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Abstract

Dynamic Nuclear Polarization (DNP) experiments on solid dielectrics can be de-

scribed in terms of the Solid E�ect (SE) and Cross E�ect (CE) mechanisms. These

mechanisms are best understood by following the spin dynamics in electron-nuclear and

electron-electron-nuclear model systems, respectively. Recently it was shown that the

frequency swept DNP enhancement pro�les can be reconstructed by combining basic

SE and CE DNP spectra. However, this analysis did not take into account the role

of the electron spectral di�usion (eSD), which can result in a dramatic loss of electron

polarization along the EPR line.

In this paper we extend the analysis of DNP spectra by including the in�uence of

the eSD process on the enhancements. We show for an electron-electron-nuclear model

system that the change in nuclear polarization can be caused by direct MW irradiation

on the CE electron transitions, resulting in a direct CE (dCE) enhancement, or by the

in�uence of the eSD process on the spin system, resulting in nuclear enhancements via a

process we term the indirect CE (iCE). We next derive the dependence of the basic SE,

dCE, and iCE DNP spectra on the electron polarization distribution along the EPR line

and on the MW irradiation frequency. The electron polarization can be obtained from

ELDOR experiments, using a recent model which describes their temporal evolution

in real samples. Finally, measured DNP and ELDOR spectra, performed on a 40 mM

TEMPOL sample at 10-40 K, are analyzed. It is shown that the iCE is the major

mechanism responsible for the bulk nuclear enhancement at all temperatures.
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1 Introduction

During Dynamic Nuclear Polarization (DNP) the high electron Boltzmann polarization is

transferred to neighboring nuclei via microwave (MW) irradiation, resulting in dramatic en-

hancements of NMR and MRI signals. Although known for more than 60 years[1, 2, 3], DNP

has recently regained interest due to new technological and methodological developments.

These has made it possible to enhance a large variety of samples, with the experiments per-

formed using high �eld solid state magic angle spinning (MAS) NMR[4, 5, 6, 7, 8, 9, 10], or

high resolution NMR and MRI using dissolution DNP[11]. This development has also led to

a renewed interest in the theory of DNP.

The DNP mechanism in non-conducting solid samples can be explained by relying on the

spin dynamics of microscopic spin systems which result in the Solid E�ect[3] (SE) and Cross

E�ect[12, 13, 14, 15, 16] (CE) DNP mechanisms. The SE-DNP mechanism relies on MW

irradiation at electron-nuclear zero quantum (ZQ) and double quantum (DQ) �forbidden�

transition frequencies for its polarization transfer from the electrons to coupled nuclei. The

CE mechanism relies on the presence of a nucleus coupled to a pair of interacting electrons

with resonance frequencies separated by the nuclear Larmor frequency (the so called CE

condition) resulting in an energy level degeneracy between electron-electron-nuclear spin

states. Early on, it was understood that the NMR signals are enhanced by an electron-

electron-nuclear cross relaxation mechanism, induced by spin-spin interactions and energy

level degeneracies, in the presence of an electron polarization gradient[16, 17, 18] generated

by a small hyper�ne perturbation of the system[17]. Later, this description was extended to

involve full state mixing at the CE condition[19, 20], in order to explain the CE mechanism

in terms of a MW driven polarization transfer in static samples[21, 22] - in analogy to the SE

mechanism but with higher MW irradiation e�ciency. In addition, under MAS conditions the

CE mechanism was recently explained in terms of fast passages through the CE conditions

within each rotor period[23, 24], where electron polarization gradients are transferred to the

nuclei.

The shapes of the DNP spectra, i.e. the NMR enhancements as a function of MW

frequency, have been used to study and di�erenciate between the DNP mechanisms[15, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35].Recently, it was shown that the intensity and shape of cw

DNP spectra can be analyzed in terms of linear combinations of basic SE DNP and CE DNP

line-shapes[36, 37, 38] derived from a quantum mechanical (QM) based model calculations[39,

22]. In particular, recorded changes in the DNP line-shapes with temperature were attributed

to changes in the relative contributions of these DNP mechanism. While doing this it was

assumed that the DNP enhancement e�ciency at each MW frequency depends linearly
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on the fraction of electrons taking part in the enhancement mechanisms. However, while

electron depolarization due to direct MW irradiation was considered in these models, the

redistribution of polarization due to the electron spectral di�usion (eSD) mechanism[40, 41,

42, 43, 44] was not taken into account. Very recently, Siaw et al. [45] explained changes

in DNP enhancement e�ciencies using changes in the electron depolarization generated by

direct MW irradiation and by the eSD mechanism. However this did not involve actual

measurements of the electron polarization distribution.

Direct measurements of the electron depolarization on DNP samples by electron-electron

double resonance (ELDOR) spectroscopy[46] showed that the eSD process causes large elec-

tron depolarizations [47, 48]. Very recently a theoretical model was introduced that enables

simulations of the experimental electron polarization distributions by solving a set of coupled

rate equations for the polarizations composing the EPR line[48]. This model includes the

e�ects of the MW irradiation and spin-lattice relaxation, as well as the e�ect of the eSD

mechanism, on the electron polarizations.

In this work we reexamine the DNP mechanisms leading to the DNP spectra, while tak-

ing the eSD induced electron depolarization into account. We again base our descriptions

on the QM derived spin dynamics of model systems[22] and reformulate how the spin state

degeneracies of a �CE electron pair� at a CE condition result in CE DNP enhancements. In

particular, it is shown analytically and based on simulations that these enhancements are a

result of a MW irradiation that directly saturates one of the transitions of the CE electron

pair (dCE DNP) or that saturates the transitions of other electrons which then indirectly

depolarize the CE electron pair (iCE DNP) via eSD. Next, analytic expressions are derived

to correlate the electron polarization distribution in a real sample with the line-shapes of

the basic SE , dCE, and iCE DNP spectra. Finally, examples of experimental DNP line-

shapes, obtained from a sample of 40 mM TEMPOL at 10, 20 and 40 K, are shown. They

are analyzed by calculating the line-shapes of the di�erent mechanisms, taking into account

electron polarization distributions obtained by �tting simulated ELDOR spectra with mea-

sured ones. Here we show that in this sample the enhancement originates mainly from the

iCE-DNP mechanism and the changes in the DNP spectra as a function of temperature can

be attributed to the change in the electron polarization pro�les.

3
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2 Experiments and Simulations

2.1 Experiments

All EPR and NMR signals were collected in a 3.34 T magnet using our combined EPR (op-

erating around 95 GHz) and NMR (at 144 MHz for protons) spectrometer described in Ref.

