This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
The Modification of Ferroelectric LiNbO$_3$ (0001) Surfaces Using Chromium Oxide Thin Films

M.W. Herdiech1,2, X. Zhu1,2, M.D. Morales-Acosta1,3, F.J. Walker1,3, and E.I. Altman1,2,*

1Center for Research on Interface Structures and Phenomena
2Department of Chemical and Environmental Engineering
3Department of Applied Physics
Yale University
New Haven, CT 06520

Abstract

The impact of ferroelectric polarization on the chemical and electronic properties of atomically thin layers of non-polar chromium oxide deposited on positively and negatively poled LiNbO$_3$ (0001) was studied. Chromium (III) oxide readily forms on LiNbO$_3$; however, annealing at high temperatures was required to maintain well-bordered films as the thickness increased. Prolonged heating at these temperatures caused Cr diffusion into the LiNbO$_3$ substrate. Comparing Cr 2p x-ray photoelectron spectroscopy (XPS) peak positions as a function of temperature and substrate polarization revealed no evidence of shifts from the peak positions expected for Cr$_2$O$_3$. The lack of any band offset between Cr$_2$O$_3$ on the oppositely poled surface suggests that charge compensation of the ferroelectric substrate occurs at least predominantly at the surface of the film, as opposed to the film-substrate interface. No evidence of shifts due to oxidation or reduction of the Cr was observed indicating that charge compensation did not involve a change in the ionic state of the Cr. Exposing the films to reactive oxygen species emitted from an oxygen plasma, however, caused a distinct high binding energy shoulder on the Cr 2p$_{3/2}$ XPS peaks that could be associated with oxygen adsorption on surface Cr and concomitant oxidation to Cr$^{5+}$. This feature was used to gauge the concentration of O adatoms on the surfaces as a function of temperature for oppositely poled substrates; these measurements did not reveal any significant polarization dependence for oxygen desorption. Further, temperature programmed desorption measurements for a Cr$_2$O$_3$ film on α-Al$_2$O$_3$ showed a similar trend in O$_2$ desorption. Therefore, it is concluded that the reactivity of Cr$_2$O$_3$ toward O is at least largely independent of substrate polarization despite data suggestive of charge compensation at the film surfaces.
1. Introduction

Much recent work with ferroelectric materials has focused on the surface structure1-4 and reactivity5-12 of oppositely poled surfaces. Because the surface charge compensation mechanisms that prevent the electrostatic surface energy from diverging must depend on the polarization direction,13\ oppositely poled surfaces are expected to display different surface properties.14-16

Since the direction of polar domains in a ferroelectric material can be switched by application of an external electric field, one can envision a class of materials with switchable surface properties. A surface property that could potentially be tuned is reactivity, making way for catalysts whose reactivity and/or selectivity could be altered by application of an external electric field, or by heating above the Curie temperature. Recent studies exploring the reactivity of ferroelectric surfaces toward polar molecules have shown that the heats of adsorption for these molecules are polarization dependent, but that the surfaces tend to be unreactive.5,6 Efforts to use ferroelectrics to modify the properties of catalytic metals have yielded ambiguous results. While early experimental studies reported substantial polarization direction dependent reactivity16 and theory predicted unique reactivity for atomically thin layers on ferroelectric supports,17 the most recent experimental study found no evidence of the ferroelectric support influencing adsorption on the metal.18 The lack of any impact was attributed to the metal forming 3D clusters whose surfaces were too far from the ferroelectric interface to be affected by the substrate polarization.

Therefore, we seek to create catalytic surfaces with polarization dependent properties by coating ferroelectric substrates with catalytically active oxides that are likely to grow in a layer-by-layer manner; this paper describes the interaction of atomically thin layers of chromium oxide on positively and negatively poled LiNbO\textsubscript{3} (0001) surfaces. It will be shown that ordered, epitaxial Cr\textsubscript{2}O\textsubscript{3} thin films can be formed on LiNbO\textsubscript{3}. No band offsets between Cr\textsubscript{2}O\textsubscript{3} on the oppositely poled surfaces were observed suggesting that charge compensation in the polar system may occur at the Cr\textsubscript{2}O\textsubscript{3} surface. Despite the suggestion that the Cr\textsubscript{2}O\textsubscript{3} surfaces on oppositely poled LiNbO\textsubscript{3} are distinct, oxygen adsorption strength on the film surfaces was not strongly influenced by the substrate poling direction.

Prior studies involving the reactivity of LiNbO\textsubscript{3} surfaces have shown that while the heats of adsorption of polar molecules are polarization dependent, the surfaces are unreactive.5,6 For example, a study by Yun et al. on 2-propanol adsorption on positively and negatively poled LiNbO\textsubscript{3} surfaces found that 2-propanol desorbs from the negatively poled surface 110 K lower
than from the positively poled surface in temperature programmed desorption (TPD)
measurements; however, there was no evidence of 2-propanol dissociation. A study by Garra et
al. on water and methanol adsorption on positively and negatively poled LiNbO₃ surfaces found
that both molecules desorb from the negatively poled surface at lower temperatures than from the
positively poled surface, but the desorption was always molecular.

