in subtype C, it 
is a relatively common minor polymorphic variant (10 to 15%). 
The structural implications of M250I were predicted by Pep-Fold 
to be greater in subtype B versus C, providing a potential 
explanation for its lower frequency and enhanced replicative 85 

defects in subtype B.186 In addition, Pep-fold was used to model 
protein loops187 or protein linkers.188,189 A study on the linkers in 
a new class of modular alpha-amylases showed that the Pep-fold 
conformations are diverse, but match the data obtained from 
small-angle X-ray scattering.189 90 

 The second application is related to protein–peptide interaction 
in general, fundamentally important for signal transduction, 
transcription regulation and protein degradation.190-194 Wu used 
Pep-Fold to generate the structures of 13 peptides of 20-aa as 
initial structures for short MD and showed a very good 95 

correlation between the experimental and the calculated MM-
PB/SA binding free energies for the peptides interacting with the 
vascular endothelial growth factor A.191 Kumar used the Pep-fold 
conformations of several 20-aa peptides to explore their binding 
mechanisms to calmodulin,192 Chopra used Pep-Fold for the 100 

design of a peptide able to bind to Bacillus anthraxis toxin-
antitoxin module,193 while Stegman used Pep-fold prior to 
docking onto peptidyl-prolyl cis/trans isomerase PPIL1, a 
component of the human spliceosome.194 

 The third domain of application is the design of immunogenic 105 

peptides. Peptides play many roles in immunology, yet none are 
more important than their role as immunogenic epitopes driving 
the adaptive immune response against infectious disease.195 
Peptide epitopes are mediated primarily by their interaction with 
major histocompatibility complexes (T-cell epitopes) and 110 

antibodies (B-cell epitopes). In this context, Wingren reported the 
first detailed analysis of antibody–peptide interaction 
characteristics, by combining large-scale experimental peptide 
binding data with the structural analysis of eight human 
recombinant antibodies and numerous peptides using Pep-fold, 115 

targeting tryptic mammalian and eukaryote proteomes.196 
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 Another application concerns antiviral peptides (AVP) and 
vaccines. Pep-Fold contributed to the design of peptides 
inhibiting in vitro the Influenza A virus197 or other viruses198,199 

and is now defined in AVPdb, a server allowing the design of 
AVP.200 Pep-fold was also used to design a DNA vaccine against 5 

human papillomavirus causing cervical cancer.201 

 Although OPEP has been optimized for aqueous solution, Pep-
fold has been used on peptides in an apolar milieu,202-204 and in 
particular on antimicrobial peptides (AMP) regarded as one of the 
most promising alternatives to antibiotics affected by resistance 10 

mechanisms. Using in silico predictions including Pep-Fold and 
in vitro assays led to the discovery of potential AMPs with high 
activity and low toxicity from the entire human genome.204 

 Finally, Pep-fold has been found useful in understanding the 
solvent-dependent CD spectrum of a 24-aa peptide corresponding 15 

to the tubulin-binding site of the neurofilament light subunit205 
and the effect of gold nanoparticle conjugation on peptide 
structure and dynamics.206 Pep-fold has been used in various 
design situations: new molecules for induction of bone 
formation,207 peptides binding lipids,208 peptides coating carbon 20 

nanotubes,209 and a peptide-based Hsp90 inhibitor leading to a 
novel anticancer agent210 that will enter preclinical trials 
conducted on patients with breast cancer, prostate cancer and skin 
cancer. To date, there is only one case of conflict between Pep-
Fold and in vitro results. While Gautam designed 15-aa peptides 25 

with coil-turn CD, Pep-Fold predicts β-hairpins, but the 
experimental conditions (pH and ionic strength) are not 
reported.211  

A framework for RNA and DNA coarse-grained models 

 In many vital cellular processes, especially in regulatory 30 

functions related to transcription and translation, proteins interact 
with nucleic acids. We recently developed a nucleic acid CG 
model, called Hire-RNA/DNA, by following the physical 
principles used for OPEP, in order to better understand the 
thermodynamics and dynamics of RNA/DNA. 35 

 The most widely used all-atom force field for nucleic acids is 
undoubtedly AMBER with ff99 achieving a good agreement with 
experiment for DNA double helices.63 The parameters are, 
however, constantly adjusted to better represent non-canonical 
structures in loops and bulges,212 and a new parameterization 40 

obtained by reproducing known thermodynamic and kinetic 
measurements of RNA monomers and dimers was just reported 
allowing de novo folding of three hyperstable RNA tetraloops to 
1–3 Å RMSD from their experimental structures.213 Folding a 
single stranded RNA free of any biases remains, however, a 45 

computer challenge for nucleotide (nt) lengths > 20.61 

 Different strategies are applied to go beyond all-atom 
simulations and they can be organized into three categories:214 
homology modeling, hybrid and ab initio methods. Homology 
modeling works well, if one can find a good template in the 50 

NDB, but this is typically not the case for single stranded 
RNAs.215,216 Hybrid methods based on knowledge-based energy 
functions vary from fragment reconstruction (MC-Fold and MC-
Sym),217 fragment assembly (FARNA)218 to multiscale 
approaches relying on 2D structure predictions, CG 3D models 55 

based on the fragments selected from the NDB followed by all-
atom minimization,219 or junction topology prediction and graph 
modeling followed by all-atom refinement.220 However, the best 

2D structure prediction algorithms reach only 60% accuracy.221 
Another bottleneck is the low population of non-canonical 60 

Watson-Crick (WC) base pairs in the NDB, and the prediction of 
pseudo-knots and junctions. This problem is also faced by ab 
initio CG force fields, built from atomistic simulations222,223 and 
electronic structure calculations223 or by using experimental data 
to assign parameters,224-226 e.g., iFold,225 or derive statistical 65 

potentials,227-229 e.g., NAST227. Most methods were recently 
evaluated in RNA-Puzzles and predicted a dimer of 46-nt with a 
RMSD from 0.34 to 0.69 nm, a 100-nt square of double-stranded 
RNA with a RMSD from 0.23 to 0.36 nm, and a 86-nt riboswitch 
domain with a RMSD from 0.72 to 2.3 nm.35 70 

