
 

 

 

 

 

 

Multiresolution quantum chemistry in multiwavelet bases: 

Excited states from time-dependent Hartree-Fock and 

density functional theory via linear response 
 

 

Journal: Physical Chemistry Chemical Physics 

Manuscript ID: CP-ART-12-2014-005821.R2 

Article Type: Paper 

Date Submitted by the Author: 09-Feb-2015 

Complete List of Authors: Yanai, Takeshi; Institute for Molecular Science, Department of Theoretical 

and Computational Molecular Science 
Fann, George; Oak Ridge National Laboratory, Computer Science and 
Mathematics Division 
Beylkin, Gregory; University of Colorado at Boulder, Department of Applied 
Mathematics 
Harrison, Robert; Stony Brook University, Institute for Advanced 
Computational Science 

  

 

 

Physical Chemistry Chemical Physics



Multiresolution quantum chemistry in multiwavelet bases: Excited

states from time-dependent Hartree-Fock and density functional the-

ory via linear response

Takeshi Yanai,∗a George I. Fann,b Gregory Beylkin,c Robert J. Harrison∗d,e

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

A fully numerical method for the time-dependent Hartree-Fock and density functional theory (TD-HF/DFT) with the Tamm-

Dancoff (TD) approximation is presented in a multiresolution analysis (MRA) approach. From a reformulation with effective

use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization

formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green’s

function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. The

integral equation is efficiently and adaptively solved using a numerical multiresolution solver with multiwavelet bases. Our

implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H2, Be, N2, H2O, and C2H4

molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation

in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from

short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution

calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian

basis functions are too diffuse or decay too rapidly. We introduce a simple asymptotic correction to the local spin-density

approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.

1 Introduction

In a series of papers1–3, we described a practical multires-

olution method using multiwavelet bases for the all-electron

Hartree-Fock (HF) and Kohn-Sham (KS) equations for quan-

tum chemical calculations. These studies employed and ex-

tended the approach described in Ref.4 for the solution of the

integral and partial differential equations. In this paper, we

describe a multiresolution numerical solver that performs the

linear response calculations for excitation energies using the

time-dependent Hartree-Fock and density functional theory.

Determining molecular properties, such as the excitation

energies, transition moments, frequency-dependent polariz-

abilities, and other spectroscopic parameters, is an important

subject in computational quantum chemistry. A central task

of the property calculations is the determination of molecu-
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lar response functions associated with molecular properties.

In the response theory, the response is formulated as a time-

dependent perturbation5. The linear response method for the

HF theory is derived from the time-dependent HF (TDHF)

equation6,7. The TDHF method is widely used in nuclear

physics, where it is known as the “random-phase approxima-

tion” (RPA)8. The Tamm-Dancoff (TD) approximation to the

TDHF method gives an equivalent of the configuration inter-

action with single substitutions (CIS) method, known as the

simplest quantum chemistry approach to excited states. These

methods are based on the single excitation picture and essen-

tailly neglect electron correlation; therefore, they provide ac-

curacy to the mean-field level.

Over the past decades, the time-dependent density func-

tional theory (TDDFT) has been actively studied and well es-

tablished to determine the response properties on the basis of

the Kohn-Sham theory9–18. With the aid of modern compu-

tational algorithms, the TDDFT method has become a widely

used computational approach that can predict molecular prop-

erties efficiently and reliably. The predictions of the TDDFT

method are surprisingly accurate relative to the results calcu-

lated by the TDHF method, while the computational complex-

ity and execution costs of these methods are almost equiva-

lent. The TDDFT with the TD approximation (TDDFT/TD)
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was proposed and examined by Hirata and Head-Gordon16,17.

They concluded that the performance of the TDDFT/TD is

in many cases comparable to that of TDDFT without the

TD approximation. Recent advances in the development of

exchange-correlation functionals have clarified and improved

the previously poor description of Rydberg states by grafting

the correct 1/r asymptotic tails onto the exchange-correlation

potentials18–20.

As to the computational aspect, the extant implementations

of the TD-HF/DFT methods predominantly employ a linear

combination of atomic orbitals (LCAO) approximation, most

commonly using atom-centered Gaussian-type functions21.

This allows for the second-quantization formulation of the lin-

ear response theory, in which the equation of interest, taking

the form of a differential equation, is reduced to an algebraic

eigenproblem with a finite matrix that is straightforward to

implement. For the actual computations, the choice of basis

sets used for the response calculations is rather problematic

even when obtaining only a qualitative accuracy, since most

standard basis sets are carefully designed to yield the best

description of the ground-state wavefunction. Thus it is rec-

ommended to include polarized Gaussians with higher-order

angular momentum and diffused Gaussians with small expo-

nents. Moreover, the rapidly decaying tails of Gaussian func-

tions give inefficient descriptions of diffuse shapes, which are

often observed in response functions.

In the work of Refs.1–3, we employed the multiresolu-

tion analysis (MRA) approach as an alternative numerical

method for quantum chemical calculations. Our MRA ap-

proach is built upon Alpert’s multiwavelet bases4,22,23 for effi-

cient, highly adaptive basis functions. All computations were

performed to a user-defined, finite but mathematically guar-

anteed precision, so that the trade-off between precision and

speed can be controlled systematically. We applied the MRA

approach to the solution of the ground-state HF/KS equations

for molecules1,2 and the evaluation of their analytic deriva-

tives3. Bischoff and Valeev presented the MRA approach

to compute the HF wavefunction utilizing low-rank separated

representation of the molecular orbitals, and to calculate the

correlation energy using the pair function, e.g. the first-order

Møller-Plesset (MP1) wavefunction, with analytic elimina-

tion of Coulombic singularities via explicit correlation24–26.

Bischoff studied the regulation of the molecular potential in

the MRA-based HF and MP2 calculations.27,28 Frediani et al.

reported a new implementation of the MRA solver with multi-

wavelet bases for DFT29,30. In a similar context, the use of the

Daubechies wavelets in electronic structure calculations was

investigated to develop the linear scaling DFT method31–34.

In this study, we have applied the multiresolution approach

to the TD-HF/DFT for the calculation of the energies of ex-

cited states. We present a reformulation to derive the one-

particle response equation, which is fully expressed in the

first-quantization form. No virtual orbitals are needed in the

calculations of the response. The resultant working equation

is efficiently solved using the integral equation solver for the

Green’s function. The density matrix operator plays a key

role in projecting the equation onto the complementary space.