Despite LiNbO₃’s inertness, its use as a support for catalytically active materials could
yield novel reactivity. As even oxides that are generally considered inert can influence the
catalytic properties of supported layers, a ferroelectric support may offer the opportunity to
modulate catalytic activity since charge compensation of the polar surfaces might include
chemical and electronic reconstructions of the active layer. Thus researchers have been
motivated to investigate the behavior of metals and metal oxides on LiNbO₃. Inoue et
al. studied the activity of Cu on LiNbO₃ for the partial oxidation of methanol to formaldehyde;
Cu on the negatively poled surface was found to be more active. The same group also reported
a reduced activation energy for CO oxidation on NiO when the NiO was supported on negatively
poled LiNbO₃; a curious aspect of these results was that the effects were reported to extend to
films as thick as 32 nm. There have also been a series of studies focused on Pd on
LiNbO₃. Initial studies reported a 30 kJ/mol reduction in the activation energy for CO
oxidation for 0.02 nm Pd thin films on positively poled LiNbO₃ compared to thicker Pd films on
positively poled LiNbO₃ and any Pd thickness on negatively poled LiNbO₃. The lower activation
energy was attributed to a weaker Pd–CO bond due to an electron deficiency at the Pd surface
caused by attraction of electrons in the metal to the positively poled ferroelectric surface.
Similar effects were predicted theoretically for 1-3 atom thick Pt layers on PbTiO₃. Recent
experimental work, however, found no evidence that CO adsorption on Pd supported on LiNbO₃
could be influenced by ferroelectric polarization. The lack of any effect was consistent with the
observation of 3D cluster growth starting at the lowest coverages. As a result, it was concluded
that the Pd surface was too far from the LiNbO₃ surface to be influenced by its polarization.
Other recent experimental work supported by theory suggested that Pd could be made to grow
layer-by-layer on negatively poled LiNbO₃ but not on positively poled LiNbO₃. Still, a reduced
activation energy for CO oxidation on the thinnest Pd layers on positively poled LiNbO₃ cannot
be reconciled with this finding. The limited thickness over which a ferroelectric can influence a
metal, coupled with the high surface energies of metals that make them susceptible to 3D
clustering on oxide surfaces, therefore, creates substantial hurdles to realizing switchable catalysts based on ferroelectric-supported metals. We therefore turn our attention to modulating the activity of catalytically active oxide layers that can be stable as 2D films and where the influence of the ferroelectric is suggested to extend well beyond a monolayer.

The present study focuses on chromium oxide for activating LiNbO$_3$ surfaces. Chromium oxide was chosen because of its importance as a catalytic material and its structural similarity to LiNbO$_3$ which suggests that it should be possible to form epitaxial chromium oxide layers. Chromium oxide-based catalysts have been well-studied and are catalytically active for a variety of reactions; industrial applications of these catalysts include ethylene polymerization,$^{22-24}$ alkane dehydrogenation,25 and the selective oxidation of alcohols.26 Chromium (III) oxide adopts the corundum structure, while LiNbO$_3$ crystallizes in a similar structure, except with Li$^+$ and Nb$^{5+}$ substituting for Cr$^{3+}$. Below the 1470 K Curie temperature,27 the LiNbO$_3$ crystal can be envisioned as alternating planes of Li, O$_3$, and Nb in the [0001] direction. Because the charge on the Nb planes is greater than that on the Li planes, a dipole can be associated with the Li-O$_3$-Nb repeat unit accounting for the polarization. The lattice mismatch between Cr$_2$O$_3$ and LiNbO$_3$ is only 3.6%. Therefore, as illustrated in Fig. 1, when Cr$_2$O$_3$ is grown on LiNbO$_3$ (0001) the oxygen sublattice can continue unabated and Cr can fill the cation sites in the same order as the substrate. Figure 1 is based on the bulk structures and does not include reconstructions at the interface that compensate the bulk polarization of bare LiNbO$_3$ surfaces.$^{1-3}$ For the heteroepitaxial system, assuming that the charge compensation layer does not migrate to beneath the LiNbO$_3$ surface, several charge compensation scenarios involving the film-substrate interface and film surface can be envisioned, including: 1) retention of the LiNbO$_3$ surface reconstructions; 2) new interfacial reconstructions; 3) change in the Cr oxidation state at the interface; and 4) migration of the charge compensation layer to the Cr$_2$O$_3$ surface where reconstructions or changes in the surface Cr oxidation state may be induced. Each scenario entails a unique x-ray photoelectron spectroscopy (XPS) signature and a different mechanism for modifying the reactivity of the Cr$_2$O$_3$ oxide. For example, reconstructions at the interface would yield dipoles across the Cr$_2$O$_3$/LiNbO$_3$ interface that would create opposite band offsets for Cr$_2$O$_3$ on oppositely poled surfaces. Meanwhile, a change in oxidation state of the Cr at the interface would yield XPS peak shifts that decay with the thickness of the Cr$_2$O$_3$ layer, while migration of the charge compensation layer to the Cr$_2$O$_3$ surface where it may induce a surface...
reconstruction would have minimal effect on the XPS spectra. The expectation is that charge compensation at the interface would only impact the reactivity of the first Cr$_2$O$_3$ layers either through structural modification of the surface or change of the Cr oxidation state. In contrast charge compensation at the Cr$_2$O$_3$ surface would yield structures or electronic states not seen at the surface of bulk, non-polar Cr$_2$O$_3$ (0001), even as the film thickness increases.

In this paper it is shown that ordered Cr$_2$O$_3$ films can be grown on both positively and negatively poled LiNbO$_3$ as evidenced by XPS, low-energy electron diffraction (LEED), and x-ray diffraction (XRD) measurements. The high temperatures required for epitaxial growth, however, can cause Cr diffusion into LiNbO$_3$ thereby possibly blurring the Cr$_2$O$_3$/LiNbO$_3$ interface. No evidence of band offsets due to interfacial dipoles or shifts in the Cr XPS peak positions that could be associated with interfacial Cr oxidation or reduction could be detected, suggesting that the charge compensation layer for the polar system moves to the film surface. It will be shown that LiNbO$_3$ supported Cr$_2$O$_3$ is active for oxygen adsorption but the oxygen adsorption strength is not strongly influenced by the ferroelectric support.

