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Molecular dynamics (MD) simulations have been widely used to study oxygen ion diffusion in crystals. 

In the data analysis, one typically calculates the mean squared displacements to obtain the self-diffusion 

coefficients. Further information extraction for each individual atom poses significant challenges due to 

the lack of general methods. In this work, oxygen ion diffusion in A-site ordered perovskite PrBaCo2O5.5 

is studied using MD simulations and the oxygen migration is analyzed by the k-means clustering machine 10 

learning algorithm. The clustering analysis allows the tracking of each individual oxygen jump along with 

its corresponding location, i.e., oxygen site in BaO, PrO0.5 and CoO2 layers. Therefore it increases the 

understanding into the factors influencing oxygen diffusion. For example, it is found that the oxygen 

occupation fraction in the PrO0.5 layers increases with temperature, while in the CoO2 layers it decreases 

with temperature; the activation enthalpies of oxygen jumps from CoO2 to CoO2, CoO2 to PrO0.5 and 15 

PrO0.5 to CoO2 are 0.22 eV, 0.54 eV and 0.34 eV respectively, exhibiting anisotropic characteristics. 

Furthermore, the dwell times of oxygen atoms suggest that the oxygen atoms are highly mobile in PrO0.5 

layers. Combining the analysis of activation enthalpies and dwell times, it is suggested that the oxygen 

transport is fast within the CoO2 layers while the PrO0.5 layers work as oxygen vacancy reservoirs.  

Introduction 20 

Oxygen diffusion is an important process in many emerging high-
temperature applications, such as solid oxide fuel cells (SOFCs)1 
and oxygen transport membranes (OTMs).2 In SOFCs, the 
oxygen reduction reaction at the cathode can be facilitated by 
high oxygen ion conductivity. More importantly, oxygen 25 

diffusion through the electrolyte is a key factor affecting the 
overall cell performance. Therefore, substantial efforts have been 
devoted to developing highly oxygen conductive materials as 
electrolytes for SOFCs.3, 4 Similarly, in OTMs the oxygen ion 
diffusion across the membrane material is one of the essential 30 

processes to oxygen separation. A fundamental understanding of 
oxygen diffusion in solid state systems is thus of primary 
importance for the development of the next-generation SOFCs 
and OTMs.5  
Experimental techniques including electrical conductivity 35 

relaxation6, 7 and isotope exchange depth profiling8 are widely 
used to probe the oxygen diffusion within ceramic materials. 
However, oxygen diffusion is a complex process, which depends 
on the crystallographic structure, the composition, and the local 
strain state of the material.1 In order to complement the 40 

experimental insights, molecular dynamics (MD) simulations are 
often used because they can provide atomistic understanding into 
oxygen transport. For example, yttria-stabilized zirconia was 
calculated to obtain the maximum ionic conductivity at 8 mol% 
Y2O3 by MD simulations,9 consistently with experimental 45 

observations. This maximum conductivity was attributed to the 
trade-off between the increase of oxygen vacancy and the reduced 

vacancy mobility brought by Y2O3. Fisher et al. used MD 
simulations to examine the relationship between oxygen ion 
conductivity and dopant concentration in Ba1-xSrxCo1-yFeyO2.5.

10 50 

This work helped explain why Ba0.5Sr0.5Co0.8Fe0.2O3-δ was chosen 
as one of the best cathode materials.11 Recently, Ciucci et al. 
calculated oxygen diffusion in Ba1-xLaxFeO3-δ using MD 
simulations.12 The results suggested that the oxygen self-
diffusivity decreased with increasing La substitution. Therefore, 55 

Ba0.95La0.05FeO3-δ was chosen as a cathode material for SOFCs. 
Indeed, Ba0.95La0.05FeO3-δ exhibited a high performance 
comparable to the Co-based materials.12 Besides the studies in 
simple cubic structures, MD simulations have also been used to 
investigate anisotropic materials and layered oxides,13-20 a large 60 

family of materials that are interesting as cathodes for SOFCs.21 
For example, Chroneos et al. found that oxygen diffusion in 
GdBaCo2O5+δ is connected to the order/disorder characteristics of 
Gd/Ba arrangements,14 which is consistent with experimental 
observations.22 Hernandez and Dezanneau et al. studied 65 