The response functions and transition densities are represented

adaptively with multiwavelet bases. The excitation energies

meet the user-selected degree of accuracy. In Refs.35,36, we

illustrated response calculations for excited states and polariz-

abilties using our MRA code. In this paper, the details of the

formulation to derive the response equation and the algorithm

for computer implementation, which are a foundation of the

work of Refs.35,36, are presented along with detailed numeri-

cal assessment with CIS and TDDFT/TD calculations. In the

next section, the multiresolution method is reviewed. The for-

mulation of the TD-HF/DFT response equations is shown in

Sec. III, and the computational algorithm and an implementa-

tion are presented in Secs. IV and V, respectively. The results

are discussed in Sec. VI, and our conclusions are presented in

Sec VII.

2 Background

Let us first give a brief overview of our MRA approach to

quantum chemistry calculations. In the previous studies1–3,

we applied MRA to obtain a numerical solution of the HF/KS

equations for polyatomic molecular systems. It uses the mul-

tiwavelet bases with disjoint supports, which are constructed

from the first k Legendre or interpolating polynomials defined

on disjoint intervals4. The details of the multiwavelet basis

are given in our previous paper (Ref.1). The MRA with multi-

wavelet bases is capable of organizing functions and operators

efficiently in terms of their proximity on a given scale and be-

tween different scales, and it provides a simple mechanism for

truncation and adaptive refinement that can be used to main-

tain the desired accuracy. The adaptivity associated with the

decomposition and refinement is key to representing globality

and locality in the multiresolution hierarchy on an equal foot-

ing. Higher-order convergence can be achieved for solving

partial differential and integral equation, and it can be main-

tained in the presence of boundary conditions or singularities.

The vanishing moments property built into the multiwavelet

bases assures a sparse representation of functions and opera-

tors.

In a previous paper1, a numerical integral convolution op-

erator with the Poisson and bound-state Helmholtz (BSH) ker-

nels was developed in multiwavelet bases:

T ∗ f (r) =
∫

dsK (r− s) f (s) , (1)

where K(x) is the kernel of the integral operator T . The

nonstandard form (NS-form) of applying operators to func-
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tions is an underlying algorithm that can exploit sparsity in

the integration using multiwavelet bases37–39. In practice, the

low-rank separation of the integral kernels was introduced in

the three-dimensional integrator, and thus a prohibitively large

computational overhead is avoided. This separation reduces

the cost from O(Mk6) to O(Mk3), where M is the separation

rank. The cost may be further reduced by applying the sin-

gular value decomposition to the one-dimensional separated

integral operator.1,40–42 In a previous study1, we presented

nearly optimal forms of the separated representations of the

Poisson and BSH kernels, based on the quadrature rule of the

integral forms of the kernels. The Poisson and BSH operators

in three dimsnsions were implemented in the MRA integration

solver.

The Poisson kernel 1/r arises in the evaluation of Coulomb

operator Ĵ and the Hartree-Fock exchange operator K̂:

Ĵ [ρ] =
∫

dr′
ρ (r′,r′)
|r− r′| , (2)

and

K̂ [ρ] f (r) =
∫

dr′
ρ (r,r′) f (r′)

|r− r′| . (3)

The HF/KS equations are solved in the following integral

equation form, which contains the BSH operator:

ψi = −2
(

−∇2 −2εi

)−1 (
V̂ 0ψi

)

,

= −2 Ĝ(k)∗
(

V̂ 0ψi

)

, (4)

where {ψi} and {εi} are the canonical orbitals and orbital en-

ergies, respectively, V̂ 0 is the potential, Ĝ(k) is the BSH in-

tegral operator parameterized with k =
√
−2εi (> 0), and the

integral kernel of Ĝ(k) is given by

G
(

r,r′
)

=
e−k|r−r′|

4π|r− r′| . (5)

In a previous paper1, we presented a multiresolution solver for

the one-particle eigenequation for the HF/KS self-consistent

field (SCF) method.

3 Formulation of the TD-HF/DFT linear re-

sponse method

The derivation of the linear response approach for the time-

dependent Hartree-Fock and density functional theory (TD-

HF/DFT) is now well established within the quantum chem-

istry literature5. It is normally based on the second-

quantization formalism and yields an algebraic representation

of the corresponding eigenequation; the basis representing the

equation is taken from the one-particle SCF orbitals, and a fi-

nite number of virtual (unoccupied) orbitals serve as the com-

plementary basis.

In our multiresolution approach, the basis is extremely large

(nearly infinite), and the ground state calculations provide oc-

cupied orbitals alone. Therefore, it is necessary to reformu-

late the linear response so that the virtual orbitals, which may

include continuum states, do not explicitly arise in the TD-

HF/DFT calculations. It should also be noted that the TD-

HF/DFT is a one-particle theory (i.e. three-dimensional) and

thus it can be implemented within the extant framework of our

multiresolution solver.

The formulation begins with the density matrix form of the

TDHF equation derived by Dirac6:

F̂ ρ̂ − ρ̂F̂ = i
∂

∂ t
ρ̂, (6)

where ρ̂ is the operator form of the Fock-Dirac density ma-

trix, ρ (r,r′), which is represented by the occupied canonical

orbitals {φi (r)} as:

ρ
(

r,r′
)

=
occ

∑
i

φi (r)φ †
i

(

r′
)

, (7)

where the occupied orbitals are orthonormal:

∫

dr φ †
p (r)φq (r) = δpq. (8)

The density matrix operator (spectral operator) ρ̂ is given in

Dirac’s bra-ket notation by

ρ̂ =
occ

∑
i

|φi〉〈φi| , (9)

which serves as an operator that projects the function f (r)
onto the occupied orbital space:

ρ̂ f (r) =
occ

∑
i

φi (r)
∫

dr′φ †
i

(

r′
)

f
(

r′
)

, (10)

and is idempotent:

ρ̂ = ρ̂ ρ̂. (11)

The Fock operator F̂ is defined with the one-electron core op-

erator ĥ and the electron-interaction operator ĝ [ρ] by:

F̂ = ĥ+ ĝ
[

ρ
(

r,r′
)]

. (12)

Applying an oscillatory perturbation allows us to partition

the Fock operator and the density matrix into the time-

independent and the time-dependent terms:

F̂ = F̂0 + F̂ ′, (13)

ρ
(

r,r′
)

= ρ0
(

r,r′
)

+ρ ′ (r,r′
)

, (14)

where the time-dependent terms F̂ ′ and ρ ′ (r,r′) are regarded

as perturbative. The anticommutation of the time-independent
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Fock operator F̂0 and the density matrix ρ0 (r,r′) gives the

density-matrix form of the unperturbed HF equation:

F̂0ρ̂0 − ρ̂0F̂0 = 0. (15)

The perturbative time-dependent terms of the one-electron

core operator and the density matrix induced in an oscillating

applied field can be expressed as a single Fourier component:

ĥ′ =
1

2

(

Ae−iωt +A†eiωt
)

, (16)

ρ ′ (r,r′
)

=
1

2

(

d
(

r,r′
)

e−iωt +d†
(

r,r′
)

eiωt
)

. (17)

The perturbation of the electron-interaction term is written as:

ĝ′ [ρ] = ĝ′
[

ρ0 +ρ ′] (18)

= ĝ′
[

ρ0
]

+
∂ ĝ

∂ρ

[

ρ0
]

∗ρ ′, (19)

where, for the Hartree-Fock potential, the last term in

eq. (19) takes the form of an integral convolution. The time-

independent and perturbative time-dependent terms of the

Fock operator are thus given by:

F̂0 = ĥ0 + ĝ
[

ρ0
]

, (20)

F̂ ′ = ĥ′+
∂ ĝ

∂ρ

[

ρ0
]

∗ρ ′, (21)

respectively. Inserting the above expressions into eq. (6) leads

to the following equation for d̂:

(

F̂0d̂ − d̂F̂0
)

+

{(

Â+
∂ ĝ

∂ρ

[

ρ0
]

∗d

)

ρ̂0 − ρ̂0

(

Â+
∂ ĝ

∂ρ

[

ρ0
]

∗d

)}

= ω d̂.
(22)

Applying
(

1− ρ̂0
)

and ρ̂0 to eq. (22) from the left and right

sides, respectively, gives

(

1− ρ̂0
)

F̂0
(

1− ρ̂0
)

x̂− x̂
(

ρ̂0
)

F̂0
(

ρ̂0
)

+
(

1− ρ̂0
)

{

Â+
∂ ĝ

∂ρ

[

ρ0
]

∗ (x+ y)

}

(

ρ̂0
)

= ω x̂, (23)

and applying ρ̂0 and
(

1− ρ̂0
)

from the left and right sides,

respectively, gives

(

ρ̂0
)

F̂0
(

ρ̂0
)

ŷ− ŷ
(

1− ρ̂0
)

F̂0
(

1− ρ̂0
)

−
(

ρ̂0
)

{

Â+
∂ ĝ

∂ρ

[

ρ0
]

∗ (x+ y)

}

(

1− ρ̂0
)

= ω ŷ, (24)

where we introduce the substitutions x̂ and ŷ, which corre-

spond to:

x̂ =
(

1− ρ̂0
)

d̂
(

ρ̂0
)

, ŷ =
(

ρ̂0
)

d̂
(

1− ρ̂0
)

. (25)

The following identity is evident:

d̂ =
(

ρ̂0 +1− ρ̂0
)

d̂
(

ρ̂0 +1− ρ̂0
)

= x̂+ ŷ. (26)

The transition density matrix operators x̂ and ŷ account for the

occupied-unoccupied and unoccupied-occupied transitions.

The transition matrices x(r,r′) and y(r,r′) can thus be ex-

panded into a linear combination of the occupied orbitals:

x
(

r,r′
)

=
occ

∑
i

xi (r)φ †
i

(

r′
)

, (27)

y
(

r,r′
)

=
occ

∑
i

φi (r)y
†
i

(

r′
)

, (28)

where the functions xi (r) and yi (r) are the response functions.

In the conventional matrix-based second-quantization formu-

lation, the response functions xi (r) and yi (r) are expressed

using the virtual orbitals {ψa} as the basis and with the tran-
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sition coefficients (or CIS coefficients) {xai, yai}:

xi (r) =
vir

∑
a

φa (r)xai, (29)

yi (r) =
vir

∑
a

φa (r)yai. (30)

In contrast, the multiresolution method yields fully numerical

representations for the response functions xi(r) and yi(r) in

multiwavelet bases in an efficient, adaptive fashion.

The operator terms
(

ρ̂0
)

d̂
(

ρ̂0
)

and
(

1− ρ̂0
)

d̂
(

1− ρ̂0
)

correspond to the occupied-occupied and unoccupied-

unoccupied elements, which are both zero. We assume that

the electronic transitions occur with an infinitesimal perturba-

tion:
(

1− ρ̂0
)

Â
(

ρ̂0
)

=
(

ρ̂0
)

Â
(

1− ρ̂0
)

= 0 . (31)

According to the relations of eqs. (8), (27), (28), and (31),

and with the orbital energy given by ε0
p =

∫

dr φ †
p (r) F̂0φp (r),

we arrived at the following coupled response eigenequations

for xp, yp, and ω:

(

1− ρ̂0
)

[

(

F̂0 − ε0
p

)

xp (r)+

{

∂ ĝ

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

+
occ

∑
i

φi (r)y
†
i

(

r′
)

)}

φp (r)

]

= ω xp (r) , (32)

(

1− ρ̂0
)†





(

F̂0 − ε0
p

)†
yp (r)+

{

∂ ĝ

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

+
occ

∑
i

φi (r)y
†
i

(

r′
)

)}†

φp (r)



=−ω yp (r) , (33)

where we have multiplied eqs. (23) and (24) by the occupied

orbitals from the right and left sides, respectively.

The Tamm-Dancoff approximation, which neglects the

terms that involve yp (r), leads to the following simpler

equation:

(

1− ρ̂0
)

[

(

F̂0 − ε0
p

)

xp (r)+

{

∂ ĝ

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

)}

φp (r)

]

= ω xp (r) . (34)

4 Numerical algorithm and implementation

This section describes a computational algorithm that is im-

plemented in the multiresolution solver for solving the re-

sponse equation, eq. (34). To create an implementable form

of eq. (34), we begin by transforming it to the following inter-

mediate:

[

F̂0 −
(

ε0
p +ω

)]

xp (r) =−
(

1− ρ̂0
)

Γp (r) , (35)

where we used the relations ρ̂0xp (r) = 0 and F̂0ρ̂0 = ρ̂0F̂0.

For convenience, we will substitute Γp (r) for the electron in-

teraction term:

Γp (r) =

{

∂ ĝ

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

)}

φp (r) . (36)

Substituting the Fock operator F̂0 with −∇2/2+ V̂ 0, we will
obtain the following integral equation:

x̃p (r) =−2
[

−∇2 −2
(

ε0
p +ω

)]−1 [

V̂ 0xp (r)+
(

1− ρ̂0
)

Γp (r)
]

,

=−2Ĝ(k)∗
[

V̂ 0xp (r)+
(

1− ρ̂0
)

Γp (r)
]

, (37)

where

k =
√

−2
(

ε0
p +ω

)

. (38)

The integral convolution operator Ĝ(k) in eq. (37) is the same

operator as that in eq. (4), which we employed in the multires-

olution solver for the HF/KS-SCF method (Sec. 2). In this
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sense, the algorithms for the HF/KS-SCF method and the lin-

ear response method may be analogous.