2. Experimental

Experiments were carried out using two ultra-high vacuum (UHV) systems, both of which have been described in detail previously.12,30 Briefly, the first is an interconnected three-chamber system with separate growth, analysis, and microscopy chambers; in this study only the former two chambers were used. The turbo-pumped growth chamber is equipped with effusion cells and electron beam evaporators; Cr was deposited using one of the electron beam evaporators. Additionally, there is a microwave electron cyclotron resonance (ECR) plasma source for generating atomic oxygen, a differentially pumped 20 keV electron gun for reflection high-energy electron diffraction (RHEED) measurements, and quartz crystal oscillators (QCOs) for measuring deposition rates. The ion-pumped analysis chamber is equipped with a double pass cylindrical mirror analyzer (DP-CMA), a dual anode x-ray source for XPS, and rear-view LEED optics. The typical base pressure is 1×10^{-9} Torr in the growth chamber and 3×10^{-10} Torr in the analysis chamber. Samples were mounted on transferable sample holders with a chromel-alumel thermocouple mounted to the baseplate behind the sample and were radiatively heated from a filament behind the sample baseplate.
The second system is a single chamber system equipped with a differentially pumped microwave ECR plasma source, a differentially pumped quadrupole mass spectrometer, gas dosers, rear-view LEED optics, a dual-anode x-ray source, an ion gun, a Kelvin probe, a hemispherical energy analyzer, a QCO, and several resistively heated tungsten wire baskets for depositing various metals, Cr in these experiments. The system has a typical base pressure of \(3 \times 10^{-10}\) Torr. The ion-pumped main chamber is connected to a turbo-pumped side chamber used for introducing samples and for differential pumping of the plasma source. Samples were mounted on transferable sample holders that incorporated thermocouple contacts and a heater. In this system the thermocouple was attached to the front surface of the crystals using a high temperature ceramic adhesive.\(^1\) Both UHV systems were used for film growth, LEED, and XPS. The three-chamber system was used for RHEED measurements and the single chamber system for TPD experiments. X-ray diffraction (XRD) and x-ray reflectivity (XRR) measurements were performed \textit{ex-situ} with a Rigaku SmartLab x-ray diffractometer with a two crystal Ge (220) monochromator on the incident beam and Cu K\(_\alpha\) radiation, operated at 45 kV and 200 mA.

The different thermocouple placement in the two systems can lead to discrepancies in the temperature measurements with the thermocouple on the backing plate possibly overestimating the surface temperature. Calculation of the thermal gradient across the sample based on thermal conduction and radiative losses from the surface suggest a temperature difference between the backing plate and surface of less than 3 K across the temperature range of interest. This estimate assumes perfect thermal contact between the sample and the backing plate; nonetheless, it will be shown that the oxygen desorption temperature determined by XPS with the thermocouple on the backing plate agrees with the TPD peak temperature measured with the thermocouple glued to the surface.

The XPS spectra were obtained using 1486.61 eV non-monochromatic Al K\(_\alpha\) radiation. Because charging of the insulating substrate tended to shift the kinetic energy of the XPS peaks, the binding energies were referenced by positioning the Nb 3d\(_{5/2}\) peaks at a binding energy of 207.2 ± .001 eV as discussed previously.\(^18\) Finally, because LiNbO\(_3\) is pyroelectric, its surface potential changes with temperature which can cause the positions of XPS peaks to drift.\(^18\) Therefore, it was necessary to stabilize the temperature before performing the measurements. The XPS peak locations were obtained by fitting the data to mixed Gaussian-Lorentzian peak shapes. All LEED patterns were collected at room temperature except for the pattern shown in
Fig. 6c, which was collected at 575 K since charging effects distorted the image at lower temperatures.

Sapphire and nearly stoichiometric (49.8 mol% Li₂O) LiNbO₃ samples were obtained from MTI Corporation. The samples were polished on one side and oriented within ± 0.5° of (0001). The polarization direction of LiNbO₃ could be determined and switched following methods described previously.¹ Prior to insertion into the UHV system, LiNbO₃ samples were annealed in flowing air at 1075 K for 10-15 hours,¹⁸ and α-Al₂O₃ samples were annealed in flowing air for an hour at 875 K.³¹ Once in the UHV system, both α-Al₂O₃ and LiNbO₃ samples were cleaned in the plume of the oxygen plasma at 575 K for up to an hour to get rid of impurities, mainly C. Chromium pieces (99.997%) for deposition were obtained from Alfa Aesar.

Chromium oxide films were grown between 575 – 725 K in background O₂ pressures between 5x10⁻⁶ – 1x10⁻⁵ Torr. Although prior work on α-Al₂O₃ (0001) (compressive mismatch of 3.6% compared to the 3.6% tensile mismatch with LiNbO₃) showed that high quality epitaxial Cr₂O₃, as evidenced by RHEED oscillations, could be grown by oxygen plasma assisted molecular beam epitaxy at 775 K, we found that the plasma was not necessary to form Cr₂O₃ over the temperature range studied. Because more oxidized Cr oxides may form at lower temperatures³² and, as described below, atomic oxygen from the plasma can adsorb on Cr₂O₃ up to high temperatures, we did not grow the films in the plasma.³³,³⁴ For LiNbO₃, lower growth temperatures are desirable since it can start to lose Li₂O in UHV at temperatures as low as 500 K.¹ For thinner films where we monitored the evolution of the properties as a function of coverage, the thickness is provided in units of monolayers where 1 ML is taken as the distance between Cr planes along [0001] in Cr₂O₃, 0.227 nm; for thicker films expected to display bulk-like properties the thickness is given in nm with the rough number of corresponding monolayers provided in parentheses.

3. Results

3.1 Evolution of Film Structure During Growth and Annealing

As described above, low temperatures are desired for epitaxial growth on LiNbO₃ in UHV; therefore, we investigated the effect of growth temperature and subsequent annealing in atmospheric pressure oxygen on Cr₂O₃ growth. Growth at 575 K on LiNbO₃ resulted in rapid
attenuation of the LiNbO$_3$ RHEED pattern for both polarizations and no evidence of order in XRD measurements after 3 ML of Cr$_2$O$_3$ was deposited on the positively poled substrate (Fig. 2a), although x-ray reflectivity (XRR; Fig. 2b) measurements indicated a film density consistent with Cr$_2$O$_3$.

Analysis of the XRD patterns confirm the presence of (001)-oriented Cr$_2$O$_3$, with no evidence for other orientations or phases in the film. As the film was annealed to progressively higher temperatures, a distinct (006) Cr$_2$O$_3$ diffraction peak began to take shape by 775 K and increased in intensity as the temperature was raised to 975 K as shown by the XRD peak profiles extracted from the measured reciprocal space maps in Fig. 2a. The XRR fringes in Fig. 2b for the film annealed at 875 K suggest a roughness at the interface between the Cr$_2$O$_3$ and LiNbO$_3$ of 0.21 nm, or close to the thickness of one atomic layer of both Cr$_2$O$_3$ (0.227 nm) and LiNbO$_3$ (0.231 nm), for the as-grown film and 0.35 nm after annealing at 875 K for 30 min. The increased interfacial roughness is likely the result of diffusion of some of the film into the bulk substrate. Chromium diffusion is further supported by another component of the XRR data: the slight decrease in the peak spacings indicate that the Cr$_2$O$_3$ film became 4 Å thinner after annealing. Based on the XRD results, the growth temperature for the remaining experiments was set at 725 K, below the temperature where LiNbO$_3$ can be damaged significantly in UHV yet high enough to yield evidence of order in XRD, and the annealing temperature to 875 K which yields a distinct Cr$_2$O$_3$ XRD peak. As will be detailed below, higher annealing temperatures were avoided to reduce Cr migration into the bulk.