 Following OPEP, our CG model has an energy function 
derived from physical intuition and parameters based on known 
structures. Among all CG models, our CG representation has the 
highest resolution, with an explicit representation of the heavy 
atoms of the sugar-phosphate backbone (P, O5’, C5’, C4’ and 75 

C1’), one bead for pyrimidine bases (C and U) and two beads for 
the purine bases (G and A), see Fig. 5. For comparison, the 
NAST,227 iFold225 and Xia228 models have 1, 3 and 5 beads, 
respectively. Note OH is not treated explicitly and therefore the 
distinction between RNA and DNA in our models is done solely 80 

on different equilibrium angles and torsions, with some angles 
and torsions allowed for one molecule but inaccessible to the 
other, and different base pairs, with DNA making only a subset of 
all RNA base pairs.230 
 The particles in Hire-RNAv1231 interact via standard local 85 

terms for covalent bonds, bond angles and dihedral rotations, an 
electrostatic repulsion between phosphate groups, a modified 
Lennard-Jones potential for long range van der Waals interactions 
as used in OPEPv4-v5 and base pair terms. Base pairing is the 
most crucial interaction and we treat it with more detail than all 90 

other top-down ab initio models. A two-body term, as in OPEP, 
depends on the relative distance and angles formed by two base 
beads interacting through their WC sides, see Westhof’s 
classification.232 All the bases can form, and not just A-U and G-
C, with different strengths. A three-body repulsive term prevents 95 

different bases to simultaneously interact, even though transient 
multiple pairs can form, and a four-body term, as in OPEP, helps 
stabilize pairs of consecutive bases.  
 With Hire-RNAv1, we folded two RNA of 26- and 40-nt into 
hairpins from fully extended states by MD (Fig. 5). Running 100 

REMD, we showed that the NMR configuration is the most 
populated structure at low T.231 In a second study, we slightly 
modified the form of the two-body and four-body terms for base 
pairs and with Hire-RNAv2, we examined the assembly of DNA 
and RNA duplexes by REMD.233 For the two RNA and the DNA 105 

consisting of 36- and 24-nt, we calculated the heat capacity 
curves and found one transition from an assembled state (RMSD 
of 0.18-0.26 nm with respect to the crystal structure) to 
disassembled states (Fig. 5). In principle, RNA could fold on 
itself and form a hairpin, but this is not a favorable free energy 110 

state for our nt sequences. The melting temperatures we find for 
the three systems deviate at most by 17 K from the values 
obtained by the HyTher algorithm, a reference in the field.234 
Overall, the same energetic parameters perform well for single- 
and double-stranded systems of 40-nt, and based on our algorithm 115 

generating an all-atom model from a CG state (Fig. 5), we 
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showed the equivalence of MD results using AMBER ff99 with 
explicit ions and water starting from our REMD-predicted and 
the experimental structures for both RNA and DNA.233 

Simulations of protein suspensions with hydrodynamics 

 In the last few years macromolecular crowding has been the 5 

subject of several investigations since it has crucial implications 
on cell functioning.235,236 There is increasing evidence that 
macromolecular crowding exerts large effects on the protein 
mobility, association and stability.237,238 It is generally thought 
that crowding serves as a means of confining proteins in space, 10 

where enzymatic activity is undertaken. Also, data suggest that at 
high concentrations proteins non-specifically enhance association 
rates, with in vivo and in vitro rates and equilibria differing by 
orders of magnitude. Macromolecular crowding also affects 
hydration structure and dynamics,239 and protein conformational 15 

change.240 Evolution has fined-tune microtubule-based motor 
proteins to deliver cargoes rapidly and reliably throughout the 
cytoplasm by having molecular properties that prevent them from 
forming traffic jams.241 

 Hydrodynamic and excluded volume interactions are likely the 20 

two main factors that account for the large reduction of protein 
diffusivity in crowding conditions.242 While hydrodynamics 
interactions do not alter the equilibrium distribution of states of a 
system, they potentially affect the local dynamics as well as the 
escape from metastable states characterizing the spatially and 25 

energetically heterogeneous crowded system. For example, 
hydrodynamics has a primary role on the transport properties, as 
for the translational and rotational diffusivities, and in general the 
importance on the dynamics of suspensions is well known. Along 
with simulations, diffusional data can be accessed experimentally 30 

via quasi-elastic neutron scattering, single molecule tracking, 
fluorescence correlation spectroscopy and fluorescence-recovery-
after-photobleaching,243 so the multiscale approach can be 
directly compared with in vitro and in vivo data. 
 One large-scale MUPHY/OPEP application is offered here to 35 

illustrate the potentiality of the coupling of the CG force field 
with hydrodynamics interactions. A large system composed of 
17576 Rat1 yeast proteins in solution is simulated at 300 K for 30 
ns. Rat1 is a 666-aa protein that functions primarily in the nucleus 
and plays an important role in transcription.244 Altogether we 40 

consider a system of 70 million particles, each Rat1 having 4013 
particles. To account for the solvent, a hybrid LB/Brownian 
Dynamics scheme with a time step of 1 fs was used on the Titan 
supercomputer, exploiting 17576 GPUs in parallel.120 The highest 
volume fraction considered (40%) emulates the crowding 45 

conditions found in the cytoplasm, typically with 20-30% of the 
cytoplasmic volume occupied by proteins, nucleic acids and other 
macromolecules. As a result, the distance between proteins is 
comparable to the size of the proteins.235 
 During the evolution of the Rat1 suspension, proteins move 50 

and tumble together. Fig. 6 shows the typical protein 
configuration in the suspension, in particular by highlighting the 
hydrodynamic “bubble” that each protein carries along, 
representing the isosurface of constant velocity surrounding 
proteins. Each bubble is further distorted and connected with 55 

those generated by neighboring proteins. Visual inspection of the 
flow streamlines reveals that, as proteins move, they generate a 
substantial accompanying drain on the solvent. Even at 