Our implementation of the linear response theory updates

response functions by iterating the application of the convolu-

tion integral operator, eq. (37). Because the free-space bound-

ary conditions are assumed, the integral operator is limited to

a kernel with a non-imaginary k, i.e., k is zero (for the Pois-

son kernel) or a positive real number (for the BSH kernel).

If eq. (38) is imaginary, i.e., ε0
p +ω > 0, we can employ the

following equation with a shifting constant ∆(< 0), instead of

eq. (37):

x̃p (r) =−2Ĝ
(

k′
)

∗
[

V̂ 0xp (r)+
(

1− ρ̂0
)

Γp (r)+∆xp (r)
]

,
(39)

where k′ =
√

−2
(

ε0
p +ω +∆

)

is zero or a small positive real

number. If eq. (38) does not converge to a real number, the so-

lution is unbound. The unbound excitation state corresponds

to a continuum scattering state, and its excitation energy is

above the ionization potential.

Next, we show the specific expressions of the electron in-

teraction (eq. (36)) for the Coulomb, HF exchange, and local

spin-density approximation (LSDA) exchange-correlation po-

tentials. The electron-interaction term for the Coulomb oper-

ator ĝ [ρ] = Ĵ [ρ], eq. (2), is given by

Jp (r) =

{

∂ Ĵ

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

)}

φp (r) ,

=

(

occ

∑
i

∫

dr′
xi (r

′)φ †
i (r

′)
|r− r′|

)

φp (r) , (40)

and for the HF exchange operator ĝ [ρ] = K̂ [ρ], eq. (3), by

Kp (r) =

{

∂ K̂

∂ρ

[

ρ0
]

∗
(

occ

∑
i

xi (r)φ †
i

(

r′
)

)}

φp (r) ,

=
occ

∑
i

xi (r)
∫

dr′
φ †

i (r
′)φp (r

′)
|r− r′| . (41)

The LSDA exchange-correlation potential is given by

ĝ [ρ] =Vxc [ρ] =
δExc[ρ]

δρ
, (42)

and the electron-interaction term for the TDDFT calculations

is thus given by

Wp (r) =

{

∂ 2Exc

∂ρ2

[

ρ0
]

(

occ

∑
i

xi (r)φ †
i (r)

)}

φp (r) , (43)

where Exc is the exchange-correlation functional.

The above Coulomb and HF exchange operators are eval-

uated using the multiresolution integral solver for the in-

tegral convolution operator with a Poisson kernel. When

calculating the HF exchange term, eq(41), the integrals
∫

dr′φ †
i (r

′)φp (r
′)/ |r− r′| are precalculated and stored, so

that the integrals do not need to be recalculated at every it-

eration; however, the memory required for this is on the order

of Nocc × (Nocc +1)/2.

The TDDFT calculations require the numerical representa-

tion of the second derivative of the exchange-correlation func-

tional with respect to the density, ∂ 2Exc/∂ρ2
[

ρ0
]

. Since the

functional is dependent on only the density function that is

made from occupied orbitals, the evaluation of the second

derivative of the exchange-correction functional is only per-

formed once, prior to the iterations. The computations in-

clude a one-centered (local) numerical operation on the den-

sity function, and so the computational cost is O(N).

For our prototype implementation of the TD-HF/DFT linear

response method in the experimental version of the multireso-

lution solver MADNESS, we reused most of the HF/KS-SCF

computer programming code developed a previous study1.

The Krylov-subspace accelerated inexact Newton (KAIN)

method43 is used to accelerate convergence. The second

derivative of the exchange-correlation functional is computed

using a subroutine library implemented in NWCHEM 44. The

programming structure is summarized as follows:

1. Obtain the occupied orbitals {φp}, their orbital energies

{ε0
p}, and the density function ρ0 from a HF/KS-SCF

calculation in the MRA approach.

2. Compute a numerical representation of the sec-

ond derivative of the exchange-correlation functional,

∂ 2Exc/∂ρ2
[

ρ0
]

.

3. Prepare the initial response functions {x
(k)
p } of the re-

quired states k = 1, ...,Nstates. They can be generated

from a preliminary Gaussian calculation according to the

relation given in eq. (29).

4. Compute the transition density function x(r), eq. (27),

which is a sum of the products of the occupied orbitals

and the response functions.

5. Obtain
{

Γ
(k)
p

}

in eq. (36) from the computation of
{

J
(k)
p

}

,
{

K
(k)

p

}

, and
{

W
(k)

p

}

in eqs. (40), (41), and

(43), respectively.

6. Compute V̂ 0x
(k)
p . Note that, except for the HF exchange

potential, V̂0 is a local potential, which is thus already

obtained in the ground-state calculation.
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7. [in the first iteration or for deflation]
Obtain the initial eigenvalues ω(k) from the following

matrix diagonalization,

Ax = Sxω, (44)

where

Ai j = ∑
p

∫

drx
(i)
p

(

1− ρ̂0
)

[

(

F̂0 − ε0
p

)

x
( j)
p (r)+Γ

( j)
p (r)φp (r)

]

,

(45)

Si j = ∑
p

∫

dr x
(i)
p (r)x

( j)
p (r) . (46)

The differential operator needs to be evaluated in the

Fock operator. The matrix elements Ai j and Si j that are

of integral form can be computed as inner products.

8. Compute the projection:
(

1− ρ̂0
)

Γ
(k)
p .

9. Apply the BSH integral operators to the integral equa-

tions, eq. (37).

10. The trail eigenvalues ω(k) are corrected according to the

following preconditioned correction1:

δω(k) =−
∑p

〈

V̂ 0x
(k)
p (r)+

(

1− ρ̂0
)

Γ
(k)
p (r)

∣

∣

∣
x
(k)
p − x̃

(k)
p

〉

∑p ‖x̃
(k)
p ‖2

.

(47)

11. Apply Gram-Schmidt orthonormalization to the response

functions such that ∑p〈x(k)p |x(k
′)

p 〉= δkk′ .

12. Repeat from step 4 through step 11 until the residual is

smaller than a predetermined threshold value.