To determine if Cr$_2$O$_3$ forms two dimensional layers on LiNbO$_3$ at 725 K, series of XPS measurements were performed after incremental Cr$_2$O$_3$ deposition; the results are provided in Figs. 3a and 3b for the positively and negatively poled surfaces, respectively. Because the oxygen density is largely constant across the Cr$_2$O$_3$/LiNbO$_3$ interface, the normalized Cr peak intensity is taken as the Cr 2p/O 1s peak area ratio divided by that same ratio for a 20 nm (\approx 90 ML) thick film while the Nb peak intensity is taken as the Nb 3d/O 1s peak area ratio divided by that same ratio for the bare LiNbO$_3$ surface. In Fig. 3, the growth of the Cr 2p peaks and attenuation of the Nb 3d peaks are compared to expectations for layer-by-layer growth calculated considering the Beer-Lambert law35 and electron mean free paths derived from the universal curve for mean free paths.36 Figure 3 shows good agreement between the calculated and experimental results for both LiNbO$_3$ surfaces, indicating that Cr$_2$O$_3$ wets the LiNbO$_3$ surfaces.
Growth at 725 K initially yielded high quality surfaces as evidenced by RHEED and LEED. As shown in Fig. 4 for the negatively poled surface, the RHEED pattern for the first couple of monolayers was similar to that of the substrate, but thereafter attenuated and was difficult to detect by 6 ML. The LEED data in Fig. 5 tell a similar story: the pattern at 1 ML (Fig. 5a) is sharp with a low background; the background at 8.6 ML is much higher (Fig. 5b); and by 10 ML (Fig. 5c) only a few diffuse spots could be detected. When comparing the patterns in Fig. 5, note that each pattern was recorded at the energy that yielded the most intense pattern, thus the changes from Fig. 5a to 5c reflect a deterioration of the surface order. Also note that the retention of the LEED pattern to higher coverages may reflect slight differences in the growth process for the RHEED and LEED experiments: the RHEED patterns were recorded during continuous growth, while the growth had to be stopped and restarted to record the LEED data; before restarting, the sample was heated at the growth temperature in the plume of the oxygen plasma to remove any impurities that may have accumulated after stopping the growth and analyzing the sample. Because the data in Fig. 3 suggests that Cr$_2$O$_3$ wets the LiNbO$_3$ surface, the deterioration of the RHEED and LEED patterns cannot be explained by a gradual covering of the LiNbO$_3$ surfaces, rather the order of the Cr$_2$O$_3$ film must be deteriorating. While epitaxial Cr$_2$O$_3$ growth on LiNbO$_3$ polar surfaces at 725 K was limited to the first few layers, annealing thicker films in air at 875 K produced well-ordered surfaces as anticipated from the XRD data in Fig. 2a. As shown in Figs. 6a-c, the expected hexagonal LEED patterns were obtained after annealing 12 nm (≈ 55 ML) Cr$_2$O$_3$ thick on α-Al$_2$O$_3$ (0001) (Fig. 6a) and 20 nm (≈ 90 ML) thick Cr$_2$O$_3$ films on positively (Fig. 6b) and negatively (Fig. 6c) poled LiNbO$_3$ (0001).

Although annealing in air promoted epitaxial crystallization of the Cr$_2$O$_3$ films, prolonged annealing also caused significant Cr diffusion into the LiNbO$_3$ substrate independent of polarization direction. As illustrated in Fig. 7 for a 10.0 ML Cr$_2$O$_3$ film on positively poled LiNbO$_3$, after annealing in air at 875 K for 12 h the intensity of the Cr 2p peaks was reduced by a factor of 2.3, while the intensity of the substrate Nb 3d peaks increased by a factor of 2.9. Chromium diffusion into LiNbO$_3$ following metallic Cr deposition and annealing in air has previously been observed at much higher temperatures, above 1200 K. Chromium prefers to substitute for Li$^+$ in the lattice but can also fill intrinsic vacant octahedral sites in the structure. Two factors can contribute to the much lower diffusion temperatures seen here. First, diffusion of metallic Cr layers can be limited by the rate of oxidation of the metallic Cr to Cr$^{3+}$. Second, it
has been shown that heating LiNbO$_3$ (0001) surfaces in UHV causes Li$_2$O desorption beginning at 500 K which creates Li vacancies in the surface region that can be filled by Cr$^{3+}$. During annealing in air Cr$^{3+}$/Li$^+$ exchange and Li$_2$O desorption may occur continuously, leading to Cr$^{3+}$ diffusing deep into the bulk and beyond the XPS detection range.