physiological concentrations, the streamlines travel mostly 
undisturbed over several protein sizes, that is, distant proteins 60 

effectively experience solvent mediated mutual interactions.  
 Crowding is generally thought to induce sub-diffusive and 
slow dynamics on the short timescale and diffusive dynamics at 
longer times.245 In principle, the coherent long-ranged 
organization of the solvent flow field can act on the suspension as 65 

a lubricant, in order to facilitating the protein motion. On the 
other hand, the hydrodynamic field can interfere with the protein 
motion, since viscous dissipation can drain momentum away 
from the suspension.  
 In the following, we illustrate simulation data for the Rat1 70 

suspension for the translational diffusion coefficients that pertain 
to the short-time dynamics (10 ns). The diffusion coefficient is 
shown in Fig. 7 and is evaluated via the integration of the protein 
center of mass velocity autocorrelation function.  For the sake of 
comparison, experimental data on the translational coefficient 75 

obtained by quasi-elastic neutron scattering for the bovine serum 
albumin protein are also shown.  
 On the considered timescale, diffusion shows anomalous 
behavior, in the sense that the effective mean square displacement 
does not scale linearly with time but is rather subdiffusive (data 80 

not shown). As Fig. 7 shows, the translational diffusion 
coefficients provide similar, although systematically larger values 
than the experimental ones, probably related to the larger 
temporal scale accessed by the simulation as compared to the one 
pertinent to the scattering spectra (3.5ns < τexpt < 5 ns).246 This 85 

temporal window exceeds the hydrodynamic one, which arises 
from the propagation of vorticity over the protein linear size (~ 
100 ps) and slightly slows down the protein self-diffusion. The 
drop of the translational diffusion coefficient for volume fractions 
comprised between 10% and 30% signals the onset of caging 90 

effects on account of steric interactions. At larger volume 
fractions the diffusivity drops to one order of magnitude smaller 
than that at the high-dilution value, with proteins possessing some 
residual mobility. Analysis of the trajectories of the 
macromolecules, in particular by focusing on the intermolecular 95 

contacts, highlights that during their erratic encounters proteins 
display structural heterogeneity, with several non-specific and 
specific interactions. Heterogeneity reflects the presence of small 
clusters made of two or three proteins, together with the presence 
of isolated (singlet) proteins. At the same time, the simulations 100 

show a certain dispersion of the diffusion coefficient increasing 
with the level of volume fraction.  
 On the structural side, crowding conditions are usually 
considered to stabilize protein structures, due to the concomitant 
presence of specific and non-specific intermolecular interactions. 105 

At the same time, entropic effects due to the suppression of 
available space can destabilize the macromolecular scaffolding. 
Simulations of the Trp cage protein in cavity-like environments 
highlighted the thermodynamic shifts induced by polar 
(destabilizing) vs. non-polar (stabilizing) interactions between the 110 

protein and the confining surface.237b It was also reported that, 
when confined in a reverse micelle, atomistic fluctuations are 
reduced.237c Fig. 7 reports the Rat1 RMS fluctuations from their 
initial states. As crowding induces a larger number of 
intermolecular contacts, a mild destabilization of the proteins 115 

takes place, in agreement with recent experimental247 and 
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computational studies237d on other proteins. However, the Rat1 
system shows that the enhanced fluctuations do not induce 
substantial departures from the initial structures and are in the 
conventional range of values. Analysis of the whole ensemble of 
proteins (Rg inset, Fig. 7) shows that a small heterogeneity of 5 

structures is detected at the highest volume fraction considered, 
indicating that the presence of small clusters in the suspension 
does not trigger partial unfolding of the molecules.  
 This simulation of unprecedented size made possible by a 
multiscale methodology, bringing together the OPEP CG and a 10 

consistent treatment of the hydrodynamic interactions, is a first 
step towards simulating the real physics in the cell. The coupling 
of proteins and solvent reveals the interplay between specific and 
non-specific intermolecular interactions, and the role of 
hydrodynamic forces on the structural and diffusional properties 15 

of proteins in crowded environments (in preparation). 

OPEP Limitations 

The OPEP force field has several limitations, as is the case for 
any other CG or all-atom force field. Some are easy to alleviate 
and are the subject of on-going projects. Other issues are more 20 

delicate. It is important to be aware of the strengths, weaknesses, 
and limitations so as to use OPEP for the right questions. 
 
Buffer Conditions and pH. We can block the N-terminus by an 
acetyl group (CH3-CO) and the C-terminus by an NH2 group, or 25 

block one end while the other is in its zwitterion form. 
Alternatively, the proteins can be in their zwitterion forms. The 
charged residues are parameterized for neutral pH. This means 
the N-terminus is NH3

+, the C-terminus is CO2
-, the Arg and Lys 

residues are treated as positively charged (NH3
+), the Glu and 30 

Asp residues are treated as negatively charged (CO2
-), and the His 

residues are neutral. So, OPEP can be safely used only in the pH 
range of 6-7. The pH effect can be illustrated on the Aβ12-24 
peptide forming amyloid fibrils very rapidly at pH ≤ 5 and very 
slowly at pH 8.4 using the same in vitro conditions.248 Another 35 

aspect to be known is that the non-bonded parameters have been 
parameterized in “normal” aqueous solution. So we expect 
deviations with experiments at high ionic strengths or buffers 
made of H2KPO4 and adjusted with H2SO4, or with DMSO. 
 40 

Non-natural Amino Acids and Small Molecules. OPEP has 
been extensively tested for the 20 standard natural L-amino acids, 
but D-amino acids can be used as well. The three-proteinogenic 
amino acids occurring in all kingdoms of life, selenocysteine, 
pyrrolysine and N-formylmethione, cannot be treated. S-S bonds 45 

can be treated at a bead level using a 6-12 potential when folding 
peptides with Pep-Fold, or described at an atomic level using 
standard local terms and Amber parameters for the bond angles 
and dihedral angles. While the N-methylated amino acids have 
been parameterized using quantum mechanics calculations,129 50 

many non-canonical amino acids cannot be used. These include 
peptoids,249 β-amino acids for designing antibiotics where the 
amino group is bonded to the β carbon rather than the α carbon,250 
γ-amino acids where the amino group at the third carbon atom is 
after the carboxyl carbon atom, such as γ-aminobutyric acid the 55 

most important neurotransmitter in the central nervous system,251 
side chains with cyclo-hexyl groups to design inhibitors of 

