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ABSTRACT 

 

 This work aims to extend the study on the basis of the Nernst-Planck and Poisson 

equations of the formation of the electric double layer at the interface defined by a solution 

and an ion-exchange membrane, including different values for the counter-ion diffusion 

coefficient and the dielectric constant in the solution and membrane phases. The network 

simulation method is used to obtain the time evolution of the electric potential, the 

displacement electric vector, the electric charge density and the ionic concentrations at the 

interface between a binary electrolyte solution and a cation-exchange membrane with total 

co-ion exclusion. The numerical results for the temporal evolution of the interfacial electric 

potential and the surface electric charge are compared with analytical solutions derived in 

the limit of the shortest times by considering the Poisson equation with a simple cationic 

diffusion process. The steady-state results are justified from the Gouy-Chapman theory for 

the diffuse double layer in the limits of similar and high bathing ionic concentration with 

respect to the fixed-charge concentration inside the membrane. Interesting new physical 

insights arise from the interpretation of the process of the formation of the electric double 

layer at the ion exchange membrane-solution interface on the basis of a membrane model 

with total co-ion exclusion. 

 

 

 

Keywords: Electrodiffusion processes / Nernst-Planck and Poisson equations / Electric 

double layer / Network simulation method / Ion-exchange membranes / Dielectric mismatch 

Page 2 of 51Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 3

1. INTRODUCTION 

 

 The equilibration of spatially heterogeneous liquid systems where ionic species have 

unequal transport coefficients is a classical research line in the field of physical chemistry. 

This problem has recently been revised from a theoretical viewpoint by using modern and 

advanced numerical methods to deal with the mono-dimensional Nernst-Planck and Poisson 

equations, the main attention being paid to free liquid junctions1-4 and electrolyte solutions 

separated by semi-permeable infinitesimal membranes5-6. The temporal evolution to the 

equilibrium steady-state of the electric potential, the surface electric charge, and the profiles 

of the electric field, electric charge density and ionic concentrations have been analyzed for 

the different types of free liquid junctions usually found in the literature. The infinitesimal 

membranes have been chosen because of its significance in biological cells and its 

fundamental character in biophysics and biochemistry. 

 Ionic transport processes through ion-exchange synthetic membranes and related 

ion-selective systems, particularly fluidic devices, are receiving special attention from the 

scientific community. An ion-exchange membrane is a layer of material with inner electric 

charge that separates two solutions phases. Conventional membranes present fixed or 

mobile ionic sites and they are partially permeable or fully impermeable to at least one 

dissolved ionic component. An ion-exchange membrane is ideal when the fluxes of the co-

ions are zero, i.e., it presents total co-ion exclusion. Such membranes find a wide range of 

application in physics and chemistry, particularly in the field of brackish water or seawater 

desalination7 and in that of ion-selective electrodes used as chemical sensors,8 although 

there is a growing interest in the field of renewable energies such as pressure-retarded 
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 4

osmosis and reverse electrodialysis9 as well as in their use as separators in fuel cells,10 redox 

flux batteries,11 or joined to porous electrodes in energy production by expansion of 

electrical double layers12 or desalination by capacitive deionization.13 The study of the 

equilibration of the solutions inner and outer in an ion-exchange membrane system is 

interesting not only from the fundamental viewpoint but also from the practical viewpoint 

because it can find application, for example, into the characterization of the time of response 

and the temporal evolution to the equilibrium steady-state of ion-selective electrodes in 

chemical sensoring, electrode-membrane assemblies in renewable energy harvesting, or 

micro-nanochannel interfaces in fluidic devices. Apart from the existence of fixed-charge in 

one of the phases, the main novelty with respect the above cited systems, such as liquid 

junctions and infinitesimal membranes, is the consideration of different values for the ionic 

diffusion coefficients and the dielectric constant in the solution and membrane phases, these 

aspects being of a major interest in ion-exchange systems. The consideration of different 

values of the diffusion coefficient of the counter-ion in the membrane and the solutions 

phases is usual in the study of the response of ion-exchange membrane systems to external 

electrical perturbations and it is a consequence of the experimental values measured for the 

resistance or conductance of the membrane.14-15 In addition, decreasing in dielectric constant 

of a solution with an increasing electrolyte concentration is a well-known fact16-17 and the 

dielectric mismatch is included in the modern theoretical formulations on ionic transport in 

ion-exchange membrane systems.18 Particularly, the dielectric mismatch in ion-exchange 

membrane systems has been previously incorporated in studies dealing with ionic transport 

including ion-solvent interactions19 and with the equilibrium electric potential in systems 

with multi-ionic electrolytes.20-22 Also, there is a number of studies dealing with the 
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 5

electrochemical properties of specific membranes with low electric permittivity,23 

particularly interesting being those in the field of ion-selective electrodes.24,25 However, to 

our knowledge, fixed-charge concentration in one of the phases, and different values for the 

counter-ion diffusion coefficient and the dielectric constant in the membrane and solution 

phases are topics which have not been previously dealt with in the literature in the 

framework of the transient equilibration of electrolytic solutions. 