5 Results

5.1 CIS calculation for hydrogen molecule

The initial test of the multiresolution solver for the linear re-

sponse method was performed upon an H2 molecule. The

bond length and the box size are set to 1.4 bohr and 200 bohr,

respectively.

Table 1 lists the orbital energies of the occupied orbitals for

the 7-, 9-, and 11-th multiwavelet bases, noted by k = 7, 9,

and 11, respectively, when the residual of the MO equation

is less than 3× 104(k = 7), 3× 105(k = 7), 3× 106(k = 9),
and 3 × 107(k = 11). The table includes the orbital ener-

gies computed with four kinds of Gaussian-type functions: cc-

pVTZ, augmented cc-pVTZ, doubly augmented cc-pVTZ, and

doubly augmented cc-pVQZ45,46. The Gaussian calculations

were performed using NWCHEM 44. The error of the computed

orbital energy is estimated as the deviation from the most ac-

curate result determined with k = 11. As seen in the study

presented in Ref.1, the errors in the multiresolution calcula-

tions are in proportion to the residuals. The accuracy of the

orbital energy when using d-aug-cc-pVQZ is comparable to

that with k = 7 and the residual 3×10−4.

Table 2 shows the CIS excitation energies for 16 low-lying

singlet and triplet excited states. The CIS calculations met the

convergence criteria when the residual of the equation with

the response functions was less than the residual in the corre-

sponding occupied orbital. Figure 1 shows a plot of the ab-

solute errors, which are defined as the difference between the

calculated energy and that for k=11. Overall, the multireso-

lution calculations yielded sufficient and consistent accuracy

at the lowest excitation level through the higher excitations,

including Rydberg states. The accuracy of the excitation en-

ergies attained in the multiresolution calculations is in propor-

tion to the residuals of the response function. In the Gaussian

calculations, the accuracy of the excitation energies was in-

consistent over the different states. The addition of extra dif-

fuse functions improved the description of the higher excita-

tions, and there was poorer convergence with the lower quality

basis sets.

The response functions and the MOs computed with k=7 are

plotted in Figure 2. In the graph, we can see that the asymp-

totic behavior is exponential, and thus it is correctly described

by the multiresolution approach. We observe that the most

broadly diffused response function reaches a value of more

than 10−3 at a distance of 50 bohr from the molecular cen-

ter. The exponents used to fit the exponential functions to the

asymptotic tails are listed in Table 3. Using these exponents,

the orbital energy and the excitation energies can be estimated

to within an error of 0.5 eV by using the analytic asymptotic

form exp
(

−
√
−2ε x

)

, where ε is the energy.

The response functions and the MOs obtained in the mul-

tiresolution (k=7) and Gaussian (d-aug-cc-pVTZ) calculations

are shown in Figure 3. The function curves of the two calcula-

tions overlap near the valence region, except for the 1Πg state.

However, we note that the asymptotic tails of the Gaussian re-

sults are away from the correct exponential form. This seems

to result from the variational procedure with the Gaussian ba-

sis which does not precondition the eigenfunctions to have the

proper asymptotic form, and thus the energies of the excited

states are not consistently accurate. However, the energetic

contributions from these errors are in fact small because most

of the excitation energy is recovered through the description

of the valence. As for the 1Πg state, the Gaussian calculation

cannot reproduce the correct shape in the valence region.
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5.2 TD-HF/DFT calculation with TD approximation for

a beryllium atom

Next, the TD-HF/DFT calculations with the TD approxima-

tion were performed for a beryllium atom. Table 4 shows the

highest occupied orbital and the total energies for the HF/KS-

SCF calculations. The excitation energies are shown in Ta-

ble 5. The present calculations were performed using the 7-th

multiwavelet bases, the residuals of the calculated MOs and

response functions were less than 1×10−4, and a core orbital

was frozen. Both tables include the Gaussian results reported

by Hirata et al.18.

The CIS results obtained by the multiresolution and Gaus-

sian methods are in close accord. In the DFT calcula-

tions, the local spin-density approximation (LSDA) exchange-

correlation functional was employed with and without the

asymptotic correction. In Ref.18, Hirata et al. pro-

posed and used the asymptotically corrected LSDA poten-

tial (LSDA/AC), where the correct -1/r asymptotic form was

enforced on the exchange-correlation potential by using the

Slater potential47 in the asymptotic region. The Slater poten-

tial47 is given by

V S (r) =−
occ

∑
i, j

φi (r)φ j (r)

ρ (r)

∫

dr′
φi (r

′)φ j (r
′)

|r− r′| . (48)

The potential in the vicinity of the nuclei is shifted by a con-

stant, which is non-empirically determined by insisting that

the shifted potential is that of the highest occupied molecular

orbital (HOMO)48. The shifted potential and the Slater term

are grafted to each other where they cross, except when the

crossing occurs within the Bragg-Slater radius of any of the

constituent nuclei.
Inspired by Hirata’s insight, we employed the following

simple, asymptotically corrected LSDA potential (AC-LSDA)
in the multiresolution TDDFT/TD calculation:

V AC−LSDA (r)=























V LSDA (r)+ εHF
h − εLSDA

h , (ρ (r)≥ ρA) ,

min
(

V LSDA (r) ,V S (r)
)

,
(

ρA > ρ (r)≥ 10−11
)

,

0,
(

10−11 > ρ (r)≥ 0
)

,
(49)

where the shifted constants εHF
h and εLSDA

h are the highest

occupied orbital energies for the HF and LSDA calculations,

respectively. An empirical parameter ρA is used to determine

the point at which the potentials are grafted and thus discon-

tinuous. In eq. (49), the Slater potential is used in the region of

low electron density, and the shifted LSDA potential is used

in the region of high electron density. Figure 4 shows a graph

of the AC-LSDA potential for the Be calculation with the em-

pirical parameter ρA = 10−2. The −1/r asymptotic behavior

is observed in the AC-LSDA potential in the region between

r = 5.0 bohr and r = 15.0 bohr. The discontinuity at r > 15.0

bohr arises due to the numerical instability of the denomina-

tor ρ(r) in eq. (48). The figure also shows that the standard

(non-AC) LSDA potential decays exponentially.

As shown in Tables 4 and 5, the AC-LSDA potential ap-

pears to improve the highest occupied orbital and excitation

energies. The highest occupied orbital energy with the AC-

LSDA potential is close to the HF orbital energy. Hirata’s

asymptotic correction does not affect the total energy, whereas

the present AC-LSDA potential underestimated the total en-

ergy by 2.4 millihartree. In the standard (non-AC) LSDA ex-

citation calculation, three lower-lying states are bound, and

the other nine states are unbound. Five out of the nine un-

bound states did not meet the convergence criteria. On the

other hand, the asymptotic correction to the LSDA potential

yields eight bound states and four unbound states, all of which

converged. The excitation energies determined with the AC-

LSDA potential are closer to the experimental values than are

those calculated with the LSDA/AC potential.