Aβ40/42 aggregation,252 and Aβ40/42 with a pyroglutamate.127 
For all these systems, it is now straightforward within the 
framework of the OPEPv5 code to derive effective potentials and 60 

forces from all-atom simulations.24 Generating OPEP parameters 
for small drugs is out of reach since the explicit representation of 
H-bond donors or acceptors is an essential requirement of the rule 
of “five”,253 but we can imagine a multi-resolution method on the 
fly with an all-atom representation of the protein and the drug in 65 

the regions of interest. 
 
Effective Time Scale and Long-time Dynamics. In OPEP, the 
solvent contributions are treated through effective non-bonded 
interactions and a single bead replaces most side chains. So why 70 

does OPEP use 2 fs for integrating the equations of motion? For 
comparison, Deserno uses 100 fs with a resolution model of four 
beads,46 Klein 25 fs, Martini simulations 20-40 fs,11 Shea 10 fs 
with a three-bead model,43 PaLaCe and UNRES 5 and 4.9 fs,39,33 
PRIMO 4 fs,42 and Voth uses 2 fs.36 The reason is that OPEP 75 

explicitly represents the N-H bond and its vibrational mode254,255 
at 3600 cm-1 which limits the time step for conserving the total 
energy in the NVE ensemble. The second reason is that 
augmenting the time step to 3-4 fs by changing the mass of the 
hydrogen atom would introduce dynamics perturbations 80 

compared to all-atom simulations. 
 Using an all-atom force field in implicit solvent, Rao showed 
that folding of three peptides is accelerated by two orders of 
magnitude.256 The relationship between the OPEP-MD simulation 
time and the experimental time varies with the system. Poly-L-85 

alanine and poly-L-proline have the same number of degrees of 
freedom in OPEP and in an all-atom model, while poly-L-valine 
has not. The implicit solvent and CG side chains do not affect the 
motions uniformly and even if dynamics were investigated by 
Langevin simulations, we would miss important dynamical 90 

contributions as a result of the momentum transfer that would 
occur through the solvent. Overall, our experience suggests a 5- 
to 10-fold speed-up compared to all-atom MD in explicit solvent, 
and the OPEP-generated dynamics cannot totally reflect the 
dynamics in explicit solvent. The OPEP-MD time is therefore 95 

smaller than the CG-DMD time37,38 and the Martini-MD11 time, 
preventing the self-assembly of large oligomers of Aβ42257 or di-
phenylalanine258 peptides using reasonable computer time. 
 
Short-time Dynamics. Using multiple MD trajectories of 30-100 100 

ns at 300 K, the RMS deviations of all proteins are 0.15 nm 
higher than in all-atom MD simulations in explicit solvent,23-24 
though all-atom force fields do not describe similarly the 
folded259 or unfolded260 proteins. While the secondary structures 
are well preserved and display RMS fluctuations consistent with 105 

NMR, the loops display higher mobility. This results from their 
intrinsic flexibility and the simplified side chains, but more 
importantly from the absence of interactions between the loop 
residues and the solvent. As is the case for all-atom and CG force 
fields, OPEP has limitations in describing the vibrational 110 

modes.255,261,262 
 
Thermodynamic Properties. The heat capacity and the melting 
temperature play a major role in relating microscopic and 
macroscopic properties of proteins. Their accurate predictions by 115 
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simulations remain a significant challenge due to the complex 
and dynamic nature of protein structures, their solvent 
environment, and conformation averaging. Constructing the heat 
capacity curves, CV, as a function of T from REMD, ST or 
metadynamics simulations is an easy task using PTWHAM263 or 5 

MBAR.264 OPEPv5 was optimized to fit the experimental TM of a 
β-hairpin (297 K).24 Using the same parameters, the monomer of 
the ccβ-p2 monomer has a calculated TM of 275 K and a α-helix 
content of 70% fully consistent with the Agadir program. 
Experimentally, the peptide displays a α-helical CD signal at 277 10 

K, suggesting a TM within 290-300 K. Finally, we predicted a TM 
of 360 K vs. 336 K experimentally for the 85-residue HPr 
protein. Although a larger test set of proteins is needed, there is a 
systematic deviation of ± 25 K between the OPEPv5 calculated 
and experimental melting temperatures. 15 

 Four points are worth noting: (i) few CG models report TM 
values. While earlier UNRES simulations found TM of 1000 K,31 
the last UNRES version reports 297 and 317 K for the trpzip1 and 
trpzip2 peptides vs. 323 and 345 K experimentally.33 No other 
systems are, however, available for validation. Note that by using 20 

OPEPv4 parameters, we found a TM of 360 K for trpzip2.23 In 
contrast, Voth’s model finds TM values 120 K lower than 
experiments for trpzip2 and Trp-cage,36 (ii) OPEPv322 and other 
calculations265 showed that an overestimation of TM can result 
from the absence of a desolvation energy barrier; (iii) even all-25 

atom force fields in explicit solvent overestimate TM by 30−40 
K,3 and (iv) due to this TM shift, we recommend to start with a 
minimal T of 260 K for ST- or REMD-OPEP simulations. 
 A second aspect to be aware of is that the OPEP heat 
capacities above TM, are smaller than the experimental values. 30 

This is not surprising since three major terms account for the 
absolute heat capacity of a protein: one first term depending on 
the covalent structure and the contributions from all internal 
vibrational modes; a second term arising from non-covalent 
interactions of the 2D and 3D structures; and a third term from 35 

hydration. For a typical globular protein in solution the heat 
capacity at 25°C is given by the covalent structure term (85%) 
and the hydration term (15%). In contrast, the change in heat 
capacity upon unfolding results from the increase in the hydration 
term (95%) and then the loss of non-covalent interactions 40 

(5%).266 Simplified side chains and the implicit solvent in OPEP 
make it difficult therefore to estimate the hydration contribution 
accurately above TM. Although free energy differences may fit 
experimental data, a breakdown of free energies into enthalpies 
and entropies can be reliable for the backbone, but is not accurate 45 

for the side chains. We can however envision running a number 
of all-atom simulations in explicit solvent from a selected list of 
poses in the folded and unfolded states. 