[49]. Combined ELDOR and DNP experiments (ELDOR/DNP) and spin-lattice relaxation

measurements were conducted on a sample that was prepared by dissolving 40 mM TEMPOL

radical in a 50:50 v% mixture of dimethyl sulfoxide (DMSO) and H2O. 25 µl of this solution

was placed in a Te�on sample holder that was inserted into the NMR coil located between

the MW horn and re�ection plate of the hybrid EPR/NMR spectrometer. TEMPOL and

DMSO were purchased from Sigma-Aldrich. MW excitation and detection were performed

using a home-built bridge with two MW channels, controlled by the Specman4EPR software

package[50]. RF excitation and detection were controlled by an APOLLO spectrometer from

Tecmag inc. The APOLLO is externally triggered by a logic pulse generated by the EPR

spectrometer. The probe-head and sample are located inside a Janis Research inc. liquid

helium �ow cryostat, and in the present study experiments were performed at 10, 20, and

40 K.

The pulse sequence used during the ELDOR/DNP experiments is shown schematically

in Fig. 1. It starts with an RF pulse train on the 1H nuclei, resulting in their saturation.

Next, a cw-MW excitation pulse at a variable frequency ωexcite and a magnitude of ω1/2π '
600 kHz was applied for a duration of texcite, using one of the two EPR channels. This

was followed by the acquisition of EPR and NMR signals using a {π
2
− τ − π

2
} echo pulse

sequences. For the EPR acquisition 450 ns MW pulses were applied and echo signals were

detected at a frequency ωdetect, using the second MW channel. The intensity of the EPR

and NMR signals were determined by integration over the echo signals. Thermal equilibrium

NMR signals were acquired in the same manner but without MW irradiation and the DNP

enhancements were calculated by the ratio between the signals acquired with and without

MW irradiation.

The electron and nuclear relaxation times, T1e and T1n, were determined by analyzing the

recovery of the echo signals after signal saturation by a long cw MW pulse (using texcite > T1e)

and a RF pulse train, respectively.

2.2 Simulations

Three computer programs were used in this work: one for evaluating the spin dynamics of

small spin systems, composed of spin- 1
2
electrons and 1H nuclei, by following the temporal

4
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Figure 1: A schematic representation of the ELDOR/DNP sequence used during the exper-
iments. This includes a pulse train saturating the 1H nuclei, followed by an MW irradiation
at a frequency ωexcite for a duration texcite, and the detection of an EPR echo at a frequency
ωdetect and an NMR echo at ω1H generated by an RF pulse. This was followed by a delay of
about 5T1n.

behavior of the electron and nuclear polarizations. This was done by solving the Liouville

- von Neumann equation for the spin density operator in Liouville space, or in a reduced

population space[39, 51, 22]. The second program was used for calculating the electron po-

larization distribution along the EPR line during ELDOR/DNP, by solving a set of coupled

rate equations for the polarization of electrons in frequency bins composing the inhomoge-

neously broadened EPR spectrum and of the nuclear polarization[48]. The third program

was used for simulating the basic DNP line-shapes of the di�erent DNP mechanisms, while

taking into account the contribution of the di�erent electron packets composing the EPR line

and their polarization. The theoretical bases of the �rst two programs will be only brie�y

discussed here, as they were already introduced earlier, and of the latter will be presented

in section 4.

2.2.1 Full and reduced Liouville space calculations for small model spin systems

To calculate the spin evolution of a model spin system during MW irradiation we must �rst

construct its spin Hamiltonian and the spin relaxation superoperator. The MW rotating

frame Hamiltonian of the systems considered here, containing interacting electrons (Sı = 1/2)

and 1H nuclei (I` = 1/2), has the same general form as in Ref. [22]:

H =
∑
ı<ı′,`

{∆ωe,ıSz,ı−ωnIz,`+Az,ı`Sz,ıIz,`+A+
ı,`Sz,ıI

+
` +A−ı`SzıI

−
` +Dıı′(3Sz,ıSz,ı′−Sı.Sı′)+ω1Sx,ı}.

(1)

This Hamiltonian includes the electron Zeeman interaction terms, ∆ωe,ı =ωe,ı−ωexcite, where
ωe,ı is the frequency of electron ı and ωexcite is the MW excitation frequency; the nuclear

Larmor frequency ωn of all nuclei; the secular and pseudo-secular hyper�ne interaction coe�-

cients Az,ı` and A
±
ı` of the electron-nuclear spin pairs ı−`; and the dipolar coupling constants

Dıı′ between the electrons ı and ı′. In addition, a MW irradiation Hamiltonian is added to

H, given by HMW = ω1

∑
ı Sx,ı, where ω1 is the irradiation intensity.

Each spin system is de�ned by a vector ρ(t), composed of all spin density matrix elements,

in Liouville space, satisfying:
d

dt
ρ(t) = (iĤ + Γ̂)ρ(t), (2)

5
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where Ĥ is the Liouvillian derived from H, and Γ̂ is the relaxation superoperator. In general,

this equation is presented in the Liouville space de�ned by the eigenstates |λk〉 of the spin
system H0 = H − ω1

∑
ı Sx,ı. In this representation it is easy to separate the longitudinal

relaxation, which a�ects only the populations of the system, and the transverse relaxation,

a�ecting only the coherences.

The relevant relaxation rates in�uencing the ρkk and ρk′k′ populations of the eigenstates

|λk〉 and |λk′〉 are de�ned by their matrix elements in Γ̂. Here we consider the basic electron

and nuclear spin-lattice relaxation rates, with a timescale of T1e and T1n respectively, and

in addition an electron-electron dipolar driven cross-relaxation rate, with a timescale of

T1D,ıı′ [52]. The latter is used as a model for the eSD process. These relaxation mechanisms

restore the system to its thermal equilibrium state, given by the Boltzmann ratios ρkk/ρk′k′ =

exp(− ωkk′~/kBT ), were ~ and kB are the Planck and Boltzmann constants, and ωkk′ is the

di�erence between the energies of the |λk〉 and |λk′〉 eigenstates. For simplicity a single spin-
spin relaxation time, T2e, was considered to take care of the decay of all relevant electron

coherences ρkk′ .

Calculations were also performed in a reduced Liouville space spanned by the populations

pk = ρkk. The interaction Liouvillian in the diagonal representation does not in�uence these

populations, and MW irradiation is represented by o� diagonal matrix elements wkk′ added

to a superoperator Ŵ composed of the spin lattice rate matrix elements of Γ̂ discussed above.

The MW rate elements wkk′ are a function of the matrix elements〈λk|HMW |λk′〉, the spin-
spin relaxation rate T 2e, and the o� resonance values (ωkk′ −ωexcite)[39, 51]. The population
vector p(t), composed of all pk populations, satis�es the equation

d

dt
p(t) = Ŵp(t). (3)

This population description of the spin systems results in the same spin evolution as the full

Liouville space calculation as long as the coherent evolution of the system can be neglected.