 This work aims to extend the study of the formation of the electric double layer at 

the interface defined by a solution and an ion-exchange membrane, including different 

values for the counter-ion diffusion coefficient and the dielectric constant in the solution and 

membrane phases. On the basis of interesting previous numerical treatments in this field,26-31 

the ionic transport processes are described by the Nernst-Planck and Poisson equations in 

both the membrane and the diffusion boundary layer in the binary electrolyte solution 

adjacent to the membrane. It is well-known that the ionic concentrations in the bulk of the 

membrane depend on the bathing salt concentration because of the ionic partitioning. For 

the sake of simplicity and greater generality, we have chosen a membrane with total co-ion 

exclusion and thus the initial counter-ion concentration inside the membrane is constant and 

equal to the equivalent fixed-charge concentration. The boundary conditions for the Nernst-

Planck flux equations are the constant ionic concentrations in the bathing solution, the 

constant counter-ion concentration inside the membrane, the zero value of the co-ion flux at 

the outer boundary of the membrane and the continuity of the counter-ion flux at the 

interface. For the Poisson equation, the origin of the electric potential, the continuity of the 

electric displacement vector at the interface, and the fact that the electric current must to be 

zero in equilibrium systems, are used as the boundary conditions. In this paper, the network 
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 6

simulation method32 is used as an appropriate and powerful numerical tool based on a finite 

differences scheme to simulate the formation of the electric double layer at the interface 

between a binary electrolyte solution and a cation-exchange membrane with total co-ion 

exclusion. 

 The numerical results for the temporal evolution of the interfacial electric potential 

and the surface electric charge are compared with analytical solutions derived in the limit of 

the shortest times by considering a simplified model based on the Poisson equation with a 

simple cationic diffusion process. The steady-state results are justified from the Gouy-

Chapman theory for the diffuse double layer in the limits of similar and high bathing ionic 

concentration with respect to the fixed-charge concentration inside the membrane. 

Interesting new physical insights arise from the interpretation of the process of the formation 

of the electric double layer at the ion exchange membrane-solution interface on the basis of 

a membrane model with total co-ion exclusion. 

 

2. IONIC TRANSPORT PROCESSES IN ION-EXCHANGE MEMBRANE 

SYSTEMS 

  

 We will consider the interface defined by an ion-exchange membrane and a diffusion 

boundary layer adjacent to the membrane. The membrane is supposed to completely block 

the transport of anions. If the ionic transport is one-dimensional, in the x direction, and 

perpendicular to the membrane-solution interface at x=0, the equations in dimensionless 

form (see Appendix A) determining the behaviour of the binary electrolyte in the diffusion 

boundary layer, extended from x=-L to x=0, i.e., for x<0, at time t are the laws of mass 
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conservation or continuity equations: 

 2,1,
),(),(

=
∂

∂
−=

∂

∂
i

t

txc

x

txJ ii                                        (1) 

the Nernst-Planck flux equations written for dilute solutions: 

 








∂
∂

∂

∂
−

x

tx
txcz+

x

txc
D=txJ ii

i
iSi

),(
),(

),(
),(

φ
                            (2) 

and the Poisson equation: 

   ),(),(
),(

tx=txcz=
x

tx

i

ii ρ∑∂
∂ D

                                      (3) 

where 

 ),(
),(

),( txEε=
x

tx
ε=tx SS −

∂
∂

−
φ

D                           (4) 

Here Ji (x,t), DiS, ci(x,t) and zi denote the ionic flux, the diffusion coefficient in the solution, 

the molar concentration and the charge number of ion i, respectively. The electric potential 

is represented by φ(x,t), the electric permittivity in the solution phase by εS, the electric 

displacement vector by D(x,t), the electric charge density by ρ(x,t), and the electric field by 

E(x,t). The constants F, R and T have their usual meanings: Faraday constant, ideal gas 

constant and absolute temperature, respectively. 

 Now, the behaviour of the counter-ion inside the interfacial region of the membrane, 

extended from x=0 to x=L, i.e., for x>0, at time t is described by the law of mass 

conservation or continuity equation: 

 
t

txc

x

txJ

∂

∂
−=

∂

∂ ),(),( 11                                                  (5) 
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the Nernst-Planck flux equation written for dilute solutions: 

 








∂
∂

∂

∂
−

x

tx
txcz+

x

txc
D=txJ M

),(
),(

),(
),( 11

1
11

φ
                           (6) 

where D1M is the diffusion coefficient in the membrane phase, and the Poisson equation: 

   ),(),(
),(

11 tx=Xtxcz=
x

tx
ρ−

∂
∂ D

                                      (7) 

where 

 ),(
),(

),( txEε=
x

tx
ε=tx MM −

∂
∂

−
φ

D                           (8) 

respectively being X and εM, the fixed-charge concentration and the dielectric permittivity 

inside the membrane. It is worth noting that we have considered an ideal fixed-charge 

membrane and the transport of the co-ion is supposed to be negligible inside the membrane. 

This is a usual experimental situation because the counter-ion transport number is usually 

close to unity, which allows us to obtain the diffusion coefficient of the counter-ion from the 

measure of the resistance or conductance of the membrane.33 This hypothesis allows us to 

simplify the computation problem by ignoring the ionic partitioning at the interface and so 

by doing negligible the changes in the cationic concentration inside the membrane with the 

bathing salt concentration, which could make difficult the choice of the initial conditions of 

the system. In addition, it must be mentioned that the total co-ion exclusion hypothesis is 

widely used in the framework of the space charge model, which considers the membrane as 

composed of an array of identical parallel charged cylindrical pores, because it leads to a 

steady-state analytical solution for the Poisson-Boltzmann equation.18 In connection with 

this later, it is so desirable to generalize the study of the formation of the electric double 
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 9

layer on the basis of the Nernst-Planck and Poisson equations to multiple dimensions, 

according to the previous studies in mixed conductors used in fuel cells,34,35 because it find 

application in nanoporous membranes or in related fluidic micro and nanochannels. 