On-Going Projects and Developments 

Physics behind thermophilic and mesophilic proteins 50 

 The capability of OPEP to simulate protein folding/unfolding 
and temperature melting makes the model a powerful tool to 
study the elementary stabilizing forces in biomolecules. In this 
regard, proteins from thermophilic organisms are ideal study-
cases. These proteins are stable and functional up to 100°C.267,268 55 

While the general mechanisms that sustain such an extreme 

behavior remain to be determined, some molecular peculiarities 
have been singled out. A comparative structural analysis indicates 
that short loops are important motifs for stability269 and de novo 
protein design based on the ROSETTA force field successfully 60 

predicted enhanced stability of proteins with minimal loops.270 At 
the level of chemical composition, thermophiles have a 
systematic higher population of charged amino acids and salt-
bridges, thus optimized electrostatics are thought to be a key 
ingredient for enhanced stability. Optimizing these interactions at 65 

the protein surface, based on the simplified Kirkwood-Tanford 
electrostatic model, allowed the design of proteins with increased 
stability.271 However playing with electrostatics is not always an 
effective route to enhance stability, because mutations designed 
to introduce ion pairs can compromise stability due to the large 70 

desolvation penalty associated with buried ionic groups.272-274 
 The OPEPv4 model was used to explore the thermal stability 
of two homologues, the G-domains of EF-Tu and 1α proteins. 
These 200-aa domains were simulated by REMD using 24 
replicas spanning 260-580 K, each for 300 ns. The specific heats 75 

of unfolding, reported in Fig. 8, show two main peaks. Though 
convergence is not reached, remarkably, the curve of the hyper-
thermophilic protein is systematically shifted to higher 
temperatures (see horizontal arrows) mirroring its enhanced 
thermal stability. The calculated shift between the two 80 

homologues is 35 K, comparing favorably with the experimental 
difference of 40 K. Extended simulations and tests with OPEPv5 
that includes improved potentials for salt bridges are in progress. 
 This preliminary result shows that OPEP with REMD can shed 
light on the intriguing problem of thermal stability. First, it is 85 

possible to obtain at a reasonable computational cost the melting 
temperature of homologues either by monitoring the peak of the 
heat capacity or by reconstructing the stability curve, 
∆G(/) 	�-kT∙ln	�.)/.(	, where .(�)		is the probability to occupy 
the folded and unfolded states. This latter strategy could be 90 

crucial to understand the thermodynamic mechanism sustaining 
protein activity at high temperatures.268, 275-277 
 The extensive sampling of conformations in both the folded 
and unfolded states then would provide key information on the 
protein flexibility at ambient condition and the presence of motifs 95 

in the unfolded state. Moreover, the decomposition of the free 
energy gap into enthalpy and entropy, here clearly limited by the 
nature of the CG to the behavior of the backbone, could provide 
extra information on the stability mechanism.278-280 

Effect of shear flow on protein folding and amyloid formation 100 

 It has been reported that hydrodynamic interactions accelerate 
collapse during polymer coil-to-globule transition281 or protein 
folding,282-283 and affect the kinetics of lipid membrane self-
assembly.284 Thanks to the MUPHY/OPEP coupling it is now 
possible to explore the behavior of proteins under shear flows. 105 

Assessing the effect of shear flow on the stability of proteins is of 
interest for biotechnological applications because proteins might 
be degraded due to filtering or injection processes.  
 Thus far, experimental studies have reached contradictory 
conclusions about the minimal shear-rate /0  needed to perturb 110 

globular proteins.285 Computational studies have also tackled this 
problem using simplified (generally Gō-like) models and showed 
that under strong uniform or elongation flow, proteins do 
unfold.283 However, the minimal shear-rate generating unfolding 

Page 12 of 31Chemical Society Reviews



 

12  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

or the necessary time for cumulating shear stress remains an open 
issue.285 We are applying OPEP to shed light on theses issues. In 
Fig. 9 we present preliminary results of the MD-OPEPv5 
dynamics of a β-hairpin peptide in a strong laminar shear flow, 
/0 � 1023	452. We see that after a few nanoseconds the peptide 5 

suddenly unfolds as marked by the RMSD increase, and explores 
several configurations that extend along the velocity gradient. 
 A systematic study of shear-induced unfolding is appealing 
also for probing mechanical stability as compared to atomic force 
spectroscopy experiments; in the former case the drag force is 10 

sensed in different locations due to the thermal motion of the 
protein while in the latter the external pulling applies only along 
the end-to-end distance axis. Moreover, as for the glycoprotein 
Ibα receptor, conformational change induced by shear flow can 
be essential for function, i.e. the binding to the cofactor.286  15 

 The effect of shear was also appreciated in the context of 
amyloid fibril formation.287-290 For instance, it has been observed 
that in an uniform laminar flow generated in a Couette cell, Aβ1-
40 sample forms fibrils within 15 hours at 37°C while in the 
absence of shear, the process requires at least 1 month.288 This 20 

acceleration corresponds to a decrease of the activation barrier of 
4.3 kT or the loss of one hydrogen bond per monomer in 
solution.288 A possible mechanism for the effect of shear is that it 
may lead to the alignment of aggregates, which in turn facilitates 
their assembly into fibrils. It was further probed that changing the 25 

nature of the shear flow, i.e. a heterogeneous field generated by a 
magnetic stirrer bar, enhances the formation of protofibrils and 
the growth of fibrils288 and affects the rate of fragmentation.290 
We are investigating the shear-induced effects on amyloid 
peptides using OPEP. 30 

Buffer- and pH-dependent OPEP force field 

 We are currently using all-atom MD simulations and Boltzmann 
inversion to generate salt-bridge potentials between Lys, Arg and 
Asp and Glu as a function of pH. Similarly, we are deriving 
OPEP potentials for polypeptides at various high ionic strengths 35 

and in buffers made of H2KPO4, H2SO4 and DMSO so as to 
mimic as closely as possible the in vitro conditions used to form 
amyloids. These potentials will be useful for Pep-fold predictions. 