For example, this is the case when one of the electrons is initially saturated without residual

coherences, and the evolution of the system is solely governed by spin-lattice relaxation rates

(including T−1
1D ).

The polarizations of the nuclei and electrons can be calculated by solving eqs. 2 or 3,

and transferring their solutions ρ(t) and p(t) to the Hilbert space spin density operator ρ(t)

and evaluating

Pe,ı(t) = −zTr(Sz,ıρ(t))

Pn,`(t) = zTr(Iz,`ρ(t))
, (4)

6

Page 6 of 36Physical Chemistry Chemical Physics



where z normalizes the T → 0 polarizations to one.

In section 3.2 numerical simulations of the steady state electron and nuclear polarizations

of model systems experiencing MW irradiation will be presented.

2.2.2 Calculation of the electron polarization distribution in macroscopic sys-

tems

The electron polarization distribution along the EPR line can be evaluated using a model that

was recently introduced by Hovav et al. [48] for simulating ELDOR spectra. This theoretical

model calculates the dynamics of the polarizations of the electrons in N frequency bins that

compose the inhomogeneously broadened EPR line of the radicals. These frequency bins

have average frequencies given by ωj = ωj=1 +(j−1)∆bin, where ∆bin is the frequency width

of the bins and j = 1, ..., N . Each of the bins is associated with a fraction fj of the total

number of electrons in the system (
∑

j fj = 1), as given by the EPR line, and has an average

electron polarization Pe,j(t). The temporal evolution of these electron polarizations can then

be calculated by solving rate equations for Pe,j(t) and (for simplicity) a single bulk nuclear

polarization Pn(t). These calculations take into account: the e�ects of the MW irradiation

of strength ω1 applied at a frequency ωexcite,j′ = ωj=1 + nj′∆bin, where nj′ is an integer;

the spin-spin relaxation time T2e (which is expected to be longer than the phase memory

time of the system); the electron and nuclear spin-lattice relaxation rates T−1
1e and T−1

1n ; and

the eSD mechanism that causes polarization exchange between all Pe,j′(t) and Pe,j(t) with

exchange rates de�ned by weSD = ΛeSD

(ωj−ωj′ )
2 , where ΛeSD is a phenomenological coe�cient.

In this model the SE induced electron-to-nuclear polarization transfer is present in the form

of a MW irradiation �eld on the ZQ and DQ transitions that has an e�ective strength

ωSE1 = (A
±
/2ωn)ω1, where A

±
is a coe�cient representing the average hyper�ne interaction

between an electron and the nuclei. The parameters T2e, ΛeSD and A
±
are determined by

�tting simulated ELDOR pro�les to experimental ones. Following this procedure the electron

polarization distribution Pe(ωdetect) for a given ωexcite frequency and texcite irradiation time

can be calculated.

3 The Cross E�ect mechanism in model spin systems

In the following we will consider the CE mechanism in model spin systems, and show how

polarization is transferred from the electrons to the nuclei as a result of the CE degeneracy.

This transfer can occur when the electron transitions are directly (partially or fully) saturated

by MW irradiation[21, 22], which we term dCE, or when these transitions are not excited

by the MW �eld but are (partially) saturated indirectly via the eSD mechanism, which we
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will term iCE. In practice, in section 4 we will extend this iCE process to real systems by

integrating over the iCE DNP contributions from all electron pairs at a CE condition in this

system.

At �rst we will derive an equation expressing the relationship between the steady state

nuclear and electron polarizations in model systems at the CE condition. The accuracy of

this expression and its limitations will then be checked using numerical simulations. These

will then be extended to further investigate the iCE mechanism, in analogy to earlier studies

of the dCE mechanism in Ref. [22].

3.1 The correlation of the electron and nuclear polarizations

In this section we reexamine the value of the static DNP enhancement induced by MW

irradiation on a pair of electrons at one of its CE conditions. This is done for a simple

three-spin system composed of a pair of dipolar coupled electrons, ea and eb, with resonance

frequencies ωa ≤ ωb , and a nucleus n that is hyper�ne coupled to the electrons. This spin

system can be characterized by eight populations p(χa, χb, χn) corresponding to the eight

eigenstates |χa, χb, χn〉 with χ = α, β, and where, for simplicity, we do not change these

product state assignments despite possible state mixing due to the dipolar and hyper�ne

interactions.

To derive an expression that correlates the steady state nuclear polarization to the elec-

tron polarizations we consider an ideal case in which the SQ transitions of each electron

are equally a�ected by the MW irradiation and the relaxation mechanism. This is not an

obvious assumption, since the electron SQ transitions are split by the electron dipolar inter-

action, Dab, and the secular hyper�ne interactions, Az,a and Az,b. Thus, in the dCE case this

assumption holds when the MW equally excites the two transitions of one of the electrons,

which will be the case when ω1

√
T1e/T2e � |Dab| + |12Az| (assuming ω

2
1T1eT2e � 1). In the

iCE case we can expect the dipolar cross relaxation rates to have the same e�ect on both of

these transitions, because the spectral densities of the �uctuating dipolar interactions, which

are the source of the dipolar cross relaxation, should be the same for both transitions. When

these assumptions hold we can express the ratios between the populations of our system in

a simple manner using:

p(αa, χb, χn)

p(βa, χb, χn)
= ηa;

p(χa, αb, χn)

p(χa, βb, χn)
= ηb;

p(χa, χb, βn)

p(χa, χb, αn)
= ηn, (5)

where the three η parameters can have di�erent values. At thermal equilibrium these

η−ratios are equal to the Boltzmann ratios εa/b/n = exp(−ωa/b/n~/kBT ), and we can ex-

pect that in general εa/b ≤ ηa/b ≤ 1, where ηa/b = 1 corresponds to full saturation of electron

8
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a or b. Far removed from the CE condition and when the MW irradiation does not a�ect

the ZQ and DQ transitions, the nucleus will remain at its thermal value, ηn = εn.