3.2 Investigation of Charge Compensation Mechanisms

As described in the Introduction, comparison of the Cr XPS peaks for Cr$_2$O$_3$ on oppositely poled LiNbO$_3$ surfaces can be a sensitive probe of the charge compensation mechanism of the polar system. Figure 8 illustrates this comparison for a series of coverages. For both positively and negatively poled substrates, the binding energies of the Cr 2p$_{1/2}$ and Cr 2p$_{3/2}$ peaks are 586.7 and 576.9 eV, respectively, independent of coverage. These positions indicate that the chromium is at least predominantly Cr$^{3+}$, or in the form of Cr$_2$O$_3$, the most stable form of chromium oxide over a wide range of conditions.39 For Cr$_2$O$_3$, literature values for the Cr 2p$_{3/2}$ peak range from 576.7 – 576.8 eV while the Cr 2p$_{1/2}$ peak appears between 586.4 – 586.7 eV.$^{40-42}$ While the peak positions observed here are at the upper ends of these ranges, other stable oxidation states of Cr can be ruled out. For CrO$_3$, the Cr 2p$_{3/2}$ peak position is more than 1.5 eV higher at 578.3 eV.41 Meanwhile, Cr$^{4+}$ is unique in that its XPS peaks are at lower binding energies than those of Cr$^{3+}$ despite the higher oxidation state; reported Cr 2p$_{3/2}$ peak positions for CrO$_2$ range from 576.3 – 576.4 eV.40,41 More reduced Cr$^{2+}$ is relatively unstable; it readily oxidizes to Cr$^{3+}$, and is thus not expected to form under the conditions employed here. Lastly, XPS peaks for Cr metal are at significantly lower binding energies than those for oxidized Cr$^{3+}$, so Cr0 can be ruled out as well. It should be noted that the O 1s peak does not attenuate as the Cr oxide film thickened, also consistent with Cr$_2$O$_3$ growth. The Cr 2p$_{3/2}$ peaks in Figs. 8a and 8b reveal a high binding energy shoulder for lower coverage, consistent with oxidation of Cr to Cr$^{5+}$ or Cr$^{6+}$. 44,45 It will be shown below that this feature is due to oxygen adsorption and can be removed by flashing to high temperatures.

The lack of any coverage or polarization dependence of the position or shape of the Cr 2p peaks rules out changes in the Cr oxidation state at either the surface or interface as the charge compensation mechanism. For negatively poled LiNbO$_3$, positive surface charges are necessary to compensate the bulk polarization,13 which could be supplied by oxidation of Cr$^{3+}$ to Cr$^{4+}$. Meanwhile, the positively poled surface could be passivated by reduction of Cr$^{3+}$ to Cr$^{2+}$. Since
the surface charge density or ferroelectric polarization of LiNbO$_3$ is 0.8 C/m2,46 or 1.15 e/ unit cell, and each (0001) surface unit cell of the corundum structure contains two cations in octahedral sites (one above the outermost oxygen plane, the other below it), the field from the substrate could be passivated by approximately half the Cr atoms at the interface or surface changing their oxidation state by ± 1. As described above, such changes in oxidation state would yield binding energies substantially lower than Cr$^{3+}$. With roughly 0.5 ML of Cr changing oxidation state to pacify the surface, the expectation would be that a low binding energy peak would appear at low coverages that would gradually attenuate as the Cr oxide film thickened. The data in Fig. 8 show no evidence of this behavior and therefore it is concluded that the charge compensation mechanism does not involve filling or depleting surface or interface electronic states, thereby changing the Cr oxidation state.

Regardless of whether charge compensation occurs through electronic or atomic reconstruction, charge compensation at the Cr$_2$O$_3$/LiNbO$_3$ interface would create an interfacial dipole that would lead to a band offset between the Cr$_2$O$_3$ film and the LiNbO$_3$ substrate. Since this band offset would be opposite for negatively and positively poled LiNbO$_3$, and because the Cr XPS peaks are referenced to the Nb 3d peaks, interfacial charge compensation should lead to a rigid shift of the Cr oxide XPS peaks independent of coverage for oppositely poled LiNbO$_3$ substrates. Using the LiNbO$_3$ bulk polarization of 0.8 C/m2 and dielectric constant of 27.3,47 modeling the charges across the interface as a parallel plate capacitor with a thickness of 0.1 nm (approximately the distance between atomic planes in the [0001] direction of LiNbO$_3$; see Fig. 1a) suggests a 0.33 V potential across the interface which would create a band offset of 0.66 eV between Cr oxide on positively and negatively poled LiNbO$_3$. Recently, we showed that BF$_3$ physisorbed on oppositely poled LiNbO$_3$ surfaces exhibits a smaller 0.3 eV difference in the F 1s peak position on positively and negatively poled LiNbO$_3$ due to such electrostatic effects.12 The data in Fig. 8 reveal no evidence of such a large difference between the Cr 2p peaks on the two LiNbO$_3$ surfaces.

We also searched for band offsets by recording XPS spectra as a function of temperature. Because LiNbO$_3$ is pyroelectric, any band offsets due to interfacial dipoles would be expected to change with temperature. In vacuum at modest temperatures where there are no thermally excited carriers within LiNbO$_3$, it has been shown that heating LiNbO$_3$ can generate enormous fields.48-50 For the 0.5 mm thick samples used in this study, the -40 μC/m2K pyroelectric
coefficient of LiNbO$_3$ suggests a potential as large as 83 V could develop across the sample for just a 1 K temperature change, assuming that the compensating charges at the surface or interface are frozen. While the x-rays used to generate the photoelectrons for XPS measurements can supply mobile carriers to screen this potential, we recently observed a 60 meV shift in the Pb 4f peaks of a 10 nm (≈ 25 ML) thick ferroelectric and pyroelectric lead zirconate titanate (PZT) thin film on SrRuO$_3$ when the film was heated from room temperature to just above 400 K; a much larger shift would be expected for the 0.5 mm thick LiNbO$_3$ samples. Figures 9a and 9b show the Cr 2p$_{3/2}$ XPS peak positions for 3 ML Cr oxide films on positively and negatively poled LiNbO$_3$, respectively, as a function of temperature. In these experiments, the films were heated incrementally from 300 K to 425 K, and then cooled incrementally back to 300 K; the measurements were performed while holding the samples at the temperatures indicated. Figure 9 shows that the peak positions do not change with temperature, with one exception. In going from 300 K to 350 K, and from 350 K to 300 K, the Cr 2p peaks on negatively poled LiNbO$_3$ show a reversible shift to higher binding energy, by ~ 0.3 eV at 350 K. The shift to higher binding energies with increasing temperature is consistent with the reduced bulk polarization creating excess positive charge at the interface which accelerates electrons emitted from the substrate but not those from the film; since the Nb 3d$_{5/2}$ peak is used as a fixed reference, the Cr binding energy would appear to increase. This experiment, however, was repeated for other films of similar thickness on the negatively poled substrate and the shift was not consistently observed (three additional films were studied, one gave similar results, the other two showed no measurable shift with temperature). Several other factors also argue against assigning the observed shift to changes in the magnitude of an interfacial dipole. First, the positive surface would be expected to show an opposite shift which was not seen. In addition, the shift stops at just 350 K. For the experiments on 10 nm (≈ 25 ML) thick PZT mentioned above, a reversal in the trend was observed above 400 K as thermally activated carriers became sufficient to equilibrate the surface charge required to compensate the lower bulk polarization; once the temperature is high enough for the trend to reverse, the interface potential does not return to its original value on cooling as the compensating charges become frozen at the lower value required to compensate the lower bulk polarization at higher temperatures. For LiNbO$_3$ the conductivity does not become sufficient to equilibrate the surface charge until 475 K and in Fig. 9b the binding energy returns to its initial value after heating to 425 K, at least 75 K above the
temperature at which the Cr 2p peaks stopped shifting. Finally, the Neel temperature for bulk Cr$_2$O$_3$ is 307 K, within the temperature range where the shifts were seen, and this phase transition from antiferromagnetic to paramagnetic could have a small effect on the Cr XPS peaks. For example, using angle-resolved photoelectron spectroscopy Klebanoff et al. observed small shifts in binding energies of surface features for Cr (001) in heating incrementally through several magnetic phase transitions. The sensitivity of such phase transitions to the structural order of the material may account for why the shift was not consistently seen. For these reasons, it is concluded that substantial dipoles do not exist at the Cr$_2$O$_3$/LiNbO$_3$ (0001) interface.