Hire-RNA version 3 

 To predict complex RNA topologies, two features are critical. 40 

The first is electrostatics, RNAs being highly charged and ions 
playing important roles in the structures and thermodynamics. 
Many models consider ion screening at long distances between 
phosphate groups via the Debye-Hückel treatment of electrostatic 
interactions. Other models go more into details by considering 45 

either one layer of explicit ions surrounding RNA, referred to as 
ion condensation,291 some implicit “structural ions”,228,292 or 
explicit ions and solvent.293 In Hire-RNAv3, we added a Debye-
Hückel term and the screening parameter is being calibrated 
against experimental melting temperatures of duplexes as a 50 

function of ionic concentrations. We are also exploring the 
presence of explicit ions. 
 The second issue is the treatment of non-canonical W-C 
interactions never taken into account by ab initio models. Our 
new force field allows two bases to interact on all sides, giving 55 

rise to about 30 recognition motifs, each one with its specific 
geometry and strength. Overall, Hire-RNAv3 consists of local 

terms, excluded volume, ionic screening electrostatics, a proper 
stacking interaction depending on base position and orientation, 
and terms accounting for both canonical and non-canonical 60 

interactions on the three base sides and also for the co-planarity 
of the interacting bases (in preparation). 
 With Hire-RNAv3, we are now able to predict complex RNA 
structures. As a first benchmark, we studied three systems 
starting from fully extended states: a 22-nt pseudo-knot, a 49-nt 65 

telomerase triple-helix pseudo-knot, and a 79-nt riboswitch with a 
kissing loop. For the 22-nt RNA, we recovered the native state by 
running 1.2 µs ST simulation with 15 discrete temperatures from 
300 to 450 K (Fig. 10). With a REMD simulation of 64 replicas, 
each for 0.5 µs, we recovered the native topology of the 49-nt 70 

RNA with a small shift of the base pairs, however. For the 79-nt 
riboswitch, we implemented the possibility of including some 
restraints. Information about base pairing is easily obtained by 
preliminary NMR data and is not sufficient to assign the full 3D 
structure. Imposing 4 restraints in the three helices, we were able 75 

to fold this molecule to its NMR topology by a MD trajectory of 
0.6 µs at 300 K and recovered the kissing hairpin configuration, 
although the guanine ligand was not considered (Fig. 10). 

Virtual reality and interactive simulations 

 The use of haptic manipulations of molecular models has been 80 

well described.294-295 The technical requirements are modest; and 
it is nowadays easy to setup interactive simulations.296 Even 
quantum chemistry applications are within reach.297 For the 
manipulation of complex biological assemblies, coarser methods 
are preferable and have been exploited notably for fitting models 85 

into experimentally determined envelopes.298 Generally speaking 
such approaches build on the idea to render accurate molecular 
models more real and tangible to the scientists.299 
 We previously pointed out that CG models play a particular 
role in virtual interactive experiments.121,300 CG descriptions 90 

represent an excellent compromise between simulation speed and 
biological fidelity. Furthermore our experience suggests that CG-
level simulations are generally more robust with respect to user 
interactions than computations carried out at an all-atom level.  
 OPEP and Hire-RNA are of particular interest in this context 95 

and provide original features that we could not address 
previously, due to their relatively high resolution of the backbone 
representation and the presence of directional bonded terms. Both 
OPEP and Hire-RNA simulation engines were extended for 
interactive manipulation as described in the methods section. 100 

Here, we will mainly brush over the potential benefits of such an 
approach and restrict ourselves to present a very first, simple toy 
application, as the validation of this recent MDDriver/IMD 
implementation is still ongoing. 
 Generally speaking, the interactive approach opens up 105 

perspectives to guide simulations via user input, for example 
using a haptic device, within a dedicated graphical environment. 
Hence, the user feels an immediate force feedback by a 
straightforward combination of classical molecular modeling and 
virtual reality. An instant benefit is to gather an intuitive 110 

understanding of the causal relationship between the theoretical 
model and its chemically and biologically relevant properties.  
 These hands-on investigations echo recent experimental 
ventures into the mechanical properties of molecular structures, 
and can be associated with the term mechanochemistry. 115 

Page 13 of 31 Chemical Society Reviews



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  13 

Experiments, such as AFM pulling and allosteric spring probes, 
can be reproduced on the fly. Multiple forces may be applied 
simultaneously to reproduce complex deformations and assemble 
or disassemble several molecules. Such an interactive exploration 
can provide insight into the key interactions that govern the 5 

mechanical properties of molecular structures and is a unique tool 
to probe mechanochemistry at a molecular level. 
 We previously carried out such investigations at a CG level 
using elastic network models as in the studies of the SNARE 
complex,121 RecA nucleofilament301 and dystrophin fibril.302 Such 10 

spring-based CG models do however preclude any significant 
changes in the underlying molecular structure that may occur 
upon tension, a limitation that we are able to lift using OPEP. 
 In order to illustrate these enhanced possibilities, we 
interactively manipulated a Hire-RNA model of an RNA hairpin 15 