On the other hand, the total electric current through the system, I(x,t), is the sum of 

the faradaic and displacement currents: 

  
t

tx
txJz=txI

i

ii ∂
∂

+∑
),(

),(),(
D

                                    (9a) 

and from eqs. 1-4 for the solution phase or from eqs. 5-8 for the membrane phase, one 

obtains:27,28 

 0
),(

=
t

txI

∂
∂

                                                (9b) 

i.e., it is not a function of the position, I(x,t)=I(t). Therefore, the electric current can be 

evaluated at an arbitrary point of the system such as x=-L. 

 If we consider a binary electrolyte with the cationic concentration c0 at the bulk of 

bathing solution, the Dirichlet-type outer boundary conditions for the flux equations are: 

 0

1 ),( c=tLc −                                       (10a) 

 0

2

1
2 ),( c

z

z
=tLc −−                                       (10b) 

 
1

1 ),(
z

X
=tLc                                       (10c) 

while at the interface, at x=0, it must be imposed the continuity of the fluxes of the 

permeant ionic species: 

 ),0(),0( 11 tJ=tJ +−                                       (11a) 
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 10

and the zero value of the fluxes of the impermeant ionic species: 

 0),0(2 =tJ                                       (11b) 

Now, if one considers the equilibrium state of the system, I=0, the outer boundary 

conditions for the Poisson equation can be expressed as:27,28 

 ∑ −−
−

i

ii tLJz=
td

tLd
),(

),(D
                                  (12a) 

 0),( =tLφ              (12b) 

Equation 12a is a Neumann-type boundary condition for the Poisson equation and it is 

obtained from eq. 9a for I=0. Equation 12b is the usual Dirichlet-type boundary condition 

for the Poisson equation defining the reference level for the electric potential at x=L inside 

the membrane. Now, at the interface, at x=0, it must be imposed the continuity of the 

electric displacement vector: 

 ),0(),0( t=t +−
DD                                                 (13) 

It must be noted that we impose the continuity of the electric displacement vector instead of 

the electric field, as it has been done in other previous papers,5,6 because we intend to 

include the dielectric mismatch between the solution and membrane phases. 

 On the other hand, an initial state must be specified in order to study the time 

evolution of the system. The initial conditions for the ionic concentrations in the diffusion 

boundary layer, from x=-L to x=0-, are: 

 0

1 )0,( c=txc =                                       (14a) 

 0

2

1
2 )0,( c

z

z
=txc −=                                       (14b) 

and the initial condition for the counter-ion concentration inside the membrane is: 
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1

1 )0,(
z

X
=txc =                                       (14c) 

while the initial condition for the electric potential in the complete system, from x=-L to 

x=L, is: 

 0)0,( =tx =φ                                       (14d) 

 Finally, the surface electric charge in the diffuse layer corresponding to the solution 

phase, σ, is: 

 ),(),0(),()(
0

tLt=dxtx=t
L

−−∫− DDρσ                       (15a) 

while that in the membrane phase, σM, is: 

 ),0(),(),()(
0

ttL=dxtx=t
L

M DD −∫ ρσ                       (15b) 

Now, if we chose the length L in such a way that when the equilibrium steady-state of the 

system is reached, the electric displacement vectors at the boundaries of the system are zero: 

 0),(),( ==− tLtL DD                                   (16a) 

one obtains the following relation: 

 )(),0()( tt=tM σσ −=− D                                   (16b) 

 

3. DYNAMICS OF THE INTERFACIAL ELECTRIC POTENTIAL AT THE 

SHORTEST TIMES 

 

 At the shortest times, the membrane system potential, φM(t)=φ(-L,t), and the surface 
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 12

electric charge density in the diffuse double layer at the solution, σ(t), can be theoretically 

estimated by considering the ionic transport controlled by semi-infinite diffusion 

processes.36 Since the linear diffusion partial differential equation in the solution phase 

(x<0) is: 

 
2

1

2

1
1 ),(),(

x

txc
D

t

txc
S ∂

∂
=

∂

∂
                                           (17a) 

and that in the membrane phase (x>0) phase is: 

 
2

1

2

1
1 ),(),(

x

txc
D

t

txc
M ∂

∂
=

∂

∂
                                          (17b) 

by taking the Laplace transform, one obtains: 

 
2

1

2

1

0

1
xd

cd
DccS S=−                                                (18a) 

 
2

2

1

1

1
xd

cd
D

z

X
cS M=−                                                (18b) 

These equations must be solved hold to the following boundary conditions: 

 
S

c
xc

0

1 )( =∞−→                                                   (19a) 

 
Sz

X
xc

1

1 )( =∞→                                                    (19b) 

 )0()0( 11

+− === xcxc                                               (19c) 

 
+− ==

=
0

1
1

0

1
1

x

M

x

S
xd

cd
D

xd

cd
D                                          (19d) 

In this way, one obtains the following equation in the solution phase (x<0): 
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S

c

D

S
x

S

c
z

X

c
S

0

1

0

1
1 exp +










−

=
α

                                        (20a) 

and the following other in the membrane phase (x>0): 

 ( )
Sz

X

D

S
x

S

c
z

X

c
M 11

0

1
1 exp1 +








−

−
−=

α
α                                 (20b) 

where: 

 
M

MS

D

DD
=

1

11 +
α                                          (21) 

Now, the Laplace transform of the electric charge density can be written in the solution 

phase as: 

 








−
=








−=

SD

S
x

S

czX

S

c
cz

1

0

1

0

11 exp
α

ρ                              (22a) 

and that in the membrane phase is: 

 ( ) 









−

−
−=−=

MD

S
x

S

czX

S

X
cz

1

0

1
11 exp1

α
αρ                        (22b) 

In this way, the Laplace transform of the electric displacement vector in the solution phase 

is: 

 