NdBaCo2O5+x by MD simulations,18 reproducing well the oxygen 
nuclear density obtained by neutron diffraction. 
In spite of the power of MD simulations, most data regarding 
oxygen diffusion is actually discarded. While it is not uncommon 
to output a few hundred megabytes of data per MD run, only the 70 

oxygen diffusivity, a number (a few bytes), is calculated by 
fitting the mean squared displacements (MSDs).23, 24 Although 
the MSD approach is effective for analyzing the impact of 
compositional modification on the diffusion coefficients,25, 26 it is 
an average measure that does not include details on atomic level 75 

hopping of mobile species.  This approach might not be sufficient 
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for clarifying the oxygen diffusion mechanisms, especially in 
materials with complex structure and multiple dopants. Such 
detailed studies require the utilization of trajectories of all atoms 
as well as an atomically resolved analysis.27-29 Unfortunately, this 
is challenging due to the intrinsically disordered movement of 5 

oxygen in space. The other difficulty is that the MD trajectories 
are usually stored in large datasets. Yet, the data itself may be 
embedded in a much lower space producing a low-dimensional 
representation that contains only the relevant features (or 
collective coordinates).30 A number of techniques have been 10 

developed for reducing the dimensionality of MD simulations 
including linear methods such as principal component analysis31 
and nonlinear methods, such as local linear embedding,32 
isomaps,33 sketch maps,34 and diffusion maps.35, 36 The 
dimensionality reduction methods can also be used for intuitive 15 

representation and for simulation speed up.37 However, these 
approaches have found applications primarily in protein folding 
and nucleic acid simulations.  
In this work the concept of dimensionality reduction is used in 
order to embed the complex oxygen diffusion in perovskite 20 

oxides into a low dimensional clustered space. A recent work 
focusing on proton conduction in Y-doped BaZrO3 has utilized 
distances from oxygen atoms with fixed positions to track the 
proton trajectories.38 Although this is suitable for proton 
transport, the standard distance analysis applied therein may not 25 

be applied to oxygen diffusion. In fact, due to the oxygen 
transport such reference locations are no longer fixed and 
furthermore they may not be placed at the nominal oxygen lattice 
sites. Additionally, if dopants are introduced or if the diffusion is 
anisotropic, the reference points may be offset locally from the 30 

nominal oxygen sites, as will be shown later in this paper.  
Here a general data mining framework is proposed for the 
analysis of the MD trajectories.  Clustering analysis is a general 
unsupervised classification method that can be used to group data 
with similar features. This is particular relevant to the study of 35 

oxygen diffusion since determining patterns in the trajectories is 
intrinsically an unsupervised learning problem. The clustering 
approach is illustrated using the MD simulations of oxygen 
diffusion in PrBaCo2O5.5 (PBCO). PBCO is chosen because it has 
great potential as a cathode material for SOFCs.39, 40 Furthermore, 40 

its anisotropic conduction mechanisms due to its layered structure 
and defect processes have been studied both experimentally8 and 
computationally.16, 41 

Methods 

MD simulations 45 

MD simulations are carried out using the LAMMPS package42 
following our previous work, where the model was validated 
against experimental data.43 Interactions between ions are 
described by the Buckingham pairwise potential with coulombic 
forces,  50 

 

 

 
ϕ�� = ����	


�����
+ ������ �− ���

���
� − ���

����  (1) 

where the subscript denotes the ion pair, � is the charge, � is the 
distance between the pair, and ��� , ���  and ���  are potential 55 

parameters. On the right hand side, the first term describes the 
coulombic force, the second is the repulsive force due to the 
electron overlap when atoms are close, and the last is the Van der 
Waals interaction.23 
The potential parameters are taken from existing publications as 60 

listed in Table 1, and the cut off range for the short range 
interaction is set to 11 Å, enough for reproducing the oxygen 
transport mechanisms.16 

Table 1. Potential parameters for the Buckingham potential 

Ion pairs ���/eV ���/Å ���/eVÅ" Ref. 

O
2-

---O
2-

 22764.3 0.1490 43.00 
13

 

Ba
2+

---O
2-

 1214.4 0.3522 0 
13

 

Co
3+

---O
2-

 1329.82 0.3087 0 
13

 

Pr
3+

---O
2-

 1445.2 0.3608 0 
44

 

 65 

The long-range coulombic interaction is calculated by the Ewald 
summation with an accuracy of 10-4. Oxygen diffusion in PBCO 
is simulated in a 8x8x4 supercell18 where the oxygen vacancies 
are initially placed at random in the PrO0.5 planes.45  The 
simulation temperature ranges from 873 to 1573 K and a time 70 

step of 1 fs is used for the Verlet integrator. The system is first 
equilibrated for 100 ps in the NPT ensemble followed by a data 
collection period of 2 ns in the NVT ensemble with atom 
trajectories recorded every 1 ps. The Nose-Hoover thermostat 
was employed in all simulations.  75 