(Fig. 11). By pulling on one or both ends of the structure, it is 
fairly easy to control the successive detachment of the base pairs. 
When the added external forces are released, the structure may 
either progressively return to the initial hairpin state or feature a 
base shift. This reversible process takes place on the order of a 20 

few hundred picoseconds, depending on how much the ends were 
torn apart. This numerical experiment provides insight on how 
the hairpin behaves under such stress, similarly to what can be 
probed experimentally with optical tweezers.303 
 One apparent caveat is the relatively short time step (0.1 to 2 25 

fs) and/or low temperature (100 K) that have to be used to reduce 
vibrations in order to allow for accurate manipulation. This 
inconvenience could be lifted by adding the ability to 
interactively change these parameters during the virtual 
experiment: using low time-step/temperature values when 30 

selecting and applying the forces, then going back to standard 
values to observe the resulting effects. This kind of simple 
manipulation can be useful to quickly probe features of the force 
field or to generate non-trivial starting structures. When carried 
out more rigorously, the approach may be used to interpret 35 

experimental results. 
 Future extensions of the interactive approach similar to those 
previously reported298,302 will enable the use of OPEP and Hire-
RNA models to integrate low-resolution experimental data, from 
small-angle X-ray scattering (SAXS) or Cryo-EM, where both 40 

the force field and the user intuition will guide the refinement. 

Conclusions 

We have presented some of the good applications of OPEP and 
what OPEP-based simulations can tell us about the structures, 
dynamics, kinetics and thermodynamics of single proteins, 45 

amyloid fibril formation, proteins in a crowded environment with 
hydrodynamics and RNA/DNA complexes. Whether OPEP can 
reproduce the effects of a single mutation on protein energy 
landscapes remains to be determined.163,304 Compared to the nine 
CG models described in this report, the OPEP CG strategy with 50 

inclusion of the amide hydrogen allows generating more accurate 
melting temperatures than Voth’s model consistent with 
experimental values and all-atom simulations with growing 
accuracy of the force fields. OPEP is also free of any 
bioinformatics-based information (AWSEW), restraints on the 55 

backbone (ATTRACT, Klein’s model and MARTINI) and has 
been extensively used on amyloid and non-amyloid systems in 

contrast to the PRIME, PRIMO, UNRES and Palace systems. The 
main OPEP disadvantage is that it can only use 2 fs time step. 
OPEP is coupled to many unbiased advanced conformational 60 

sampling methods and interactive virtual reality approaches. We 
have briefly sketched the main on-going applications and 
developments. Others, that have just started, include flexible 
protein/protein and protein/RNA-DNA docking with the 
necessity to couple the protein and nucleic acid force fields, and 65 

the use of the basin hopping method to locate the global energy 
minimum and calculate disconnectivity graphs to visualize the 
energy landscape.305 All these studies will help improve the 
OPEP parameters and gain a better understanding of how living 
systems function, and how these functions can be perturbed by 70 

internal or external factors. 
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Table 1. Summary of the different systems studied with the CG force 
field. 
 

  

Applications Methodology used Total Time References 

Αβ1-40, Αβ1-42, 
WT(D23N) monomers 

and dimers 
 

Trimers of Αβ17-42 and 
interactions with drugs 

 
Aggregation of 3- to 20-

mers of amyloid 
fragments 

 
Size of the primary 
nucleus for fibril 

formation 
 

Peptide Structure 
Prediction and 

Conformations of 
protein fragments 

 
Protein-peptide 

interactions 
 

Design of immunogenic 
and antiviral peptides 

 
Impact of 

macromolecules and 
hydrodynamics  

 
 

RNA and DNA folding  
 

Thermophilic and 
mesophilic proteins 

 
Impact of shear flow 

 
Virtual reality 

HT-REMD 
 
 
 

REMD 
 
 

MD 
ART 

REMD 
 

MD 
 

REMD 
 
 

PEP-FOLD 
 
 
 

PEP-FOLD 
 
 

PEP-FOLD 
 
 
 

MUPHY/OPEP 
 
 
 

MD, REMD, ST 
 
 

REMD 
 

MUPHY/OPEP 
 

Interactive MD 

70.0 µs 
97.5 µs 

 
 

16.4 µs 
 
 

30.0 µs 
no 

120.0 µs 
 

33.8 µs 
 

90.0 µs 
 
 

no 
 

 
no 
 
 
 

no 
 
 

no 
 
 
 
 

85.0 µs 
 

72.0 µs 
 

30 ns 
 

0.2 ns  

167 
168 

 
 

96 
 
 

149, 150, 152 
80,150 

23, 68, 99, 149-153 
 

158 
 

99, 153 
 
 

177, 178, 180, 182-189 
 
 
 

190-194 
 
 

195-201 
 
 
 

this work 
 
 
 

231, 233, this work 
 
 

this work 
 

this work 
 

this work 
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Fig.1 OPEP CG model and enhanced sampling methods. (A) We 
use the peptide Ala-Lys-Phe-Pro-Val in its zwitterion form to 5 

show the details of the backbone and the side-chains. (B) The 
Activation-Relaxation Technique connecting local minima by 
first-order saddle points. (C) Example of a metadynamics 
simulation in a one-dimensional landscape with multiple 
metastable minima separated by energy barriers. Top panel: 10 

System trajectory in CV space as a function of simulation time. 
Bottom panel: Progressive filling (colored lines) of the 
underlying potential (black line) by bias. In both the panels color 
code is used to measure the simulation time. The system starts in 
the basin A1 and it is pushed by the bias to overcome the free-15 

energy barriers and to visit basin B1 (t~100) and basin C1 
(t~1500). In the second half of the simulation, the system can 
easily sample the whole landscape and the bias can be used to 
estimate the underlying free-energy surface. 