3.3 Oxygen Adsorption
As noted above, a weak high binding energy shoulder on the Cr 2p XPS peaks at lower coverages could be seen following growth. Figure 10 shows for three Cr oxide coverages on both the positively and negatively poled LiNbO$_3$ substrates, that the intensity of this feature could be greatly enhanced by exposing the surfaces to reactive oxygen species emitted by the plasma source at 295 K. The intensity of these features relative to the peaks observed prior to oxygen plasma treatment decreased with increasing Cr oxide coverage, consistent with changes restricted to the surface layer. Prior XPS studies of chromium oxide catalysts on Al$_2$O$_3$ and SiO$_2$ supports have shown that annealing in air produces high binding energy shoulders attributed to Cr$^{6+}$ formation. Uv-visible-near infrared diffuse reflectance spectroscopy also provided evidence that supported Cr oxide could be at least partially oxidized to Cr$^{6+}$ by heating at 825 K in O$_2$. In this case, Cr$^{6+}$ could be eliminated by exposing the sample to CO at elevated temperatures and restored by again heating in O$_2$. Thus, the changes in the Cr 2p spectra caused by the plasma treatment are consistent with the known behavior of Cr$_2$O$_3$ in oxidizing environments.

Exposure to the reactive oxygen species emitted by the plasma source had no effect on the surface structural order; LEED patterns for both as grown thinner films and thicker films annealed in air were (1x1) before and after the plasma treatment (Figs. 11a and 11b). In addition, the submonolayer films in Fig. 10 show a high binding energy feature to low binding energy feature ratio close to 1:1. These data are consistent with O atom adsorption on exposed Cr atoms on the Cr$_2$O$_3$ (0001) surface. As illustrated in Fig. 1a, along [0001] Cr$_2$O$_3$ is built up by stacking stoichiometric Cr–O$_3$–Cr trilayers; the non-polar (0001) surface unit cell exposes one Cr atom.
above the O₃ plane and a second inaccessible Cr atom below the O₃ plane as shown in Fig. 1b. Thus, capping each exposed Cr atom with oxygen would not change the surface periodicity and, up to 1 ML, would oxidize half of the Cr in Cr₂O₃. In this case, the formation of such a chromyl species on Cr₂O₃ would yield a nominal Cr oxidation state of 5+, consistent with the observed magnitude of the shift to higher binding energy. Previously, York et al. have reported similar capping oxygen species on Cr₂O₃ (10\(\bar{1}2\)).

To determine how strongly the oxygen is adsorbed to the surface, XPS measurements were performed as a function of temperature; these data are provided in Fig. 12a for 1.6 ML Cr oxide on positively poled LiNbO₃ and in Fig. 12b for 3.1 ML Cr oxide on negatively poled LiNbO₃. The data were collected by slowly heating the samples to the temperatures indicated in the figure and then collecting the spectra at that same temperature. For both films, the high binding energy shoulder on the Cr 2p\(3/2\) peak attenuates slightly while heating to 700 K. By ~800 K, approximately half of the high binding energy shoulder is gone. These data show no obvious difference in how strongly the oxygen is adsorbed. To better understand the desorption behavior of the oxygen adatoms as a function of substrate polarization, TPD measurements were attempted. Unfortunately, the decomposition of the LiNbO₃ substrate starting at lower temperatures generated large amounts of Li₂O and O₂ that masked the ability to unambiguously distinguish oxygen desorption from the Cr oxide. Still, Fig. 12c shows for 6.0 ML Cr₂O₃ on positively poled LiNbO₃ that ramping the sample temperature at a rate of 2 K/sec to 925 K and then cooling to room temperature can completely remove the adsorbed oxygen.

To determine if the ferroelectric substrate plays a role in oxygen adsorption on the thin Cr oxide layers on LiNbO₃, similar measurements were performed on epitaxial Cr₂O₃ films grown on \(\alpha\)-Al₂O₃ (0001). The \(a\) lattice constant of \(\alpha\)-Al₂O₃ is 0.476 nm compared to 0.496 nm for Cr₂O₃ and 0.515 nm for LiNbO₃ and so the magnitude of the lattice mismatch is similar for \(\alpha\)-Al₂O₃ and LiNbO₃ but is compressive for \(\alpha\)-Al₂O₃ and tensile for LiNbO₃. Nonetheless, Fig. 12d shows a similar high binding energy shoulder on the Cr 2p\(3/2\) XPS peak after exposure of Cr₂O₃/\(\alpha\)-Al₂O₃ to reactive oxygen species emitted by the plasma source near room temperature, and that the shoulder is partially attenuated after heating the sample to 800 K. Without the complication of the support decomposing, we were able to monitor desorption of this adsorbed oxygen on Cr₂O₃/\(\alpha\)-Al₂O₃ with TPD; a result is shown in Fig. 13 for a 12 nm (≈ 55 ML) thick Cr₂O₃ film. The run was terminated before the oxygen signal returned to the baseline because the
temperature reached the maximum of the thermocouple amplifier so that a linear heating rate could not be maintained above this temperature. Figure 13 shows that O_2 desorption begins just after 600 K, with the desorption rate reaching a maximum at 815 K. Figures 12a and 12b show that by 700 K, a small portion of O adatoms have desorbed, and that by close to 800 K, roughly half of the initial high binding energy shoulder has attenuated, thus drawing similaries to the desorption trace in Fig. 13.