Using these η values, the populations can be expressed as:

p(βa, βb, βn) = cηn ; p(βa, βb, αn) = c

p(βa, αa, βn) = cηbηn ; p(βa, αb, αn) = cηb

p(αa, βb, βn, ) = cηaηn ; p(αa, βb, αn) = cηa

p(αa, αb, βn) = cηaηbηn ; p(αa, αb, αn) = cηaηb

, (6)

where c is a normalization constant such that
∑

χ p(χa, χb, χn) = 1. The electron and nuclear

polarizations are then given (neglecting possible state mixing) by

Pa =
∑

χb,χn
p(βa, χb, χn)− p(αa, χb, χn) = (1− ηa)/(1 + ηa)

Pb =
∑

χa,χn
p(χa, βb, χn)− p(χa, αb, χn) = (1− ηb)/(1 + ηb)

Pn =
∑

χa,χb
p(χa, χb, αn)− p(χa, χb, βn) = (1− ηn)/(1 + ηn)

. (7)

When the system is at the CE condition, ωb−ωa ' ωn, the energies corresponding to the

|αa, βb, βn〉 and |βa, αb, αn〉 states are equal, and these states become strongly mixed[19, 20,

21, 22]. The MW irradiation and relaxation processes, which are the source of the deviations

of the ηa/b from εa/b, must then have the same e�ect on the populations of these mixed states,

such that:

p(αa, βb, βn) = p(βa, αb, αn). (8)

This condition sets a constraint on the populations of the overlapping DQ or ZQ and SQ

electron transitions and has therefore a strong e�ect on all populations in the system. Insert-

ing this equality into the expressions in eq. 6 results in a dependence between the η−ratios
given by

ηn = ηb/ηa, (9)

and using this together with eq. 7 gives the the dependence of Pn on Pa and Pb:

Pn =
Pb − Pa

1− Pb × Pa
. (10)

Once again, here the polarizations are de�ned as Pa/b/n → 1 for T → 0. Under the initial

assumptions this relationship holds for any pair of Pa and Pb values, including their thermal

equilibrium values: insertion of Pa = tanh(−ωa~/2kBT ) and Pb = tanh(−(ωa + ωn)~/2kBT )

into the right side of eq. 10 results in Pn = tanh(−(ωa + ωn)~/2kBT + ωa~/2kBT ) =

tanh(−ωn~/2kBT ) for all temperatures. At the high temperature limit, where Pb × Pa � 1,

9
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the polarization relation reduces to

Pn ' (Pb − Pa). (11)

Eq. 10 has the same form as presented by Hwang and Hill [16], and eq. 11 is same as

derived by Atsarkin et al.[18] and Wollan[17]. The latter two are based on a cross relaxation

rate derived from a perturbation theory approach. The use of perturbation theory for the

derivation of the CE rates [18, 17, 19, 53] is however problematic in the presence of large

state mixing, as in the CE case.

In the following the validity of eq 10 and the limits of eq. 5 will be tested using numerical

simulations for both the iCE and dCE mechanisms. The relationship between the polar-

izations given in eq. 10 will be used in section 4, when considering the DNP line-shapes in

macroscopic systems.

3.2 Numerical simulations

In order to demonstrate the validity of eq. 10 we calculated the steady state DNP polariza-

tions of a model four-spin system under MW irradiation. This system is composed of a pair

of electrons, ea and eb, and a nucleus n, with Larmor frequencies satisfying ωb − ωa ≈ ωn,

and an additional electron ec. The electrons ea and eb are dipolar coupled and n is hyper�ne

coupled to eb. Electron ec is introduced in order to allow for a reduction of the polarization

of electrons ea and eb without direct MW irradiation, namely by the T−1
1D,ac and T

−1
1D,bc rates.

These rates originate from �uctuations of the dipolar interaction between these electrons.

Since the static part of this interaction complicates the system, as shown in the SI, it is

assumed to be small enough that it can be ignored in the static Hamiltonian, while it is

still a source for the dipolar cross-relaxation. The steady state Pa(t), Pb(t), and Pn(t) values

of this system were simulated for both the iCE mechanism and dCE mechanism, and the

resulting polarizations were inserted in eq. 10 in order to verify whether they obey this

relationship. The parameters used in the simulations are summarized in Table 1 and in the

�gure caption of Figs. 2 and 3. In particular, T =5 K was chosen, resulting in thermal

electron polarization about equal to 0.42.

In the iCE case the MW irradiation was applied on resonance for electron ec (ωexcite = ωc)

and far o� resonance from ea and eb. The polarizations of the latter are then reduced

due to the action of the T−1
1D,ca and T−1

1D,cb cross relaxation rates. The simulations were

conducted based on eq. 3, and the polarizations were calculated for a variety of cross

relaxation rates. The calculated vs. simulated Pn(t) values are plotted in Fig. 2 for systems

with Dab/2π = 0.8 MHz (broad black line) and Dab/2π = 20 MHz (narrow green line). The
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Page 10 of 36Physical Chemistry Chemical Physics



calculated [Pa(t), Pb(t)] pairs obtained are plotted in the insert of the �gure. The validity of

the assumption expressed by eq. 5 was also tested, by comparing the simulated populations,

psimk , with calculated ones, pcalck . The calculated populations were obtained by the deriving

values of the η parameters from the simulated Pa/b/n values using eq. 7, and inserting these

values into eq. 6. The maximal di�erence between the simulated and calculated populations,

|(psimk − pcalck )/psimk | was about 0.5%.
For the dCE case the polarizations were calculated for di�erent ωexcite MW frequencies

close to the SQ transitions of the electrons ea and eb, and all T−1
1D cross relaxation rates

were set to zero. These simulations were performed solving eq. 2. The simulated (solid

black lines) and calculated (dotted red lines) steady state Pn values are shown in Fig. 3 for

Dab/2π = 0.8 MHz, with the calculated values obtained using eq. 10. As can be seen there

is a very good agreement between the two. In this system both dipolar satellite transitions

are about equally a�ected by the MW irradiation for any ωexcite frequency. This can be seen

from the electron polarization, drawn in gray. The validity of the assumption expressed in

eq. 5 was tested as before, resulting in a maximal error of about 1.5% (see SI). Performing

the simulation with a higher ω1 value (6 MHz), where the MW irradiation can a�ect the

polarization of both electrons simultaneously (data not shown) resulted again in a very good

agreement between the calculated and predicted Pn and pk values.

In order to show a case where the SQ transitions of the electrons are not equally a�ected

by the MW irradiation, we now consider a system with a large dipolar interaction, Dab/2π =

20 MHz. The resulting simulated and calculated steady state Pn values are plotted in Fig.

3b, showing an unexpected similarity between the two, despite the large di�erence (as high

as 20%) between the psimk and pcalck populations, as shown in the SI. Thus it seems that due

to the relaxation in the system eq. 10 is a good approximation even when the assumptions

given in eq. 5 are partially violated.

Figure 2: Calculated P calc
n vs. simulated P sim

n nuclear polarization values under the iCE
DNP. The simulation was performed on a model spin system at the CE condition using the
parameters given in table 1, with ωexcite = ωc and for T−1

1D,ac and T
−1
1D,b,c relaxation rates in

the range of about 0.02T1e to 50T1e. A Dab/2π interaction of 0.8 (broad black line) or 20
(narrow green line) MHz was used. P calc

n was calculated from eq. 10 for each choice of T−1
1D,ac

and T−1
1D,b,c, using the simulated Pa and Pb electrons polarizations, as plotted in the insert

using the same color code (in the range of 0 to 0.43).