  20 
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Fig.2 Flowchart depicting the OPEP force field parametrization scheme. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V bond, V angle, V tors and Vimp (Amber), 
positions and VdW radius of Sc centroids 

 
Peptide Folding by Monte Carlo 

 Monte Carlo simulations of peptides with 
12-46 amin acids 

New structural parameters of SC centroids 
from PDB analysis 

Recognize native from non-native states 
using potential energy and 29 proteins 

Test set of peptides by MD-OPEP, REMD-
OPEP, and comparison with all-atom 

metadynamics in explicit solvent 
 

Recognition native from non-native states 
Successful MD-OPEP and REMD-OPEP 
simulations of non-amyloid and amyloid 

peptides 
 

Fitting all-atom PMF for salt-bridges 
Comparison between REMD-OPEP and all-

atom REMD simulations 
 

v2 

v3 

v3 

v4 

v5 

v1 
Optimize V non-local 

Add V φ  and V ψ 

No change 

New formulation VdW 
 for Sc-Sc, readjust 

all parameters 

New formulation of salt-
bridges and optimize 

scaling with other 
parameters 

 

Readjust all energetic 
parameters using a 
 genetic algorithm 
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Fig.3 Amyloids. (A) The β-barrel of the β2m(82-87) peptide as 
predicted by OPEP.79,143 (B) The hexamer of the KV11 peptide 
consisting of six antiparallel β strands forming a barrel as 5 

determined by X-ray crystallography.144 (C) The predicted OPEP 
antiparallel double stranded poly-L-glutamine nanotube.145 (D) 
Two binding modes of the NQTrp drug to the Aβ17-42 trimer as 
predicted by our multiscale simulation. The yellow balls indicate 
the 17th amino acids and the drug is shown with all-atoms.96 Top 10 

view also shows all atoms of A21 and E22; bottom view shows 
all atoms of E22 (blue) and V39 (green). 
  

ABC

D
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Fig.4 Structure predictions superposed on the experimental 5 

structures. (A): Best Pep-fold model of the peptide code PDB 
1n0a (11-aa, BC score = 0.94) with one S-S bond; (B): Best Pep-
fold model of the peptide 1e0m (37-aa, BC score = 0.88). In (A) 
and (B), we show the all-atom representation of some side chains; 
(C) and (D): Best Pep-fold and Rosetta models of the peptide 10 

2j8p (49-aa, BC scores = 0.93 and 0.88) superposed on the 20 
NMR structures and showing the flexibility of one extremity. 
Green: experimental conformations. 
  

Page 24 of 31Chemical Society Reviews



 

24  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

 

 

 
Fig.5 Hire-RNA model. Top, Left: Representation of a Guanine 
nucleotide with 7 beads. Top, Right: MD of the 36-nt 1N8X 5 

hairpin with Hire-RNAv1 recovering the native structure from a 
fully extended state. Secondary structure of the hairpin is shown 
on the right. Bottom, Left: Heat capacity plot of a 36-nt RNA 
duplex with HiRE-RNAv2. Bottom, Right: With our 
reconstruction algorithm, the predicted all-atom structure behaves 10 

similarly to the experimental structure using all-atom MD in 
explicit solvent. 
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Fig.6 MUPHY/OPEP suspension. (A) Snapshot highlighting the 
Rat1 proteins and the solvent velocity field shown in 
transparency. (B) A zoom showing the Rat1 secondary structures 
and the local solvent velocity field. (C) Flow streamlines 5 

generated by three selected proteins in the suspension in a single 
timeframe. 
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Fig.7 MUPHY/OPEP results. Left: Translational diffusion 5 

coefficients at various volume fractions (black circles) are 
compared to the experimental data of bovine serum albumin246 
(red squares). The diffusion coefficient is normalized by the value 
at virtually zero volume fraction, and the solid line is a guide to 
the eye. Inset: Histogram of diffusivity stemming from the 10 

ensemble of proteins. Right: RMS fluctuations from the 
crystallographic structure at 40% volume fraction (black curve). 
Structures with maximal (red) and minimal (blue) departures 
from the average value are shown. Secondary structure is 
indicated as a lower bar with colour green (turn), yellow (β-15 

strand), magenta (α-helix) and white (coil). Inset: Histogram of 
Rg values. 
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Fig.8 Specific heat of unfolding 67 for the mesophilic 
(green) and hyperthermophilic (red) domains of the EF-Tu 
and 1α proteins, respectively calculated from OPEP-
REMD simulations. The structural homology of the two 
proteins is highlighted in the bottom right panel. The 
presence of two main peaks in the 67 profile is caused by 
the unfolding events of different secondary structure 
motifs. In a single two-state model, the 67 is expected to 
show a single peak at the melting temperature 89	at which 
the population of the folded (.() and unfolded (.)) states 
are equal. The melting temperature indicates the zero of 
the stability curve, see the upper inset graph. Several 
mechanisms can cause the increase of the 89 of 
thermophiles, i.e. the upshift, the right shift or the 
broadening of the curve.268,275-277. 
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Fig.9 Time evolution of the RMSD and snapshots of a β-
hairpin peptide (PDB code 1PGB, fragment 41-56) simulated 
in laminar shear flow. The velocity gradient is generated 
along the Z direction and corresponds in our simulation to a 
shear rate of /0 � 1023	452.  We show the detailed structures 
of the peptide prior to unfolding (I) and at various unfolding 
stages (II-IV), with the velocity field represented in 
background and a colour scale given in the top of the figure. 
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Fig.10 Hire-RNAv3 results. Left, Folding of the 22-nt pseudo-
knot (2G1W) using ST simulation with the predicted state (blue) 
superposed on the NMR structure (yellow). The RMSD with 5 

respect to the NMR structure over time is shown. Right, MD-
predicted structure of the 79-nt guanine riboswitch 1Y26 (blue) 
superposed on the experimental structure (yellow) using our four 
restraints (in red). In both panels the secondary structure of the 
system is shown on the right. 10 
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Fig.11 Interactive force unfolding of an RNA hairpin modelled 
by Hire-RNA. Visualization and interaction were performed 5 

within VMD. Starting from an initial folded conformation (top 
left), the user tears apart both ends by applying forces (blue 
arrows) on the C4’ beads of the end bases. Two scenarios were 
observed after releasing the forces, either the structure refolds and 
returns to a full hairpin state (1) or a base shift occurs (2). A 10 

cumulated view of simulation snapshots is shown on the very 
right, coloured from white (start of the simulation) to black (final 
snapshot). The end base C4’-C4’ distance curve over time is 
shown for both experiments. 
 15 

Page 31 of 31 Chemical Society Reviews