Figures 5, 6, and 7 show plots of the highest occupied or-

bital, and the bound and the unbound response functions, re-

spectively for singlet states in TD-HF/DFT calculations. In

the HF and CIS calculations, all the response functions are

bound, and their asymptotic behaviors are exponential (Fig-

ure 5). Similarly, Figures 6 and 7 illustrate that the asymp-

totic exponential shapes of the bound-state functions obtained

with the LSDA and AC-LSDA potentials. In these figures,

the unbound response functions that do not decay are shown

to vanish inside the box; at the side of the box, the boundary

condition is artificially enforced by a masking function to be

equal to the unbound response1. The physical model behind

the LSDA is that the density can be treated locally as a uni-

form electron gas, or equivalently, that the density is a slowly

varying function. The unbound response functions capture the

aspect of the physical model in which the excitation is a con-

tinuum. Considering this, the multiresolution solver yielded a

qualitatively correct description of the given physical model.

Table 6 shows the estimated highest occupied orbital and sin-

glet excitation energies obtained by fitting the asymptotic tails

to exponential functions. This estimation is in good agreement

with the actual value to within an error of 0.50 eV.

5.3 TD-HF/DFT excitation energies with TD approxima-

tion for N2, H2O, and C2H4 molecules

We used the multiresolution TD-HF/DFT methods to calculate

the excitations for three small molecules, N2, H2O, and C2H4.

Tables 7, 9, and 11 list the highest occupied orbital energies

of the molecules with the equilibrium geometries. Tables 8,

10, and 12 summarize the vertical excitation energies and the

experimental data49–51, the Gaussian results reported by Hi-

rata et al. for N2 and H2O18, and those calculated with d-aug-

cc-pVTZ Gaussian basis sets for C2H4. The multiresolution
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calculations were performed with the 7-th multiwavelet bases,

with the residual of the equation expressed in MOs and the

response functions restricted to be less than 1×10−4, and the

core orbitals frozen. For the HF and CIS results, the mean ab-

solute differences between the excitation energies of the mul-

tiresolution calculations and the Gaussian calculations were

0.03 eV, 0.06 eV, and 0.04 eV for N2, H2O, and C2H4, re-

spectively, and the maximum differences were 0.09 eV (3Πu),

0.11 eV (3B1), and 0.25 eV (1B3u), respectively. In the AC-

LSDA calculations, the empirical parameter was chosen to be

ρA = 10−2, 10−3, and 10−3 for N2, H2O, and C2H4, respec-

tively. The asymptotic correlation yielded no unbound state

throughout the calculations. The AC-LSDA calculations for

the 1Πu state for N2 and the 3A1 state for H2O did not con-

verge. The lack of convergence seems to be caused by the

unstable numerical representations of the second derivative

of the exchange-correlation functional. The lower excitation

energies obtained with the AC-LSDA potential are in good

agreement with those obtained with Hirata’s LSDA/AC po-

tentials, as well as with the experimental values. On the other

hand, the AC-LSDA potential does not satisfactorily repro-

duce the higher excitation energies found in the experiment.

6 Conclusions

We have presented a multiresolution approach to calculating

the fully numerical linear response for excited states on the

basis of the TD-HF/DFT with the Tamm-Dancoff approxima-

tion. The calculations are performed by iteratively solving the

integral equation, using the BSH kernel for the Green’s func-

tion. The basis errors are adaptively refined by the MRA, and

thus, when calculating the energies of excited states at a va-

riety of length scales, from short-range valence excitations to

long-range Rydberg-type ones, we can efficiently and consis-

tently attain an arbitrary numerical accuracy. Our method is

capable of efficiently delivering the basis function limits of

the TD-HF/DFT excitation energies.

We reformulated the linear response theory from the TD-

HF/DFT equation into the first-quantization form. The re-

sultant equation takes a general form that does not explic-

itly involve virtual orbitals, and thus the equation can be im-

plemented in a multiresolution solver where the complemen-

tary basis for the virtual orbital space is nearly infinite. We

showed that the HF/KS-SCF algorithm is analogous to the

TD-HF/DFT linear response method in that they both solve

an integral equation by using the BSH integral convolution

operator.

We presented the illustrative TD-HF/DFT calculations for

H2, Be, N2, H2O, and C2H4. The CIS calculation for H2

revealed that the numerical errors of the excitation energies

in the multiresolution approach converge in proportion to the

residuals of the equation based on the response functions. The

accuracy is consistent over the various states. The asymptotic

tails of the response functions were clearly shown to decay

exponentially. These results indicate that the integral oper-

ators for excited states can be adaptively represented in our

multiresolution scheme with a controllable accuracy. In the

TDDFT/TD calculations for Be, N2, H2O, and C2H4, we used

the Slater potential as a simple asymptotic correction to the

LSDA potential. Due to the −1/r asymptotic behavior in the

modified exchange-correlation potential, we obtained the cor-

rect bound states.
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Table 1 The occupied orbital energies (εh) and their absolute errors

(in hartree) of H2 (1.4 bohr) for the Hartree-Fock calculation.

basis εh error

cc-pVTZ -0.594 427 8 2.3×10−4

aug-cc-pVTZ -0.594 401 3 2.6×10−4

d-aug-cc-pVTZ -0.594 391 2 2.7×10−4

d-aug-cc-pVQZ -0.594 613 2 4.5×10−5

k=7, resi.< 3×10−4 -0.594 640 678 1.7×10−5

k=7, resi.< 3×10−5 -0.594 658 893 1.0×10−6

k=9, resi.< 3×10−6 -0.594 658 059 1.6×10−7

k=11, resi.< 3×10−7 -0.594 657 898 —

Table 2 CIS excitation energies (in eV) of H2 (1.4 bohr).