Clustering analysis 

The k-means clustering algorithm46 is used to analyze the 
trajectories. This method has been used extensively in solving 
unsupervised machine learning problems. We note that the metal 
ions are found to only vibrate around their equilibrium sites and 80 

are not directly involved in the oxygen migration. Therefore, their 
movements will not be included in the analysis. 
The trajectories of oxygen atoms are stored in #, a $ × 3 × � 
tensor, where $  is the number of oxygen atoms and �  is the 
number of MD output steps. The purpose of the clustering is to 85 

map # into smaller matrices as in Fig. 1 without major loss of 
information. 

Page 2 of 7Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 

This journal is © The Royal Society of Chemistry [year] Journal Name, [year], [vol], 00–00  |  3 

 

 
Fig.1 A diagram illustrating the clustering analysis as applied to MD 

trajectories. The goal of clustering is to reduce the tensor # containing 

the trajectory data into 2 matrices ' and (. ' stores the labels trajectory 5 

and the matrix C contains the coordinates of the cluster centers. The 

algorithm follows a two-step process by updating the labels and cluster 

centers iteratively.   

Namely, two matrices will be used: (, which stores the locations 
of the cluster centers, and ', which tracks the time evolution of 10 

each oxygen atom in reference to its corresponding cluster. ' is a 
$ × � matrix that stores the cluster labels of the $ atoms at each 
of the � steps output by the MD simulations. The labels are used 
to distinguish different clusters and are integers ranging from 1 to 
), where ) is the number of total clusters or oxygen sites. The 15 

coordinates of the cluster centers (one for each label) are stored in 
(, an ) × 3 matrix. Each row is mapped to a specific cluster 
center and the columns indicate x, y, and z coordinates. Typically 
) is greater than $ due to the existence of oxygen vacancies.  
The clustering analysis starts by initializing the centers as the 20 

nominal crystallographic oxygen lattice sites and then proceeds 
iteratively as the two-step process illustrated in Fig. 1. As a first 
step, the label trajectories ' are updated. One atom snapshot, for 
example atom * at time step +, is taken out from #. The coordinate 
of this atom is therefore ,-.,0,1 , -.,2,1 , -.,3,14 . The distances 25 

between the captioned atom and all the cluster centers are 
computed as 560, 62, 63, … , 689 under periodic conditions. If 6: 
is the minimal distance, then ;.,1 = <. This step corresponds to 
solving the following optimization problem. 

;.,1 = argmin
                :C0…8

distanceH,-.,0,1 , -.,2,1 , -.,3,14, ,�:,0, �:,2, �:,34I  

for  * = 1 to $ and + = 1 to � (2) 30 

As a second step, (  is updated. The < -th cluster center is 
computed by first selecting the atom snapshots,-.,0,1 , -.,2,1 , -.,3,14 
in #  whose corresponding labels are  ;.,1 = < . Then the 

coordinates of the selected atom snapshots are averaged to give 
the new <-th cluster center ,�:,0, �:,2, �:,34:  35 

  
,�:,0, �:,2, �:,34 = avg

                                                N.,1O PQR ST,UC:
 ,-.,0,1 , -.,2,1 , -.,3,14  

                                              for < = 1 to ) (3) 

Steps 1 and 2 are executed iteratively until the distance between 
the centers computed in two successive loops is lower than a 
given tolerance.  40 

In order to attach physical meaning to  ( , each of its rows is 
assigned a site type. This distinguishes oxygen sites in the BaO, 
CoO2 and PrO0.5 plane. For the perovskites, the oxygen site is 
located in the octahedral hole surrounded by 4 A-site cations and 
2 B-site cations. The site type of the final oxygen sites can be 45 

calculated as described in Fig. 2. First, the nearest neighbor A-
site cations of certain oxygen site are found. Depending on how 
many Ba are around the site, the oxygen site can be classified into 
3 types: type 1 with 4 Ba atoms around the site, type 2 with 2 Ba 
atoms around, and type 3 with 0 Ba atoms. 50 

 
Fig. 2 Oxygen site types defined by the surrounding number of different 

A-site cations. 

The advantage of this method is that it automatically groups the 
trajectories, classifies the oxygen sites into different categories, 55 

and allows easy analysis of the MD trajectory patterns. Besides, 
this method is general and can be applied to study diffusion 
patterns of other ionic conductors. 