−
== ∫ ∞−

S

S
x

D

S
x

S

D

S

czX
dx

1

1

0

1 exp
α

ρD                           (23a) 

and that in the membrane phase is: 
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=−= ∫

∞

M

S

x D

S
x

S

D

S

czX
dx

1

1

0

1 exp
α

ρD                        (23a) 

and the Laplace transform of the surface charge density can be written as: 

 
2/3

0

1

2

1
)0(

S

czX
x

−
=== γσ D                                          (24) 

where: 

 
MS

MS

DD

DD
=

11

112

+
γ                                          (25) 

Finally, by considering the Poisson equation, the Laplace transform of the electric potential 

of the system is: 

 









+

−
=+= ∫∫

∞

∞−
M

M

S

S

MS

S

DD

S

czX
dxdx

εε
γ

ε
ρ

ε
ρ

φ 11

2

0

1

0

0

2

1
                (26) 

In this way, the inverse Laplace transform can be taken in the above expressions, and the 

surface charge density is given by: 

 
π

γσ
t

czX=t )()( 0

1−                                         (27) 

while the system potential is given by: 

 ( ) t
DD

czX=t
M

M

S

S

M 









+−

εε
γ

φ 110

1
2

)(                  (28) 

 Now, it must be highlighted that for D1S=D1M and εM=εS, the above expressions are 

in good agreement with those previously derived in liquid junctions and systems with 

infinitesimal membranes.5 
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4. RESULTS AND DISCUSSION 

 

 In this paper, the results are numerically obtained by using the network simulation 

method,32 which is briefly described in Appendix B. A uni-univalent binary electrolyte, z1=1 

and z2=-1, in systems with L=20, εS=4, D1S=1, D2S=1.5, X=5, and different values of D1M, εM, 

and c0, has been considered. These values could correspond to a sodium chloride solution, 

and they are very similar to those used in previous papers, which deal with the 

electrochemical impedance of ion-exchange membrane systems.37-39 We have chosen a 1:1 

binary electrolyte for the sake of simplicity, but we use a membrane with total co-ion 

exclusion and the obtained results must be qualitatively valid in systems with asymmetric 

electrolytes. 

 First of all, it must be noted that the values of the bathing salt concentration, c0, are 

smaller than that of the fixed-charge concentration inside the membrane, X. Then, during the 

process of formation of the electric double layer at the interface, the electric charge density 

in the solution diffuse layer is positive and it arises from the accumulation of cations at the 

interfacial region. Conversely, the electric charge in the membrane diffuse layer is negative 

and it is due to the depletion of counter-ions at the interface. In this way, the electric 

potential is positive at any time. Moreover, according to the Gouy-Chapman theory for the 

electric double layer,36 the steady-state surface electric charge in the solution phase must be 

independent of the diffusion coefficients but it must be a function of the dielectric 

permittivity. However, the steady-state system electric potential obeys the Donnan equation 

and it must be independent of the values of the dielectric constants and the diffusion 

coefficients. 
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 Figures 1 and 2 respectively show the time evolution of the interfacial electric 

potential, φM(t)=φ(-L,t), and the surface electric charge in the solution diffuse layer, σ(t) in a 

system with εM=4, c0=0.5, and different values of the diffusion coefficient of the cation in 

the membrane, namely, D1M=1, 0.1, and 0.01. In these figures, it is observed that both the 

membrane potential and the surface charge density transitorily increase from the zero initial 

value to reach a steady-state value. Since the surface charge density corresponds to the value 

of the electric displacement vector at the position of the interface at x=0 (Eq. 16b), it 

represents the maximum value of the electric displacement vector along the system. In 

Figures 1 and 2, the approximate analytical expressions at short times for the interfacial 

potential given by eq. 28 and the surface charge density given by eq. 27 have also been 

represented by means of dotted lines and they are in excellent agreement with the numerical 

results. In these figures, it can be seen that the steady-state values of the electric potential 

and the surface electric charge are not a function of the diffusion coefficients, in accord with 

the Gouy-Chapman theory for the electric double layer. However, in the cited figures it is 

clearly observed that the time that it is needed to reach the steady-state value increases as the 

cation diffusion coefficient in the membrane, D1M, decreases. 

 Figures 3 and 4 respectively show the time evolution of the interfacial potential, 

φM(t)=φ(-L,t), and the surface electric charge density in the diffuse double layers, σ(t), in 

systems with D1M=0.1, c0=0.5, and different values of εM, namely, εM=4, 2, and 1. These 

values of εM respectively correspond to relative dielectric constants in the membrane of 

values 80, 40 and 20. In these figures, the approximate analytical expressions at short times 

for the membrane potential and the surface charge density have also been represented and 

they are in excellent agreement with the numerical results. In Figure 3 it is observed that the 
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electric potential increases from the zero initial value to the steady-state value, which is not 

a function of the electric permittivity. However, in Figure 4 it can be seen that the surface 

charge density increase from the zero initial value to a steady-state value, which increases as 

εM decreases. Moreover, in this figures, it is observed that the time that is needed to reach 

the steady-state values is almost independent of the values of the dielectric constants. 

 Figure 5 shows the steady-state values of the interfacial potential, φSS=φ(x=-L,t→∞), 

and the electric potential difference at the right diffuse double layer, φR=φ(x=0,t→∞), in a 

system with D1M=0.1 and different values of εM, namely, εM=4, 2 and 1, as a function of the 

bathing electrolyte concentration, c0. In a similar way, Figure 6 shows the steady-state value 

of the surface charge density, σSS=σ(x=0,t→∞), as a function of the bathing electrolyte 

concentration, c0. 