4. Discussion

A key question concerning the growth of non-polar Cr$_2$O$_3$ on top of the polar LiNbO$_3$ polar surfaces concerns the fate of the charge compensating layer at the starting surfaces. This question was addressed by monitoring the positions of the Cr 2p XPS peaks relative to the Nb 3d peaks as a function of coverage, temperature, and substrate polarization direction. The resulting spectra revealed no significant deviations from the peak position expected for Cr$^{3+}$ independent of coverage, temperature, and poling direction. Returning to the four charge compensation scenarios laid out in the Introduction, these results eliminate retention of the bare LiNbO$_3$ surface reconstructions as well as new interfacial reconstructions, both of which would lead to band offsets between positively and negatively poled substrates. We can also eliminate any mechanism involving changes in the Cr oxidation state, either at the interface or at the Cr$_2$O$_3$ surface. This suggests that the charge compensation layer migrates to the Cr$_2$O$_3$ surface and, further, that charge compensation impacts oxygen rather than Cr, through, for example, formation of charged oxygen vacancies on the negative surface which would supply positive charge and oxygen anion adsorption on the positive surface which would supply negative charge. Since Cr is observed to diffuse into LiNbO$_3$, however, charge compensation mechanisms involving Cr interstitials and Cr substitution for Li or Nb must also be considered. At the negative interface, either interstitial Cr$^{3+}$ or Cr$^{5+}$ substituting for Li$^+$ would supply positive compensating charges, while at the positive interface Cr$^{3+}$ substituting for Nb$^{5+}$ would yield negative compensating charges. If this substitution were restricted to the interface, then band offsets between positively and negatively poled substrates would still be seen, which was not the case. Further, the Cr$^{3+}$ substitution for Nb$^{5+}$ required to compensate the positive surface has not been seen on LiNbO$_3$.\cite{38} Alternatively, Cr$^{3+}$ intermixed with Li$^+$ and Nb$^{5+}$ over a wider region may also be possible. If this region was up to the \approx 3 nm sampling depth of XPS, this would lead
to oppositely asymmetric broadening of the XPS peaks for the positively and negatively poled substrates, which was not seen. Another possibility that could explain the XPS results is that charge compensation in the Cr$_2$O$_3$-LiNbO$_3$ system occurs beneath the LiNbO$_3$ surface, beyond the XPS sampling depth; however, the mechanism by which this would occur is unclear. Further, since bare LiNbO$_3$ undergoes reconstructions at the surface to cancel the thickness dependent dipole$^{1-3}$, it is unlikely that the addition of the Cr$_2$O$_3$ film would drive the existing charge compensating layer deep into the LiNbO$_3$ substrate. Thus, the data together with the literature suggest that the charge compensation layer migrates to the Cr$_2$O$_3$ surface where it impacts oxygen rather than Cr; however, it should be noted that no significant change in the O 1s XPS peak shape or position as a function of temperature, substrate polarization, or Cr$_2$O$_3$ film thickness was observed.

The above arguments all assume an abrupt charge compensation region. Photoelectron emission microscopy of periodically poled LiNbO$_3$ surfaces support an abrupt charge compensation layer at bare LiNbO$_3$ surfaces,60 consistent with experimental observations1,3 of chemical reconstructions at the surface that can compensate the polarization as well as expectations for wide band gap materials such as LiNbO$_3$. Since Cr migrates into bulk LiNbO$_3$, a thicker charge compensation region must be considered for Cr$_2$O$_3$/LiNbO$_3$. Such thick charge compensation regions typically occur in polar materials with band gaps small enough to allow mobile carriers in the bulk to fill or deplete regions over thousands of Ångstroms on both sides of a polar crystal.61 Because charge compensation would occur gradually over a region much thicker than the XPS sampling depth, peak shifts between oppositely poled surfaces would not be observed.

The observed oxidation of surface Cr in highly oxidizing environments allowed a first look at how the substrate polarization affects the reactivity of thin Cr$_2$O$_3$ layers. Because LiNbO$_3$ decomposition in vacuum obscured oxygen desorption from the Cr$_2$O$_3$ layer, TPD measurements quantifying the oxygen adsorption strength were not possible. Instead, more granular temperature dependent XPS measurements followed the attenuation of the high binding energy shoulder of the Cr 2p$_{3/2}$ peak associated with adsorbed oxygen. These measurements showed little polarization dependence. Moreover, similar oxygen adsorption was seen on comparatively thick Cr$_2$O$_3$ (0001) on non-polar α-Al$_2$O$_3$ which yielded O$_2$ TPD curves consistent with the
temperature dependent XPS measurements for Cr$_2$O$_3$/LiNbO$_3$. Thus, at least for oxygen adsorption, the ferroelectric polarization direction does not strongly impact the Cr$_2$O$_3$.

It was suggested above that adsorbed oxygen anions and charged oxygen vacancies could supply the necessary compensating charges to stabilize the positively and negatively poled Cr$_2$O$_3$/LiNbO$_3$ systems, respectively. It is important to distinguish the adsorbed oxygen probed by oxygen plasma treatment and temperature dependent XPS measurements from surface species that stabilize the polar system and cannot be removed without changing the surface atomic electronic structure to maintain charge compensation or bulk restructuring to eliminate the polarization. Because there is no apparent polarization dependence on the capping O that adsorbs after exposure to oxygen plasma, this furthers the conclusion that surface Cr does not play a significant role in the charge compensation mechanism in the system.