Results and discussion 

Oxygen transport trajectories along with the centers for a portion 60 

of the whole system at 1573 K are projected onto the ac plane, as 
shown in Fig. 3. The clear anisotropic diffusion characteristics 
are observable. Oxygen atoms initially in the BaO plane are 
confined in it and are primarily capable of oscillating around their 
equilibrium positions. Conversely, the oxygen trajectories across 65 

the CoO2 and the PrO0.5 plane are connected. Interestingly, the 
final cluster centers pertaining to the CoO2 plane deviate from the 
initial centers obtained from static crystallography, i.e., the learnt 
centers are closer to the PrO0.5 plane. This shift is caused by the 
oxygen transport from CoO2 to PrO0.5, which favors oxygen 70 

accumulation between these two layers. As shown in Fig. 3, the 
initial centers are biased with respect to the centroid of the 
oxygen atom snapshot cloud formed by the whole trajectories. 
This is because the new centers are derived directly from the 
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computed oxygen trajectories, rather than being inferred from 
static crystallographic positions. Therefore, the learnt centers 
from the k-means clustering better describes oxygen locations in 
comparison to the initial centers. 

 5 

Fig. 3 Learnt cluster centers in comparison to the initial oxygen sites at 
1573 K of a 2x8x1 supercell for better reading, projected onto the ac 

plane.  

The trajectories of oxygen projected onto ab planes are shown in 
Fig. 4. In CoO2 layers, migrations between two different 10 

locations are clearly observable, while in the PrO0.5 and BaO 
planes jumps between the same type of sites are extremely 
unlikely.13 In the ab plane, however, the learnt centers overlap 
with the initial centers due to symmetry. The oxygen atoms in the 
BaO plane are more compactly distributed in comparison to the 15 

PrO0.5, indicating better transport within the latter. 
 

 

 

 

Fig. 4 Oxygen trajectories projected onto the ab plane for BaO layers, 

CoO2 layers and PrO0.5 layers from left to right. The atom locations are 

shown at 1573 K for a 2x2 unit cell. The initial centers and the learnt 20 

centers overlap. 

The movement of oxygen atoms in PBCO has been typically 
analyzed by following the variation of relevant coordinates.45 
This method is demonstrated in Fig. 5a for a single oxygen atom, 
where 18 jumping events are shown by tracking the evolution of 25 

its x, y and z location. One may observe that the change in only 
one coordinate does not fully describe the oxygen diffusion. This 
is evidenced by the fact that events 1, 2, 3, 4, 8, 9, 10, 11 and 12 
cannot be detected by only the x coordinate and events 2, 5, 6, 7, 
13, 14, 15 and 17 are not noticeable by monitoring the y 30 

coordinate alone. Even for the z coordinate variations, event 18 is 
missing. However, when the clustering analysis is applied, the 
jumping events can be analyzed as a function of only one 
variable, i.e., the label of the site where the oxygen atom resides. 

As shown in Fig. 5b, each level indicates a different label and all 35 

the jumps can be captured by the label change. Furthermore, by 
including the site type of each label, the jumps between different 
types of sites can be analyzed, as shown Fig. 5c. It is found 
therein that solely relying on the z coordinate change of Fig. 5a 
misses a jump between sites within the same CoO2 layer. This is 40 

evidenced by the fact that the site type does not change at event 
18, as shown in Fig. 5c. 

(a) (b) 

  

(c) 

 

Fig. 5 Coordinate changes for one representative oxygen atom as a 

function of time with jumping events marked sequentially (a), and 

corresponding site label (b) and site type(c) evolution. 45 

 
(a) (b) (c) 

 

Fig. 6 Cumulative number of jumps over time from oxygen in BaO layers 

to other layers (a), CoO2 to other layers (b) and PrO0.5 to other layers (c) 

at 1573 K. 

The analysis described in Fig. 5 can be applied seamlessly to all 50 

atoms, leading to the total number of jumps between different 
layers. Fig. 6a shows that only a few hops occur in the BaO 
planes. In addition, no migration is recorded from the BaO layers 
to the BaO and PrO0.5 layers. For oxygen atoms in the CoO2 
layers, however, frequent leaps are detected from CoO2 layers to 55 

PrO0.5 layers as well as to CoO2 layers themselves as shown in 
Fig. 6b. In addition, hops to the PrO0.5 layers are more frequent 
than to the CoO2 layers. This may be caused by the higher 
concentration of oxygen vacancies in the PrO0.5 plane as shown in 
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Fig. 7, thereby providing fast vacancy exchange between CoO2 
and PrO0.5 layers. Lastly, the jumps from PrO0.5 have only one 
significant path, as shown in Fig. 6c. 