 The numerical results obtained for the steady-state value of the system electric 

potential exactly agree with those obtained from the Donnan equilibrium relation: 

 







0

11

ln
1

cz

X

z
=SSφ                                         (29) 

and so it is not a function of the dielectric constant. The obtained results for the surface 

electric charge density and the electric potential can be interpreted from the Gouy-Chapman 

theory for the electrical double layer. If we denote by φL the electric potential difference at 

the diffuse double layer in the solution phase, the following relation is obeyed: 

 RLSS = φφφ +                                         (30) 

the surface charge density at the left interface can be written as: 
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while that at the right interface is: 

 ( ) 







+−− RRMM

z
z

z
X= φφεσ

1

1

1

2 1
exp

1
2                (31b) 

Now, since the absolute value of the surface charge densities must be identical at the two 

diffuse double layers, by equating the two above expressions, it is possible to numerically 

find the values of φR, and next to find the values of σ by substituting into one of the above 

equations. Table 1 shows the values of φSS obtained from eq. 29 and the numerical results 

obtained for φR and σ, by using the software Mathematica®, in systems with z1=1, z2=-1, 

εS=4, X=5, and different values of εM, and c0. The results obtained from our simulations are 

then in excellent agreement with the predicted results in accord with this theory. 

 In Figure 5, it can be seen at the left of the plot that the slope of the electric potential 

difference at the right diffuse double layer increases as the electric permittivity of the 

membrane decreases for the highest values of c0. This behaviour can be justified by 

considering the Debye-Hückel approximation to the Gouy-Chapman theory, which can be 

considered valid for the smallest values of the interfacial potential differences (φL<<1 and 

φR<<1) and thus for ionic concentrations close to the fixed-charge of the membrane,18 

c0≈(X/z1). In such case, the surface charge density in the solution phase can be expressed as: 

 SLHC czzz= εφσ 0

211 )( −                            (32a) 

while that in the membrane phase is: 
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 MRMHC Xz= εφσ 1−                                       (32b) 

In this way, by equating the absolute value of the two above expressions and taking into 

account eq. 30, it follows: 

 

S

M

SS
R

czz

X
=

ε
ε

φ
φ

0

21 )(
1

−
+

                           (32c) 

in accord with the results previously obtained by Manzanares et al.40 Here, it can be deduced 

that, for a given cationic concentration, a decreasing in εM leads to an increasing in the 

interfacial potential φR, as it is observed in Fig. 5. Now, the surface electric charge is: 

 

M

S

SSS

HC

X

czz

czzz
=

ε
ε

εφ
σ

0

21

0

211

)(
1

)(

−
+

−
                           (32d) 

and a decreasing in εM leads to an increasing in the denominator of this expression and then 

to a decreasing in the surface electric charge, as it is also observed in Figure 6. 

 On the other hand, in Figures 5 and 6 it can be appreciated that neither the potential 

difference at the membrane phase nor the surface electric charge are a function of the ionic 

concentrations for the highest values of the ionic concentrations occurring at the right of the 

plots, this situation corresponding to a highly charged membrane. Now, if we consider 

c0<<(X/z1), equation 31a leads to: 

 ( )R
S

LC z
z

X
= φ

ε
σ 1

1

2 exp2 −                            (33a) 

and by equalling to eq. 31b one obtains the following relation: 

Page 19 of 51 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 20

 ( ) ( ) 







+−−− RRMRS

z
z

z
=z

z
φφεφε

1

1

1

1

1

1
exp

1
exp

1
               (33b) 

and so: 

 11
1 −

− −
R

z

M

MS z=e R φ
ε
εε φ                            (33c) 

In these equations the bathing cationic concentration, c0, does not appear, and it presents 

analytical solution in terms of the Lambert W-function, which is named ProductLog41 in 

Mathemathica®: 

 














 −
+

e
W

z
=

M

MS
R ε

εε
φ 1

1

1

                           (33d) 

In this way, since W(0)=0 and W(1/e)=0.2785 and W(3/e)=0.6035, we numerically obtain 

φR=1 for εM=4, φR=1.28 for εM=2, and φR=1.60 for εM=1. Then, it follows σLC=3.84 for εM=4, 

3.34 for εM=2, and 2.84 for εM=1. The numerical results obtained from our simulations and 

shown in Figs. 5 and 6 are in excellent agreement with these theoretical results. 

 On the other hand, Figures 7-11, respectively, exhibit the profiles of the cationic 

concentration, anionic concentration, electric charge density, electric displacement, and 

electric potential at the interface of a system with c0=0.5, D1M=0.1, εM=2, and different 

times, namely, t=0.1, 1, 10 and ∞. For each variable, the profiles are fully asymmetric with 

respect to the interface at any time because of the different values of the initial 

concentrations, diffusion coefficients and dielectric constant in the solution and membrane 

phases. 

 Figure 7 shows the profile of the counter-ion concentration at the interface at times 

t=0.1, 1, 10 and ∞. In this figure, it can be seen that the initial uniform cationic 
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concentration in the regions close to the interface increases in the solution and it decreases 

in the membrane with respect to the equilibrium profiles. The total gradient of the cationic 

concentration is greater in the membrane phase than in the solution phase at any time. The 

value of the cationic concentration at the interface at x=0 at the initial instant, 

+
1c =c1(x=0,t=0+), can be obtained from eqs. 20a or 20b: 

 0
0

1 c
cX

=c −
−+

α
                                      (34a) 

while the steady-state value, c1SS=c1(x=0,t=→∞), can be obtained by using the Boltzmann 

equation42 with the data in Table 1: 

 ( )RSS zX=c φ11 exp −                                       (34b) 