Singlet 11Σu 11Σg
1Πu 21Σu 21Σg

1Πg

NWCHEM

cc-pVTZ 13.650 165 9 17.596 907 9 25.314 912 3 25.505 121 3 35.581 912 4 35.748 789 2

aug-cc-pVTZ 12.737 747 2 13.049 851 9 14.509 656 8 15.686 788 7 17.794 154 2 17.938 899 6

d-aug-cc-pVTZ 12.732 600 5 13.003 349 8 13.104 064 4 14.652 878 3 14.753 335 3 14.876 899 2

d-aug-cc-pVQZ 12.735 882 3 13.005 346 5 13.103 891 7 14.651 825 1 14.753 877 2 14.827 928 5

MADNESS

k=7, resi.< 3×10−4 12.735 100 6 13.002 657 8 13.097 734 9 14.639 356 4 14.737 035 4 14.665 801 7

k=7, resi.< 3×10−5 12.735 615 2 13.003 186 5 13.098 184 2 14.639 887 3 14.737 841 4 14.666 288 4

k=9, resi.< 3×10−6 12.735 626 8 13.003 222 0 13.098 152 7 14.639 874 2 14.737 851 6 14.666 268 2

k=11, resi.< 3×10−7 12.735 622 3 13.003 217 6 13.098 147 1 14.639 869 1 14.737 849 9 14.666 263 2

Triplet 13Σu 13Σg
3Πu 23Σu 23Σg

3Πg

NWCHEM

cc-pVTZ 10.043 032 3 14.260 537 1 20.543 507 6 21.203 595 0 33.154 165 5 34.087 700 8

aug-cc-pVTZ 9.978 537 7 12.031 541 4 12.883 666 5 14.412 837 4 17.032 021 4 17.737 789 1

d-aug-cc-pVTZ 9.976 522 6 12.029 900 4 12.310 131 7 14.189 012 5 14.497 603 1 14.855 307 8

d-aug-cc-pVQZ 9.978 642 5 12.033 841 4 12.311 513 4 14.178 500 2 14.503 321 6 14.808 992 0

MADNESS

k=7, resi.< 3×10−4 9.977 728 3 12.029 871 7 12.308 381 0 14.157 228 0 14.499 081 9 14.654 812 5

k=7, resi.< 3×10−5 9.978 134 1 12.030 259 1 12.308 505 0 14.157 799 3 14.499 461 4 14.655 313 1

k=9, resi.< 3×10−6 9.978 116 6 12.030 233 9 12.308 482 2 14.157 772 7 14.499 435 9 14.655 292 6

k=11, resi.< 3×10−7 9.978 111 8 12.030 228 4 12.308 477 4 14.157 768 0 14.499 431 2 14.655 287 9
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Table 3 The exponents (k) for the asymptotic tails, exp(kx), of the

response functions and the occupied orbital, and their estimations of

the H2 (1.4 bohr) energies.

exponent k ε (hartree)a ε − εh (eV)b

1Πg -0.307 -0.0471 14.9

21Σg -0.274 -0.0375 15.2

21Σu -0.288 -0.0415 15.1
1Πu -0.468 -0.110 13.2

11Σg -0.440 -0.0968 13.5

11Σu -0.465 -0.108 13.2

HOMO -1.11 -0.616 —

a) The relation exp(kx) = exp(−
√
−2ε x) is used.

b) εh =−0.5947 (hartree) is used.

Table 4 The highest occupied orbital (εh) and the total energies

(E;in hartree) of Be from the Hartree-Fock and LSDA calculations,

with and without the asymptotic correction.

method εh E

HF (16s11p7d GTOs)a -0.309 3 -14.572 9

LSDA (16s11p7d GTOs)a -0.205 7 -14.447 1

LSDA/AC (16s11p7d GTOs)a -0.307 7 -14.447 1

HF, k=7, resi.< 1×10−4 -0.309 27 -14.573 021

LSDA, k=7, resi.< 1×10−4 -0.205 73 -14.447 207

AC-LSDA, k=7, resi.< 1×10−4 -0.288 28 -14.444 828

Expt.b -0.342 6 · · ·

a) Reference18

b) Reference52
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Table 5 Excitation energies (in eV) of Be

MADNESS Hirata et al.a

k=7, resi.< 1×10−4 16s11p7d GTOs

State CIS LSDA AC-LSDA CIS LSDA LSDA/AC Expt.b

1S 7.265 5.608e 7.853d 7.26 5.66 7.20 8.09
3S 7.101 5.605d 7.842d 7.10 5.64 7.12 8.00
1D 7.573 5.64c,e 7.87c,d 7.58 · · · 7.52 7.99
3D 6.839 5.62c,d 7.73c 6.84 5.83 6.83 7.69
1P 6.775 5.609e 7.385 6.77 5.65 6.61 7.46
3P 7.388 5.633e 7.860d 7.40 5.79 7.36 7.40
3P 6.435 5.610d 7.302 6.44 5.65 6.41 7.30
1D 6.921 5.62c,d 7.69c 6.92 5.83 6.75 7.05
1S 6.131 5.586d 6.957 6.13 5.58 6.02 6.78
3S 5.528 5.512 6.849 5.53 5.50 5.76 6.46
1P 5.065 5.096 5.719 5.05 4.82 4.83 5.28
3P 1.700 2.577 2.681 1.70 2.36 2.36 2.73

a) Reference18

b) Reference53

c) Degeneracies are obtained within 3 digits.

d) Unbound result. Residual and energy converged.

e) Unbound result. Residual did not converge, but energy did.

Table 6 The estimation of the singlet excitation and the highest

occupied orbital energies from the asymptotic exponential tails of

the response functions and the highest occupied orbital.

CIS LSDA AC-LSDA

ε ε − εh ε ε − εh ε ε − εh

(hartree) (eV)a (hartree) (eV)a (hartree) (eV)a

1S -0.0418 7.28 · · · · · · · · · · · ·
1D -0.0194 7.89 · · · · · · · · · · · ·
1P -0.0501 7.05 · · · · · · -0.0214 7.26
1D -0.0417 7.28 · · · · · · -0.00834 7.62
1S -0.0771 6.32 · · · · · · -0.0400 6.75
1P -0.125 5.02 -0.0234 4.96 -0.0885 5.44

HOMO -0.299 — -0.200 — -0.281 —

a) The value of εh is as shown in Table 4.
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Table 7 The highest occupied orbital energies (εh; in hartree) of N2

(1.0980Å) for the Hartree-Fock and LSDA calculations, with and

without the asymptotic correction.

method εh

HF (6-311(3+,3+)G**)a -0.635 5c

LSDA (6-311(3+,3+)G**)a -0.384 1

LSDA/AC (6-311(3+,3+)G**)a -0.611 8

HF, k=7, resi.< 1×10−4 -0.634 43c

LSDA, k=7, resi.< 1×10−4 -0.382 60

AC-LSDA, k=7, resi.< 1×10−4 -0.547 26

Expt.b -0.572 6

a) Reference18

b) Reference52

c) The energy of the 3σg orbital.