5. Conclusions

Well-ordered Cr$_2$O$_3$ films can be fabricated on positively and negatively poled LiNbO$_3$; however, the conditions necessary to produce the films can cause Cr diffusion into the LiNbO$_3$. The lack of any band offset between Cr$_2$O$_3$ films on oppositely poled LiNbO$_3$ surfaces indicates that charge compensation does not occur abruptly at the interface between LiNbO$_3$ and the Cr$_2$O$_3$ film, rather the results suggest that the charge compensation layer that stabilizes the polar material occurs at the film surface. It was also shown that surface Cr in the Cr$_2$O$_3$ film can be oxidized to Cr$^{5+}$ by atomic oxygen. Despite the suggestion that opposite compensating charges occur at the Cr$_2$O$_3$ surface on positively and negatively poled LiNbO$_3$, no significant difference between O atom adsorption on Cr$_2$O$_3$ on the two polar substrates or on non-polar α-Al$_2$O$_3$ (0001) could be detected. Further TPD experiments using more sensitive probe molecules, such as alcohols, will be necessary to determine if the substrate polarization has can affect the surface chemical properties of Cr$_2$O$_3$; since the charge compensation likely occurs at the Cr$_2$O$_3$ surface, any effect of the substrate polarization on the surface properties of the Cr$_2$O$_3$ is likely to persist for relatively thick films.

6. Acknowledgements

The authors thank Min Li, Boris Lukanov, and Jonathon Huang for their assistance in carrying out this work, and Prof. Victor Henrich for illuminating discussions. This work was supported by the National Science Foundation through grants CHE-1213751 and DMR-1119826.
which supports the Center for Research on Interface Structures and Phenomena, the Yale Materials Research Science and Engineering Center.
References

Figure Captions

Figure 1: Ball and stick model showing a (a) side view and (b) top view of an ideal epitaxial Cr$_2$O$_3$ epitaxial thin film on LiNbO$_3$ (0001). The red balls represent O atoms, the blue Nb, the green Li, and the gray Cr. The model does not include any potential surface and interfacial reconstructions and the Cr$_2$O$_3$ is compressed in-plane to match the LiNbO$_3$ a lattice parameter. The spacings provided in (a) are for the bulk materials.

Figure 2: X-ray diffraction data for a 14 nm (≈ 60 ML) Cr$_2$O$_3$ film on positively poled LiNbO$_3$ (0001): (a) θ-2θ scan showing the LiNbO$_3$ (006) and Cr$_2$O$_3$ (006) region; and (b) expanded view of the XRR fringes. Samples were annealed in ambient pressure O$_2$ for 30 min unless otherwise noted. Cr$_2$O$_3$ was deposited at 575 K.

Figure 3: Normalized Cr 2p and Nb 3d XPS peak area versus Cr$_2$O$_3$ film thickness for Cr$_2$O$_3$ on (a) positively and (b) negatively poled LiNbO$_3$. The solid lines highlight the expected growth and decay of the Cr 2p and Nb 3d peaks, respectively. The calculations are based on a 12.5 Å mean free path for the Cr 2p emission and 15.2 Å for emission from Nb 3d levels.

Figure 4: RHEED patterns for (a) 0 ML, (b) 1 ML, (c) 2 ML, (d) 4 ML, and (e) 6 ML Cr$_2$O$_3$ on negatively poled LiNbO$_3$. The data were collected at an electron energy of 15 keV with the beam parallel to the LiNbO$_3$ [1000] direction.

Figure 5: LEED patterns for: (a) 1.0 ML, (b) 8.6 ML, and (c) 10.1 ML Cr$_2$O$_3$ on negatively poled LiNbO$_3$.

Figure 6: LEED patterns for: (a) 12 nm (≈ 55 ML) Cr$_2$O$_3$ on α-Al$_2$O$_3$ (0001), (b) 20 nm (≈ 90 ML) Cr$_2$O$_3$ on positively poled LiNbO$_3$ (0001), and (c) 20 nm (≈ 90 ML) Cr$_2$O$_3$ on negatively poled LiNbO$_3$ (0001) after annealing in air for 12 h at 875 K.

Figure 7: Comparison of (a) Cr 2p and (b) Nb 3d XPS peaks before and after a 12 hr anneal in atmospheric pressure air at 875 K for a 10.0 ML Cr$_2$O$_3$ film on positively poled LiNbO$_3$ (0001).

Figure 8: XPS Cr 2p peaks for increasingly thick Cr$_2$O$_3$ films on (a) positively and (b) negatively poled LiNbO$_3$.

Figure 9: Cr 2p$_{3/2}$ XPS peak positions as a function of temperature for 3 ML Cr$_2$O$_3$ films on (a) positively and (b) negatively poled LiNbO$_3$ (0001).

Figure 10: Cr 2p XPS peaks for (I) as grown Cr$_2$O$_3$ and (II) after exposing surfaces to oxygen plasma at room temperature for Cr$_2$O$_3$ on (a) positively and (b) negatively poled LiNbO$_3$ (0001).

Figure 11: LEED patterns for 2.0 ML Cr$_2$O$_3$ on positively poled LiNbO$_3$ (0001) (a) before and (b) after exposure to oxygen plasma at room temperature.
Figure 12: Cr 2p XPS peaks as a function of temperature after exposure to reactive species emitted from the oxygen plasma at room temperature for (a) 1.6 ML Cr\(_2\)O\(_3\) on positively poled LiNbO\(_3\) (0001), (b) 3.1 ML Cr\(_2\)O\(_3\) on negatively poled LiNbO\(_3\) (0001), (c) 6.0 ML Cr\(_2\)O\(_3\) on positively poled LiNbO\(_3\) (0001), and (d) 12 nm (≈ 55 ML) Cr\(_2\)O\(_3\) on α-Al\(_2\)O\(_3\) (0001).

Figure 13: Oxygen TPD trace obtained after exposing a 12 nm (≈ 55 ML) Cr\(_2\)O\(_3\) film on α-Al\(_2\)O\(_3\) (0001) to the plume of the oxygen plasma source.
Illustration showing non-polar Cr$_2$O$_3$ deposition onto ferroelectric LiNbO$_3$. Characterization of the interface suggests that the charge compensation layer migrates to the chromium oxide surface where it can lead to distinct chemistry on oppositely poled substrates.

80x22mm (300 x 300 DPI)