Then, in our system one obtains +
1c =1.581 and c1SS=1.808, this small difference being 

appreciable in Fig. 7. In the steady-state of the system, the cationic concentration profile is 

uniform and equal to the initial profile approximately for x<-8 in the solution and for x>4 in 

the membrane. Moreover, in Fig. 7 it is appreciated that the values of the cationic 

concentrations at t=10 are higher than those at the steady-state in the solution region close to 

the interface. This behaviour has not been observed in the membrane phase and it can be 

easily explained as follows. Once the contact has been established at t=0 between the 

membrane and the solution, the counter-ions diffuse from the membrane to the solution at 

the interfacial region due to the difference in concentration. Then, an excess of positive 

electric charge with respect to the initial state appears at the solution diffuse layer and thus 

an electric field is generated at the interface. This electric field moves the co-ions from the 

interface to the bulk solution because the membrane is fully impermeable to this kind of 
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ions, and it causes not only a depletion of co-ions at the interfacial region of the solution but 

also a weakening of that electric field. 

 Figure 8 shows the profile of the co-ion concentration at the solution diffuse layer at 

times t=0.1, 1, 10 and ∞. This profile is nearly uniform throughout the solution at the 

shortest times. Thus, these results confirm that the ionic transport is controlled by the 

diffusion of the counter-ion at the shortest times after to establish the contact between the 

solution and the membrane. As time increases, the values of the co-ion concentration 

decrease in the region close at the interface with respect to the initial values. In the steady-

state of the system, the co-ion maintains the initial uniform profile in the region x<-8. 

However, it is observed in Fig. 8 that the values of the co-ion concentration at intermediate 

times are higher than those in the initial state in a small region that is moving away from the 

interface as time increases. This behaviour is due to the membrane completely blocks the 

pass of co-ions and this kind of ions moves into the solution bulk, as it has been explained 

above. The value of the anionic concentration at the inner boundary of the solution at the 

initial instant is c0, while the steady-state value, c2SS=c2(x=0,t=→∞), can be obtained by 

using the Boltzmann equation42 with the data in Table 1: 

 ( )
LSS zc=c φ2

0

2 exp                                         (35) 

Since from Table 1 it follows of φL=1.286 in our system one obtains c2SS=0.138, which is in 

excellent agreement with the numerical results. 

Figure 9 shows the profiles of the electric charge density at the interfacial region at 

times t=0.1, 1, 10 and ∞. This figure illustrates the time evolution of the structure of the 

electric double layer at the solution-membrane interface. The membrane diffuse layer is 

thinner than the solution one at any time because of the different values of the electric 
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permittivity. In contrast, the absolute value of the electric charge density at the interface is 

higher in the membrane diffuse layer than in the solution one. In this figure, it can be seen 

that the electric charge density profile monotonously expands over time, despite of the 

anomalous behaviour of the ionic concentrations. In the steady-state, the system keeps 

electrical neutrality for x<-8 in the solution and for x>4 in the membrane. At the initial 

instant, the value of the charge density at the inner boundary of the solution can be obtained 

from eq. 22a and it gives: 

 0

211

0

1 czcz
czX

=S +=
− ++

α
ρ                            (36a) 

while that at the steady-state is: 

 ( ) ( )
SSSSLLSS czczzczzcz 22112

0

21

0

1 expexp +=+−= φφρ           (36b) 

and in our system it follows +
Sρ =1.081 and ρSS=1.671. The electric charge density at the 

inner boundary of the membrane is obtained from eq. 22b and it gives: 

 
α

αρ
0

1)1(
czX

=M

−
−+                                       (37a) 

while that at the steady-state is: 

 ( ) XzX RMS −−= φρ 1exp                            (37b) 

and in our system one obtains +
Mρ =-3.419 and ρMS=-3.192. All these results related with 

the electric charge density are in excellent agreement with the numerical results. It is 

worth noting that in the limit of low salt concentration with respect the membrane fixed-

charge concentration, eq. 33d allows us to easily obtain the steady-state value of the 

electric potential at the interface and thus those of the ionic concentrations and the electric 
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charge density by using the Boltzmann equation. 

Figures 10 and 11 respectively show the profiles of the electric displacement vector 

and the electric potential at times t=0.1, 1, 10 and ∞. In the steady-state of the system, the 

maximum value of the electric displacement at x=0 and the value of the membrane potential 

at x=-L agree with those shown in Table 1. These figures show typical profiles for the 

displacement electric and the electric potential in free liquid junctions. In accord with the 

Poisson equation, the slopes of the electric displacement in the solution and membrane 

phases have the same sign at any time: positive in the solution and negative in the 

membrane. In the steady-state, the electric displacement is zero and the electric potential 

constant for x<-8 in the solution and for x>4 in the membrane. As a characteristic behaviour 

in ion-exchange membrane systems, the electric potential experiences dramatic changes 

with the time in comparison with those of the ionic concentrations and the electric charge 

density. 

 

5. CONCLUSIONS 

 

An original study on the basis of the Nernst-Planck and Poisson equations of the 

formation of the electric double layer at the interface defined by a binary electrolyte solution 

and an ion-exchange membrane with total co-ion exclusion, including different values of the 

counter-ion diffusion coefficient and the dielectric constant in the solution and membrane 

phases, has been presented. 