Table 8 Vertical excitation energies (in eV) of N2 (1.0980Å)

MADNESS Hirata et al.a

k=7, resi.< 1×10−4 6-311(3+,3+)G**

State CIS AC-LSDA CIS LSDA/AC LSDA Expt.b

1Σ+
u 14.306 13.888 14.37 13.25 10.70 12.98

1Πu 13.194 · · · 13.24 13.30 10.70 12.90
1Σ+

g 14.013 13.299 14.04 12.62 10.46 12.2
3Σ+

g 13.113 12.935 13.14 12.21 10.35 12.0
3Πu 11.721 10.504 11.81 10.42 10.36 11.19
1∆u 9.044 10.37c 9.04 10.34 10.26 10.27
1Σ−

u 8.495 9.768 8.47 9.76 9.70 9.92
3Σ−

u 8.494 9.768 8.47 9.76 9.70 9.67
1Πg 10.005 9.298 9.98 9.16 9.09 9.31
3∆u 7.293 8.96c 7.32 8.92 8.87 8.88
3Πg 7.992 7.651 8.02 7.62 7.58 8.04
3Σ+

u 6.225 8.159 6.20 7.94 7.91 7.75

a) Reference18

b) Reference49

c) Degeneracies are obtained within 3 digits.
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Table 9 The highest occupied orbital energies (εh; in hartree) of

H2O (OH=0.9584Å, HOH=104.45◦) for the Hartree-Fock and

LSDA calculations, with and without the asymptotic correction.

method εh

HF (6-311(3+,3+)G**)a -0.510 0

LSDA (6-311(3+,3+)G**)a -0.270 3

LSDA/AC (6-311(3+,3+)G**)a -0.502 6

HF, k=7, resi.< 1×10−4 -0.510 56

LSDA, k=7, resi.< 1×10−4 -0.271 96

AC-LSDA, k=7, resi.< 1×10−4 -0.488 73

Expt.b -0.463 8

a) Reference18

b) Reference52

Table 10 Vertical excitation energies (in eV) of H2O (OH=0.9584Å,

HOH=104.45◦)

MADNESS Hirata et al.a

k=7, resi.< 1×10−4 6-311(3+,3+)G**

State CIS AC-LSDA CIS LSDA/AC LSDA Expt.b

1A1 11.465 12.198 11.49 11.04 8.52 10.17
1B1 11.163 11.822 11.26 10.81 7.49 10.0
3B1 11.036 11.707 11.15 10.77 7.48 · · ·
1A1 10.897 10.176 10.88 10.00 7.72 9.67
3A1 10.718 · · · 10.80 10.71 8.18 · · ·
1A2 10.360 10.187 10.32 9.81 7.48 9.1
3A2 10.013 9.862 9.97 9.60 7.48 · · ·
3A1 10.105 11.413 10.07 9.47 7.70 · · ·
1B1 8.695 8.059 8.64 7.97 6.50 7.4
3B1 8.019 7.515 7.97 7.53 6.24 7.2

a) Reference18

b) Reference50
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Table 11 The highest occupied orbital energies (εh; in hartree) of

C2H4 (CC=1.331Å, CH=1.081Å, CH=121.4◦) for the Hartree-Fock

and LSDA calculations, with and without the asymptotic correction.

method εh

HF (d-aug-cc-pVTZ)a -0.377 57

LSDA (d-aug-cc-pVTZ)a -0.255 37

HF, k=7, resi.< 1×10−4 -0.377 71

LSDA, k=7, resi.< 1×10−4 -0.255 54

AC-LSDA, k=7, resi.< 1×10−4 -0.377 38

Expt.b -0.386 37

a) Calculated with NWCHEM.

b) Reference52

Table 12 Vertical excitation energies (in eV) of C2H4 (CC=1.331Å,

CH=1.081Å, CH=121.4◦) for states formed by single excitations

from b3u = π (molecule in the yz plane).

MADNESS NWCHEM

k=7, resi.< 1×10−4 d-aug-cc-pVTZ

State CIS AC-LSDA CIS LSDA Expt.a

1B1u 9.194 10.294 9.270 8.482 9.33
1B2u 8.779 9.598 8.929 8.251 9.05
1B3u 8.913 9.500 8.937 7.650 8.90
1B3u 8.589 9.093 8.840 7.354 8.62
3B3u 8.607 9.037 8.542 7.337 8.57
1Ag 8.204 9.087 8.202 7.350 8.28
3Ag 7.809 8.635 7.807 7.290 8.15
1B1u 8.364 8.889 8.362 7.639 8.0
1B2g 7.897 8.058 7.893 7.059 7.90
1B1g 7.740 8.033 7.737 7.072 7.80
3B1g 7.663 7.970 7.660 7.071 7.79
1B3u 7.161 7.316 7.158 6.632 7.11
3B3u 6.969 7.202 6.956 6.589 6.98
3B1u 3.792 4.864 3.794 4.860 4.36

a) Reference51
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Fig. 1 The absolute errors of the CIS excitation energies of H2

shown in Table 2. The error is defined as the difference between the

CIS excitation energy and that calculated using the 11-th

multiwavelet bases.
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Fig. 2 Plots of the occupied orbitals and the response functions of

the singlet excitations of H2, as calculated with the HF-SCF and the

CIS method using the 7-th multiwavelet bases. The plot axis is

(x,y) = (1.25, 0.0) in bohr.
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Fig. 3 Plots of the occupied orbital and the response functions of

the singlet excitations, 11Σu, 21Σu, and 1Πg on H2, as calculated by

the HF and CIS methods using the d-aug-cc-pVTZ basis sets and the

7-th multiwavelet bases. The plot axis is (x,y) = (1.25, 0.0) in bohr.
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Fig. 4 Plots of the Coulomb potential and the exchange-correlation

potentials of LSDA with and without the asymptotic correction for

the Be atom; r indicates the distance from the nucleus.
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Fig. 5 Plots of the highest occupied orbitals and the response

functions of the singlet excitations of Be, as calculated with the

HF-SCF and CIS methods using the 7-th multiwavelet bases, along

the z axis.
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Fig. 6 Plots of the highest occupied orbitals and the response

functions of the singlet excitations of Be, as calculated with LSDA

exchange-correlation functional using the 7-th multiwavelet bases,

along the z axis.
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Fig. 7 Plots of the highest occupied orbitals and the response

functions of the singlet excitations of Be, as calculated with the

AC-LSDA exchange-correlation functional using the 7-th

multiwavelet bases, along the z axis.
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