An important aspect of the CE mechanism is the dependence of the nuclear enhancement

on the deviation from the CE condition. This was already investigated in Ref. [22] for the

dCE mechanism, and is here extended to the iCE case. This is done for the spin system

described above by varying the di�erence between the frequencies of electrons ea and eb in
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Figure 3: A comparison between the calculated (red dashed lines) and simulated (black
lines) steady state nuclear polarizations Pn(t) as a function of ωexcite, during a dCE DNP
experiment on a {e-e-n} three-spin model system. This system at its CE condition has
parameters given in table 1, with the T1D rates set to zero. The electron dipolar interaction
constant Dab/2π was set equal to (a) 0.8 or to (b) 20 MHz. Eq. 10 was used to derive Pn(t)
from the simulated steady state electron polarizations Pe,a/b(t). For clarity these electron
polarizations are added to the �gure as gray lines.

the vicinity of ωb−ωa = ωn. Simulated steady state Pn(t) values are plotted in Fig. 4 (solid

black line) as a function of (ωb−ωa−ωn), using the parameters given in Table 1. As expected,

a clear maximum, satisfying eq. 10 (gray line), appears at the CE condition. The width

of the Pn(t) pro�le around the CE condition depends on the e�ective interaction strength

between the degenerate states, with a magnitude of the order of A±bnDab/2ωn[19, 20, 22]. In

addition, the value of T1n opposing the polarization enhancement also in�uences the width

of the pro�le. To show an example of this dependence we calculated three additional Pn(t)

pro�les by reducing the original value of A±b by a factor of two, as plotted in the �gure (black

dashed line). Reduction of Dab by the same factor or the value of T1n by a factor of four

resulted in almost identical curves (not shown). Thus in all cases the maximal enhancement

is reached at the CE condition, but the decay of the iCE enhancement as a function of

(ωb − ωa − ωn) becomes faster for smaller A±b or Dab or shorter T1n values, as in the dCE

mechanism[22].

Figure 4: Steady state nuclear polarization as a function of the CE matching condition in
the iCE case. Simulations were performed using A±2 /2π values equal to 1 MHz (solid black
lines) or 0.5 MHz (dashed line) for di�erent ωb values around the ωb − ωa − ωn = 0 CE
condition. The MW �eld was applied at ωc. The rest of the parameters are given in Table 1.
The gray line indicates the expected CE enhancement in the ideal case based on the electron
polarizations given by eq. 10.

The iCE mechanism can also be studied by following the temporal evolution of the spin

polarizations. In Fig. 5 the time evolution of the electron polarizations are plotted for the CE

condition, ωb− ωa ' ωn (solid lines) and for an o�set of 50 kHz from this condition (dashed

lines). All simulation parameters are given in Table 1, and the MW frequency was set at ωc.

Pc(t) approaches zero in a relatively short time, and is not shown. The Pb(t) (red) and Pa(t)

(purple) polarizations reach their steady state values in a timescale of T1e (left vertical dotted

black line). At the CE condition, Pn(t) (blue) reaches the value predicted by eq. 10 (gray line)

within the same timescale. This di�ers from the dCE mechanism, where the change in the

electron and nuclear polarizations has a fast component, originating from the MW irradiation

on the electron and electron-nucleus transitions, and a slower component originating from
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T1e[22]. When the CE condition is not met the iCE nuclear hyperpolarization buildup time

becomes longer, and can become as long at T1n (right vertical dotted black line). When this

happens the maximal Pn(t) value is reduced due to the action of T1n.

Figure 5: Temporal evolution of the nuclear (blue) and electron polarizations (red and purple)
during iCE-DNP. Simulations were performed on a system at the CE condition (solid lines)
or 50 kHz removed from it (dashed lines), using MW at ωexcite = ωc. All other simulation
parameters are given in Table 1. The gray line indicates the expected steady state CE
nuclear polarization in the ideal case derived from the electron polarizations using eq. 10.
The horizontal dashed black lines indicate the T1e and T1n values used in the simulations.

Finally, as shown previously for the dCE mechanism, the dipolar and hyper�ne interac-

tions split the CE conditions and reduces the maximum nuclear polarizations [22, 54]. The

same trends can be seen in the case of the iCE mechanism, as shown in the SI.

Parameter Value

T 5 K
A±b /2π 1 MHz
Dab/2π 0.8 MHz
ω1/2π 0.6 MHz
T1e 10 ms
T1n 1 s
T2 10 µs

T1D,ab/T1D,ac/T1D,bc 1/1/0 ms
(ωe,b − ωe,a)/2π ~144 MHz
(ωe,c − ωe,a)/2π -160 MHz

Table 1: Parameters used during the iCE and dCE simulations. The di�erence between the
electron frequencies, ωe,b − ωe,a at the CE condition was evaluated up to 1 Hz based on the
mixing of states in the spin system. Changes in these values are given in the �gure captions.

4 Calculation of the DNP-spectra for the di�erent DNP

mechanisms in macroscopic systems

In this section we derive expressions for the steady state DNP line-shapes corresponding to

the SE, dCE and iCE mechanisms in macroscopic systems with inhomogenously broadened

EPR lines. These expressions are derived taking into account the electron polarization

distributions and the relation between the nuclear and electron polarizations derived in

Section 3. In order to calculate the DNP enhancement Sn(ωexcite) as a function of the
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MW frequency ωexcite, we make the following assumptions: (i) The DNP enhancement scales

linearly with the fraction of electrons that transfer their polarization to the nuclei[36, 37, 38].

(ii) This fraction can be derived from the normalized EPR line, f(ωe). Thus the electrons

are treated as having single SQ transitions while possible splittings due to the dipolar or

hyper�ne interactions are not considered. (iii) At the CE condition, the dependence of the

nuclear polarization on the electron polarizations is given by eq. 10. (iv) The enhancements

derived for the di�erent DNP mechanisms can be calculated independently[36, 37, 38]. And

�nally, (v) the electron polarization pro�les Pe(ωe;ωexcite) are known. This last assumption

implies that Pe(ωe;ωexcite) can be derived independently of the nuclear DNP enhancement

via a �tting procedure applied to experimental ELDOR date[48]. We will not try to simulate

the actual intensities of the frequency dependent DNP enhancement spectra, En(ωexcite), but

rather their line-shapes. One of the reasons for this is that at this stage we do not take into

account e�ects in�uencing these intensities, such as those originating from T1n relaxation

and nuclear spin di�usion.