The role played by the counter-ion diffusion coefficient and the dielectric constant in 

an ion-exchange membrane on the time evolution at the shortest times of the interfacial 
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electric potential and the surface electric charge, as well as and the transition to the steady-

state, has been established during the process of the formation of the electric double layer. It 

has been obtained that the temporal evolution of the interfacial electric potential and the 

surface electric charge at the shortest times can be appropriately described by the analytical 

expressions derived by considering the Poisson equation with a simple counter-ion diffusion 

process. It has been also shown that the theoretical model with total co-ion exclusion 

provides an analytical solution for the steady-state electric potential at the ion exchange 

membrane-solution interface based on the Lambert W-function in the limit of low bathing 

ionic concentration with respect to the membrane fixed-charge concentration, which allows 

us to easily obtain the steady-state values of the surface electric charge, the ionic 

concentrations and the electric charge density at the interface. 
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APPENDIX A 

 

 In this work, the study is presented by using dimensionless variables. They are 

obtained by dividing the variable by the following scaling factors: 

- Molar concentration and fixed-charge concentration (mol m-3): 
ac  

- Diffusion coefficient (m2 s-1): 
aD  

- Position and length (m): λ  

- Time (s): 
aD

2λ
 

- Ionic flux (mol m-2 s-1): 
λ

aa cD
 

- Electric potential (V): 
F

TR
 

- Electric field (V m-1): 
λF

TR
 

- Electric charge density (C m-3): 
acF  

- Electric displacement and surface electric charge (C m-2): λacF  

- Electric permittivity (C V-1 m-1): 
TR

cF a

22 λ
 

- Electric current (A m-2): 
λ

aa cDF
 

Here, the constants F, R and T have their usual meanings: Faraday constant (C mol-1), ideal 

gas constant (J K-1 mol-1) and absolute temperature (K), respectively. The parameters λ, Da 

and ca are scaling factors with the dimensions of length, diffusion coefficient and molar 

concentration, respectively. These three variables are chosen as characteristic values of the 
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system studied. In particular, the length λ is related to the Debye length in the system and it 

is chosen as: 

a

M

cF

TR
2

0

* εε
λ =  

where *

Mε  is the minimum value of the membrane relative dielectric constant and ε0 the 

electric permittivity of the vacuum. The reader must note that the Debye length in a phase of 

a system is directly proportional to the square root of the electric permittivity of the medium. 

Since the dielectric constant of a membrane is similar or smaller than that of the solution, 

the Debye length in the membrane is the smallest length in the system and it is used as the 

scaling length. Using typical values of the diffusion coefficient and the ionic concentration 

in the solutions such 10-9 m2/s and 0.05 M one obtains Da=10-9 m2/s and ca=100 mM. Then, 

for *

Mε =20, the normalization length of the system, λ, is approximately 3 nm. Thus, 1 unit of 

time, electric potential, surface electric charge, and capacitance is, respectively, 12 ns, 25 

mV, 0.66 µC/cm2, and 0.1 mF/cm2. 
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APPENDIX B 

 

The network simulation method32 basically consists in modelling a physical or 

chemical process by means of a graphical representation analogous to circuit electrical 

diagrams, which is analysed by means of an electric circuit simulation program. Highly 

developed, commercially available software for circuit analysis (PSpice from Cadence 

Design Systems) can thus be employed to obtain the dynamic behaviour of a system, 

without having to deal with the solution of the governing differential equations.43 This 

method has previously demonstrated to be useful to study non-linear transport processes on 

the basis of the Nernst-Planck and Poisson equations in electrochemical cells and membrane 

systems and it is of a similar nature to those successfully used in other electrochemical 

systems dealing with mixed conductors44-45 or complex kinetic schemes.46 

 The network model is obtained from a similar viewpoint to that of a finite difference 

scheme by dividing the physical region of interest, which we consider to have a unit cross-

sectional area, into N volume elements or compartments of width δk (k=1, ..., N), small 

enough for the spatial variations of the parameters within each compartment to be 

negligible.43 The network model for the diffusion-migration process of m ionic species in 

a compartment of width δk, which is extended from xk-δk/2 to xk+δk/2, is shown in Figure 

B1, and a complete explanation of the general procedure to obtain it can be found 

elsewhere.28 In this figure, the network elements are as follows: Rdik is the resistor 

representing the diffusion of ion i in the compartment k; GJeik(±) is the voltage-controlled 

current source modelling the electrical contribution to the ionic flux, minus and plus signs 

meaning the flux entering and leaving the compartment k, respectively; Cdk is the capacitor 
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representing the nonstationary effects of the electrodiffusion process in the compartment k; 

RCk is the resistor modelling the constitutive equation of the medium; and GJCk is the 

voltage-controlled current source modelling the electric charge stores in the compartment k. 

The relation between those network elements and the parameters of the system is given by: 

 
ip

k
dik

D
 = R
2

δ
                                                           (B1) 

                  m  ,1 = i  ,

xx

 xczD  = GJ
k

k
kk

k
kiiipeik ,...

2/

)
2

()(

)
2

()(
δ

δ
φφδ ±−

±±±                  (B2) 

 kdk  = C δ                                                               (B3) 

 
p

k
Ck  = R

ε
δ
2

                                                            (B4) 

 )( kpkCk x = GJ ρδ−                                                      (B5) 

where Dip and εp stand for the diffusion coefficients of ion i and the dielectric constant in the 

solution (p=S) and membrane (p=M) phases, respectively, while the electric charge density, 

ρp, must be evaluated from eq. 3 in the compartments belonging to the solution phase, 

ρS(xk)=z1c1(xk)+z2c2(xk), and from eq. 7 in those lying in the membrane phase, 

ρM(xk)=z1c1(xk)-X. 

 For network modelling purposes, a number N of network elements like those in 

Figure B1 (k=1,...,N) with the appropriate number of branches, values of the diffusion 

coefficients and the dielectric constant, and expressions of the electric charge density must 

be connected in series to form a network model for the entire physical region undergoing 

electrodiffusion processes. 