(a) (b) 

  

Fig. 7 Oxygen site occupancy fraction in different planes at 1573 K (a) and 

at different temperatures (b). 5 

The analysis of oxygen migration can be easily used to calculate 
the occupation fraction of oxygen sites in different planes. Fig. 7a 
shows the evolution of the occupation fraction with simulation 
time at 1573 K. The system is at equilibrium since only 
fluctuations around the mean value are observed. The standard 10 

deviation in the PrO0.5 planes is the highest due to the fewer sites 
within this plane as well as the higher mobility. This analysis can 
be applied to other temperatures, as shown in Fig. 7b. 
Interestingly, the oxygen occupation fraction of the PrO0.5 planes 
increases with temperature, while it decreases with temperature 15 

for the CoO2 planes. According to previous static calculations, 
the configurations with oxygen vacancy located in the PrO0.5 
planes have lower lattice energies,45 making them more favorable 
at low temperature. However, at high temperature, higher energy 
states can be reached. In turn, this leads to the decrease of 20 

vacancy concentrations and to the increase of occupation fraction 
in the PrO0.5 planes. Meanwhile, the occupation in the CoO2 
planes decreases with temperature due to the mass conservation 
and the lack of transport in the BaO planes. 
The temperature effects on the oxygen transport from CoO2 to 25 

CoO2 layers and CoO2 to PrO0.5 layers are shown in Fig. 8. By 
increasing the temperature, the oxygen transport rates in both 
planes increase substantially. 

(a) (b) 

  

Fig. 8 Temperature dependence of cumulative jump times of oxygen 

from CoO2 to CoO2 layers (a) and CoO2 to PrO0.5 layers (b). 30 

Since the oxygen diffusion is a thermally-activated process, the 
temperature dependence can be studied by the Arrhenius relation. 
Previously, it was shown that the oxygen ion conductivity could 
be calculated according to the equation47 

V = WX
Y


:Z[ \]N1 − ]O^X2_X��� `− ∆bc
:Z[ d (4) 35 

where WX is the number of equivalent sites per volume, ] is the 
site occupancy fraction, e is the charge of the particle, \ is related 
to entropy,47 ^X is the distance between two equivalent sites, _X is 
a characteristic lattice frequency, ∆f8 is the migration enthalpy, 
<g  is the Boltzmann constant, and -  is the temperature. In 40 

analogy to (4), the total number of jumps can be written as 
follows: 

  
Total number of jumps ∝ WoW	]oN1 − ]	O��� `− ∆bc

:Z[ d (5) 

where the subscript p and � represent the starting sites and ending 45 

sites, and Wo  and W	  are the numbers of equivalent sites per 
formula unit. Site fractions at different temperatures can be 
obtained from Fig. 7b. The total number of hops between select 
layers are shown as a function of temperature in Fig. 9a. 

(a) (b) 

 

Fig. 9 Total number of oxygen jumps plotted against the reciprocal of 50 

temperature (a) and the Arrhenius representation (b). 

The total number of jumps throughout versus the reciprocal of 
temperature roughly follows an exponential relation. If the total 
number of jumps is divided by the factor WoW	]oN1 − ]	O, the 
migration enthalpy between layers can be analyzed, as shown in 55 

Fig. 9b. The CoO2 in-plane oxygen migration enthalpy is 
calculated to be 0.27 eV, which is much smaller than that of the 
out-of-plane migration 0.56 eV and the PrO0.5 to CoO2 migration, 
0.35 eV. Experimental activation energy was determined to be 
0.48 eV by fitting the Arrhenius relation of the oxygen diffusion 60 

coefficient.39 This value is in the range of the computational 
results, suggesting that all 3 types of hopping events contributed 
to it. The in-plane transport has the lowest activation energy, 
which again evidences the fact that oxygen diffusion in this 
material is anisotropic and is constraint to the ab plane. For the 65 

oxygen migration from CoO2 to PrO0.5 planes, the activation 
energy of the forward process is much higher than the backward 
process. This is because oxygen vacancies tend to stay in the 
PrO0.5 planes due to the lower energies,45 thus moving oxygen to 
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this plane is more difficult than moving oxygen out of it.  
Another quantity that can be obtained from the clustering analysis 
is the oxygen dwell time at certain sites. Analyzing the dwell 
times of atoms at a given site helps explain the interaction 
between oxygen and its neighbors. This can be particularly useful 5 

for studying the effects of dopants and local cation distributions 
on oxygen diffusion. The probability distribution function (PDF) 
of the dwell time and the cumulative distribution function (CDF) 
can be obtained by the Gaussian kernel density estimation with 
automatic determination of the kernel bandwidth.48 As shown in 10 