Using the above assumptions we can derive the shapes of the normalized basic DNP

spectra, SM(ωexcite), with M = SE, dCE, iCE, and express the DNP enhancement of a

sample in the from

En(ωexcite) = kSESSE(ωexcite) + kdCESdCE(ωexcite) + kiCE(SiCE(ωexcite)− SiCE,0) + 1, (12)

where kM are constants that determine the relative contributions of the individual SM(ωexcite)

spectra and the one is added to account for the thermal equilibrium value. The reason for the

subtraction of the thermal equilibrium value SiCE,0 of SiCE(ωexcite) from the iCE contribution

will be discussed later on.

The basic SE DNP enhancement spectrum for MW irradiation at ωexcite is proportional

to the Pe(ω
±
excite;ωexcite) electron polarizations at frequencies ω±excite = ωexcite ± ωn + δω,

and to the relative number of these electrons f(ω±excite). In order to include o� resonance

e�ects in the SE mechanism a function gSE(δω) (for example, with a Lorenzian line-shape)

is introduced with a maximum at gSE(0). This maximum value depends on the MW power,

and when ω1 = 0 the gSE(δω) value becomes zero. A normalization factor NSE is introduced

that sets the average of the magnitudes of the maximum and minimum enhancement of

SSE(ωexceite) equal one. As a result the maximal value of gSE(δω) does not have to be

chosen. Thus for any ωexcite value we can write:

SSE(ωexcite) = N−1
SE

ˆ
d(δω) gSE(δω) {s−SE(ωexcite)− s+

SE(ωexcite)}, (13)
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where

s±SE(ωexcite) = f(ω±excite)Pe(ω
±
excite;ωexcite). (14)

This can result in DNP enhancement outside of the EPR line as long as f(ω±SE) and gSE(δω)

have non-negligible values.

To express the basic CE DNP spectra in terms of a given electron Pe(ωe;ωexcite) distribu-

tion, we use the expression correlating the nuclear polarization to the electron polarizations

given in eq. 10. The CE enhancements are proportional to the relative number of contribut-

ing electron pairs at a CE condition, which is of the general form f(ωe ± ωn)f(ωe + δΩ),

where δΩ is the deviation from the CE condition. Introducing a two-dimensional (bell

shaped) weight-function gdCE(δω, δΩ) that expresses the enhancement reduction due to o�

resonance irradiation and the CE matching, and de�ning ω0
excite = ωexcite + δω + δΩ we can

write:

SdCE(ωexcite) = N−1
dCE

¨
d(δω)d(δΩ) gdCE(δω, δΩ){s+

dCE(ωexcite) + s−dCE(ωexcite)}, (15)

where

s±dCE(ωexcite) = f(ω±excite)f(ω0
excite)

Pe(ω
±
excite;ωexcite)− Pe(ω0

excite;ωexcite)

1− Pe(ω±excite;ωexcite)× Pe(ω0
excite;ωexcite)

, (16)

andNdCE is a normalization factor. The widths of gdCE(δω, δΩ) is of the order of (ω1

√
T1e/T2e,

A+Dab/ωn), and it is equal to zero for ω1 = 0. Except for the o� resonance irradiation ef-

fects, there will be no enhancement outside the frequency range of the EPR line, where

f(ω0
excite) = 0.

The expression for the iCE DNP spectrum depends on the polarization di�erence between

all electron pairs at a CE condition. Taking into account the e�ect of the δΩ deviation from

this condition on the iCE e�ciency using the weight function giCE(δΩ), we can write:

SiCE(ωexcite) = N−1
iCE

¨
dωd(δΩ)giCE(δΩ)siCE(ω;ωexcite), (17)

with

siCE(ω;ωexcite) = {f(ω + ωn)f(ω + δΩ)
Pe(ω + ωn;ωexcite)− Pe(ω + δΩ;ωexcite)

1− Pe(ω + ωn;ωexcite)× Pe(ω + δΩ;ωexcite)
. (18)

As before, NiCE is a normalization factor. Here DNP enhancement can be expected when we
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irradiate outside of the EPR line and electron polarization is lost via the SE process[48]. In

practice, the above expression includes polarization losses also due to direct MW irradiation

on the electrons. Doing this we sum over the contribution of all CE electron pairs, whether

or not they are depolarized by direct or indirect MW irradiation. As such, e�ects originating

from the direct MW irradiation are taken into account both in the dCE-DNP as well as

the iCE-DNP line-shape. We must still make a distinction between dCE and iCE because

their enhancement dynamics are not equal, as described around Fig. 5. Any additional

contribution of the dCE mechanism is then given by the SiCE line-shape.

Both SSE(ωexcite) and SdCE(ωexcite) are zero when the system is at its thermal equi-

librium state, as achieved for example for far o� resonance irradiation. However, the

iCE mechanism results in a �nite value at thermal equilibrium, SiCE,0, given by insert-

ing the electron thermal equilibrium polarization distribution into eq. 17. The normal-

ized SiCE(ωexcite) spectrum can then contribute a maximum nuclear enhancement equal to

Emax
iCE (ωexcite) = SiCE(ωexcite)/SiCE,0. In practice, the iCE contribution to En(ωexcite) can

be smaller than this maximal value, due for example to the e�ect of the nuclear spin-lattice

relaxation. To be able to choose the proper kiCE value, while leaving the thermal equilibrium

enhancement equal to 1, we subtract SiCE,0 from SiCE(ωexcite) and add a one to En(ωexcite)

in Eq. 12. A consequence of these considerations is that kiCE ≤ S−1
iCE,0, and therefore in the

case of |En(ωexcite)| > |Emax
iCE (ωexcite)| there must be other contributions to the enhancement

apart from the iCE mechanism.

5 Simulations of the DNP line shapes

Using the above expressions we can now calculate the basic DNP spectra. This will be done

for the 40mM TEMPOL sample described above at T =10, 20, and 40 K. However, before

doing so we must �rst derive the Pe(ωdetect;ωexcite) pro�les from the ELDOR experiments[48].

In the following we express all values of the frequencies ως in units of Hertz and with respect

to a central frequency, i.e. δνς = ως/2π−95 GHz.