 Figure B2 shows the network model for the system constituted by the interfacial 
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region between a solution and an ion-exchange membrane with total co-ion exclusion. In 

this figure, the six-terminal box (S) is constituted by the series combination of N1 elements 

such as that shown in Figure B1 with m=2 and the circuit elements corresponding to the 

solution phase, while the four-terminals one (M) is formed by the combination in series of 

N-N1 elements such as that in Figure B1 with m=1 and the circuit elements corresponding to 

the membrane (M). In the network model of Figure B2, the concentrations of the ionic 

species in the bathing solution and in the bulk of the membrane, which are given by 

boundary conditions shown in eqs. 10a-c, are represented by independent voltage sources of 

values c1L=c0, c2L=-z1c
0/z2, and c1R=X/z1. In this network, the branches modelling the 

counter-ion flux and the electric displacement in the solution and membrane phases are 

joined at the interface according to the boundary conditions given by eq. 11a and 13, 

respectively, while the branch modeling the co-ion flux in the solution must be open-

circuited at the interface, because the membrane presents total co-ion exclusion according to 

eq. 11b. On the other hand, the equilibrium state of the system is introduced in the network 

of Fig. B2 from a controlled current source, GI, which takes the value of the electric 

displacement obtained from integration of the faradaic current with minus sign at the 

bathing solution such as given by eq. 12a, while the reference level for the electric potential 

given by eq. 12b is incorporated by short-circuiting the branch modelling the electric 

displacement at the bulk of the membrane. Finally, the initial conditions for the ionic 

concentrations and the electric potential are introduced as the initial voltages at the 

appropriate nodes of the network with the values given by eqs. 14a-d. 

 The spatial grid (N and δk) chosen considers the presence of the membrane-solution 

interface and both the solution and membrane phases. This spatial grid is symmetrical about 
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the solution-membrane interface (N1=N/2). In the solution phase we have chosen 900 

compartments uniformly distributed from x=-L to x=-10, 600 compartments from x=-10 to 

x=-4, 600 compartments from x=-4 to x=-1, and 400 compartments from x=-1 to x=0. In this 

way, N=5000 compartments have been used: 2500 for each phase. 

Simulation of the network model shown in Figure B2 with the appropriate values for 

the parameters of the system into the PSpice program under transient conditions, allows us 

to study the process of the formation of the electric double layer at the interface between an 

ion-exchange membrane and a solution, whatever the parameters of the system and the 

experimental conditions may be. 
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Tables 

 

Table 1. Numerical results for φSS, φR and σ, in systems with z1=1, z2=-1, εS=4, X=5, and 

different values of εM, and c0. 

 

 εεεεM=4 εεεεM=2 εεεεM=1 

c
0 φSS φR σ φR σ φR σ 

0.01 6.215 1.000 3.850 1.284 3.350 1.612 2.848 

0.05 4.605 0.9809 3.773 1.249 3.273 1.556 2.770 

0.1 3.912 0.9611 3.707 1.219 3.207 1.510 2.729 

0.5 2.303 0.8228 3.237 1.017 2.752 1.221 2.271 

1 1.609 0.6789 2.728 0.8216 2.286 0.9638 1.858 

2 0.9163 0.4512 1.877 0.5322 1.546 0.6086 1.236 

4 0.2231 0.1258 0.5510 0.1444 0.4458 0.1611 0.3509 
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Figure Captions 

 

Fig. 1. Time evolution of the interfacial electric in a system with z1=1, z2=-1, L=20, εS=4, 

D1S=1, D2S=1.5, X=5, εM=4, c0=0.5, and different values of D1M, namely, D1M=1, 0.1, and 

0.01. The arrow indicates decreasing values of D1M. 

 

Fig. 2. Time evolution of the surface electric charge in the solution diffuse layer under the 

same conditions given in Fig. 1. 

 

Fig. 3. Time evolution of the interfacial potential in systems with z1=1, z2=-1, L=20, εS=4, 

D1S=1, D2S=1.5, D1M=0.1, X=5, εM=4, c0=0.5, and different values of εM, namely, εM=4, 2, 

and 1. The arrow indicates decreasing values of εM. 

 

Fig. 4. Time evolution of the surface electric charge in the solution diffuse layer under the 

same conditions given in Fig. 3. 

 

Fig. 5. Evolution of the steady-state values of the interfacial potential, φSS, and the electric 

potential difference at the membrane diffuse double layer, φR, with the bathing electrolyte 

concentration, c0, in systems with z1=1, z2=-1, L=20, εS=4, D1S=1, D2S=1.5, D1M=0.1, X=5, 

and different values of εM, namely, εM=4, 2, and 1. The arrow indicates decreasing values of 

εM. 
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Fig. 6. Evolution of the steady-state value of the surface charge density, σSS, with the 

bathing electrolyte concentration, c0, under the same conditions given in Fig. 5. 

 

Fig. 7. Profiles of the cationic concentration at the interfacial region of a system with z1=1, 

z2=-1, L=20, εS=4, D1S=1, D2S=1.5, D1M=0.1, X=5, and εM=2, for different times. 

 

Fig. 8. Profiles of the anionic concentration under the same conditions given in Fig. 7. 

 

Fig. 9. Profiles of the electric charge density under the same conditions given in Fig. 7. 

 

Fig. 10. Profiles of the electric displacement under the same conditions given in Fig. 7. 

 

Fig. 11. Profiles of the electric potential under the same conditions given in Fig. 7. 

 

Fig. B1. Network model for the electrodiffusion of m ionic species in a volume element. 

 

Fig. B2. Network model for the interfacial region between ion-exchange membrane and 

solution. The six and four-terminals boxes are obtained by the combination in series of 

structures such as those shown in Fig. B1. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. B1 
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Fig. B2 
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