Fig. 10, most oxygen atoms only stay at certain locations for less 
than 50 ps. The density decreases exponentially with the dwell 
time, suggesting that the oxygen atoms are quite mobile in these 
two planes. In addition, the different slopes for oxygen in these 
two planes are indicative of different oxygen mobilities; a higher 15 

mobility of oxygen is observed in the PrO0.5 planes. This is also 
evidenced by the inset of Fig. 10, where a higher density presents 
at low dwell time for oxygen in PrO0.5 planes. The CDFs of the 
dwell time at different temperatures are shown in Fig. 11. With 
the decrease of temperature, the CDF of dwell time increases at a 20 

slower rate. At temperature less than 1273 K, many oxygen atoms 
stay in the CoO2 planes longer than the simulation time, as shown 
in Fig. 11b. Generally, the CDF of the PrO0.5 increases faster than 
the other planes at low dwell time, consistently with the 
probability density distribution in Fig. 10. This is also shown in 25 

Fig. 12, suggesting that the average dwell time of oxygen in the 
CoO2 planes is higher than that in the PrO0.5 planes. Since oxygen 
atoms stay in the PrO0.5 layers for a shorter time and the oxygen 
migration enthalpy in the CoO2 layers is the lowest, it is likely 
that in PBCO the CoO2 layers are the main channels for oxygen 30 

diffusion and the PrO0.5 layers work as oxygen vacancy 
reservoirs. 

 
Fig. 10 PDF of the oxygen dwell time in CoO2 and PrO0.5 planes at 1573 K. 

(a) (b) 

  

Fig. 11 CDF of oxygen dwell time in PrO0.5 (a) and CoO2 planes (b) at 35 

different temperatures. 

 
Fig. 12 CDF of dwell time at 50 ps. 

Conclusions 

An MD study of oxygen ion diffusion in A-site ordered 40 

perovskite PBCO is presented. The oxygen trajectories are 
analyzed by the k-means clustering, a machine learning 
algorithm, which captures the oxygen jumps between different 
locations in the material. This algorithm is chosen because the 
analysis of MD trajectories patterns is intrinsically an 45 

unsupervised learning problem. The clustering analysis yields a 
representation of an oxygen site as a simple label with a site type 
associated with it, and the oxygen hops between different sites 
may be interpreted as simple label changes. The clustering results 
also allow the analysis of individual jump events and types. 50 

Based on that, the occupation fraction change at different sites 
can be determined as a function of temperature. In the PrO0.5 
planes, the oxygen occupation fraction increases with 
temperature, while it decreases with temperature in the CoO2 
planes. The clustering analysis also leads to the separation of 55 

activation enthalpies of different migrations. It is found that 
among the diffusion paths the in-plane transport in CoO2 has the 
lowest migration barrier (0.27 eV) and the transport from CoO2 to 
PrO0.5 has the highest barrier (0.56 eV). The dwell time of 
oxygen at different site types can also be analyzed. In the PrO0.5 60 

layers, oxygen atoms stay for shorter time than in the CoO2 
layers. By combining the dwell time analysis with the migration 
enthalpies, the oxygen migration is shown to be constrained to 
the CoO2 layers, while the PrO0.5 layers work as vacancy 
reservoirs. The dwell time analysis is particularly useful for 65 

studying the effect of the surrounding atoms on the oxygen 
transport. Even though the simulations presented here are based 
on empirical potential models, typical of classical MD, they can 
be in principle applied to kinetic Monte Carlo simulations, ab 
initio MD, and other types of MD simulations as well. This 70 

method is particularly suited for studying the impact of the local 
atomic arrangements on the ionic transport. Such analysis could 
be beneficial for the design of perovskites with enhanced 
conductivity by identifying diffusion bottlenecks and fast 
diffusion routes. Future theoretical work might use the k-means 75 

clustering based hopping analysis and dimensionality reduction 
methods to design high fidelity reduced models, such as kinetic 
Monte Carlo models, and therefore extend the simulation time. 
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