5.1 The electron polarization distribution - experiments and simu-

lations

5.1.1 ELDOR measurements

ELDOR spectra as a function of the MW excitation frequency, Sexpe (δνexcite), were recorded

for several detection frequencies δνdetect and temperatures T ,using an irradiation time texcite

of the order of 5T1n. These long times were chosen in order for the sample to reach steady
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state values, thus avoiding possible time dependences of the ELDOR and DNP line-shapes

at shorter times[38, 48]. The recorded EPR echo signals had to be shifted by subtracting a

baseline signal that did not originate from the spin system itself. In order to take this baseline

correction into account the measured signals detected at di�erent δνdetect frequencies were

rescaled using

Eexp
excite(δνexcite) =

Sexpe (δνexcite)/S
exp
0 − Sb/Sexp0

1− Sb/Sexp0

, (19)

where Sexp0 thermal equilibrium EPR signal, and Sb is a baseline signal at a given δνdetect and

T which probably originates from receiver ring down after the detection pulses. The value

of Sexp0 was determined by measuring Sexpe (δνexcite) for a set of far o� resonance irradiation

frequencies δνexcite (in the range of -600 to -520 MHz) and taking their averaged value

Sexpe (δνexcite) = Sexp0 . The Sb/S
exp
0 value takes care of the fact that Eexp

excite(δνexcite,j) 6= 0 even

under full saturation. An example of this procedure is given in the SI. In the case where

Sb/S
exp
0 is known, the Eexp

excite(δνeexcite) functions becomes equal to the normalized polarization

at δνdetect for an irradiation at δνexcite:

Eexp
excite(δνexcite) =

P exp
e (δνdetect; δνexcite)

P exp
e0 (δνdetect)

, (20)

Thus, after the proper baseline correction the measured Eexp
excite(δνexcite) curves can be com-

pared with simulated pro�les of the normalized electron polarizations.

Unfortunately, in our experiments the values of Sb/S
exp
0 could not be obtained experi-

mentally, and therefore it was necessary to determine these values by adding them to the

�tting parameters for creating simulated Esim
excite curves that compare well with experimental

ones.

In Fig. 6a-c (symbols) the corrected Eexp
excite(δνexcite) curves at T equal to 10 (black), 20

(blue), and 40 (red) K are plotted for three δνdetect values given by (a) -140 MHz , (b) 0, and

(c) 100 MHz. The Sb/S
exp
0 values summarized in Table 2.

5.1.2 Electron polarization simulations

Next we must obtain the values of Pe(δνdetect, δνexcite), needed for the derivation of the DNP

line shapes, by �tting simulated ELDOR spectra to the measured ones. The simulations were

conducted as explained in section 2.2.2. Pe,j(δνexcite,j′) values were simulated as a function

of δνexcite,j′ , with δνj = δνdetect. Normalizing with respect to the their thermal value, P 0
e,j,

results in normalized ELDOR spectra

Esim
excite(δνexcite,j′) =

Pe,j(δνexcite,j′)

P 0
e,j

, (21)
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in analogy with eq. 20. In order to reduce over-saturation around δνj = δνexcite,j′ , as

explained in Ref. [48], the output of the simulations was smoothed using

Esim′

excite(δνexcite,j′) =
1

2
Esim
excite(δνexcite,j′)+

1

4
Esim
excite(δνexcite,(j′−1))+

1

4
Esim
excite(δνexcite,(j′+1)). (22)

These distributions were then �tted to the experimental ELDOR spectra Eexp
excite(δνexcite)

using a single set of parameters (Table 3), apart for the Sb/S
exp
0 parameter (Table 2), that

was chosen for each data set, and the T1e and T1n values which were taken from measurements

(Table 4). The resulting Esim′
excite(δνexcite,j′) pro�les are plotted in Fig. 6a-c (solid lines),

showing good agreement with the experimental spectra for the di�erent temperatures and

δνdetect values. A single ΛeSD parameter was found that resulted in a good �t between the

simulated Esim
excite pro�les and the ELDOR spectra at all temperatures. In general the eSD

rates can be expected to be temperature dependent, when we realize that the spin �uctuations

responsible for the eSD process can be T1e dependent or can become quenched at very low

temperatures[55, 44, 56]. The value of A
±
could not be determined accurately from the

ELDOR measurements because no clear features originating from the SE were observed.

Thus this value was chosen during the DNP simulations where SE features are present, as

will be explained in section 5.3. It is important to note that while echo detection close to

the center of the EPR line results in the highest signals, the ELDOR spectra acquired at the

sides of the EPR line exhibit more spectral features than the ones measured at the center.

Namely, the spectra acquired at δνdetect = −140, and to a lesser degree the one acquired at

100 MHz, were more helpful for �nding the proper �tting parameters, although they required

longer signal averaging to obtain the same SNR as the spectra detected at δνdetect = 0.

Using the set of parameters that creates a good �t between Esim′
excite(ωexcite,j′) and E

exp
excite(ωexcite)

it is possible to calculate the Pe(δνdetect, δνexcite) pro�les needed for the DNP line-shape sim-

ulations (section 4). As an example of the pro�les derived from these equations, the normal-

ized electron polarization pro�les Pe(δνdetect, δνexcite)/Pe0(δνdetect) are plotted in Fig. 6d-f for

δνexcite = -140 (d) , 0 (e), and 100 (f) MHz. As can be seen, irradiation close to the center

of the EPR line results in larger depolarization across the whole EPR spectrum, while irra-

diation closer to the edge the depolarization is much more localized around δνexcite. This is

a result of the dependence of the eSD rate on the EPR line-shape, as explained in Ref. [48].

In addition, higher depolarizations can be seen at lower temperatures, mainly because T1e

increases at low temperatures while the eSD rate remains the same, as given by the constant

ΛeSD coe�cient.
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Figure 6: (a-c) Measured (square symbols) and simulated (lines) steady state Eexcite pro-
�les,detected at δνdetect equal to -140 MHz (a), 0 MHz (b), and 100 MHz (c), as indicated
by the gray arrows, and at temperatures equal to 40 K (red), 20 K (blue), and 10 K (black).
The experimental signals were corrected as in eq. 19 with Sb/S

exp
0 values given in Table 2.

The simulations were performed using the parameters given in Table 3 and the relaxation
parameters given in Table 4, and their results smoothed as in eq. 22. (d)-(e) Simulated
steady state electron polarization distributions Pe(δνdetect)/Pe,0(δνdetect) derived from EL-
DOR/DNP data obtained for MW irradiation frequencies δνexcite equal to -140 MHz (a), 0
MHz (b), and 100 MHz (c), as indicated by the gray arrows. The same color-codings indicate
the temperatures as for the Eexcite pro�les. The EPR line shape of TEMPOL[36] is given by
the gray line at the top.

δνdetect (MHz) -140 0 100

10 K 0 0 0.25
20 K -0.1 -0.1 .1
40 K -0.4 0 0

Table 2: Fitted Sb/S
exp
0 values used to remove the baseline artifact from the experimental

ELDOR spectra. These were used to generate Eexp
excite spectra, using eq. 19, with the results

plotted as square symbols in Fig. 6.

Parameter Value

∆bin/2π 2 MHz
ω1/2π 0.6 MHz
T2e 10 µs

ΛeSD 1000 (µs)−3

A
±
/2π 0.7 MHz

Table 3: Simulation parameters used for the calculation of the electron polarization pro�les,
Pe. Relaxation parameters at the di�erent temperatures were taken from Table 4. The EPR
line shape was taken from Ref. [36] and a proton frequency of ωn/2π=144 MHz was used.

T1n(s) T1e(ms)

40 K 5 0.8
20 K 7.1 5.3
10 K 8.5 17

Table 4: Electron and nuclear spin-lattice relaxation times. These were obtained by �tting
saturation recovery curves, measured as explained in sec. 2.1.
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T1n(s) TBU(s)

40 K 5.0 5.0
20 K 7.1 (7.1) 7.0 (6.6)
10 K 8.4 8.3

Table 5: Electron and nuclear spin-lattice relaxation times. These were obtained by �tting
saturation recovery curves, measured as explained in sec. 2.1.

5.2 The individual DNP line shapes

After deriving the Pe(δνdetect, δνexcite) pro�les from the ELDOR data, we can now calculate

the basic SSE(δνexcite), SdCE(δνexcite), and SiCE(δνexcite) DNP line-shapes using eqs. 13-17. In

practice the integrations in these expressions were removed and the SM(δνexcite) line-shapes

were calculated using a discrete set of excitation and detection frequencies {δνj} with a

resolution of |δνj − δνj−1| =2MHz, equal to the bin size used in the ELDOR simulations

(section 5.1.2). Thus the relevant values of the Pe(δνdetect, δνexcite) pro�les are de�ned by

Pe,j(δνjexcite), with δνdetect = δνj and δνexcite = δνjexcite . These discrete frequency values

require a de�nition for the weight-functions gSE(δν), gdCE(δν, δΩ), and giCE(δΩ) with bin-

width resolution. In our calculations we set these functions equal to one for δν, δΩ=0 and

zero otherwise, thus considering only on resonance irradiation on the DNP transitions and

a CE condition width which is within the bin size. As a result, the expressions for the DNP

shapes can be simpli�ed to:

SSE(δνjexcite) = N−1
SE{fj−excitePe,j−excite(δνjexcite)− fj+excitePe,j+Mexcite

(δνjexcite)}, (23)

for the SE DNP;

SdCE(δνjexcite) = N−1
dCE fjexcite{fj−excitesCE,jexcite(δνjexcite)− fj+excitesCE,j+excite(δνjexcite)}, (24)

for the dCE DNP; and

SiCE(δνjexcite) = N−1
dCE

∑
j

fj fj−sCE,j(δνjexcite), (25)

for the iCE DNP, with

sCE,j(δνjexcite) =
Pe,j(δνjexcite)− Pe,j−(δνjexcite)

1− Pe,j(δνjexcite)× Pe,j−(δνjexcite)
. (26)

Here Pjexcite and fjexcite correspond to the polarization and electron fraction in the δνjexcite =

δνexcite frequency bin, and Pj± and fj± to the δνj± = δνj ± νn frequency bin. As discussed
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above, the equilibrium SiCE,0 value can be calculated by inserting the thermal electron

polarization distribution into eq. 25, and can be used to determine the maximum iCE

enhancement contribution Emax
iCE (δνi).

Using the above expressions the basic DNP spectra were calculated relying on the Pe,j(δνjexcite)

pro�les obtained from the parameters in Tables 3 and 4, as in Fig. 6. The results of these

calculations are shown in Fig. 7 for 10 K (black), 20 K (blue), and 40 K (red). As can be

seen there is a clear change in the DNP spectra as a function of temperature: the separation

between the enhancement maxima and minima becomes larger at lower temperatures, and

the relative enhancement far from the center of the EPR line increases. This is because the

eSD is more prominent when irradiating at the center of the EPR line than at the sides,

and because its e�ect increases with decreasing temperature, as was shown in Fig. 6d-e. It

can also be seen that SiCE(δνjexcite) shows enhancements outside of the EPR line, due to the

loss of electron polarization via the SE mechanism, which depends on the value for A
±
. The

maximum and minimum value of the Emax
iCE (δνj) pro�le are tabulated in table 6. The change

in the actual enhancement of the di�erent mechanisms with temperature, and in particular

its dependence on the eSD mechanism, is left for future studies.

Figure 7: SE (a), dCE (b), and iCE (c) DNPpro�les calculated using eqs. 23-25. The
simulated electron polarization pro�les were obtained by �tting the 40 K (red) 20 K (blue)
and 10 K (black) Eexcite ELDOR data (see Fig. 6) by using the parameters of Tabs. 3
and 4. All pro�les were normalized with respect to the average of the magnitudes of the
enhancement at its maximum and minimum. The EPR line-shape of TEMPOL[36] is given
by the gray line at the top of the �gure.

Eexp
n Emax

iCE

Maximum Minimum Maximum Minimum
40 K 46 -54 74 -114
20 K 50 -62 87 -120
10 K 42 -44 62 -70

Table 6: The maximum and minimum DNP enhancements at di�erent temperatures. The
experimental values Eexp

n were evaluated by comparing the maximal detected signal with
a reference thermal equilibrium signal, and the maximal predicted iCE enhancements by
calculating the Emax

iCE = SiCE(δνjexcite)/SiCE,0 values, as described in section 4.

5.3 The DNP simulations

Finally, we can combine the simulated DNP line-shapes as in eq. 12 in order to reconstruct

the experimental DNP enhancement spectra Eexp
n (δνexcite). These spectra after normalization

21

Page 21 of 36 Physical Chemistry Chemical Physics



by the average of the magnitudes of the enhancement at its maximum and minimum, are

plotted in Fig. 8. The maximum and minimum values of Eexp
n (δνexcite) are given in Table

6. In practice, after adjusting the A
±
value (Table 3) as described in section 5.1.2, , we

found a good agreement between the experimental line-shapes and the iCE-DNP line-shape.

These simulated spectra are plotted again in Fig. 8 (red lines), as well as the di�erence

between the two normalized curves (gray dashed lines). A clear di�erence between the two

can be seen around the center of the EPR line, however the width, relative intensities and the

features at the edges of the spectra are all reproduced. This indicates that in our TEMPOL

sample the iCE mechanism is the leading mechanism. Since the detected enhancements are

lower than their maximal iCE values (Table 6), no additional DNP is required to achieve

the experimental enhancements. The simulated DNP enhancement outside of the EPR line

shows that the SE mechanism plays a role at least in the form of a depolarization of the

electrons, with possibly a small contribution to the DNP enhancement. No combination of

the SSE(δνexcite) and SdCE(δνexcite) line-shapes was found that �tted the experimental DNP

spectra satisfactory. This di�ered from the analysis presented in Ref. [36] on a similar sample,

since here the e�ect of the eSD on these DNP mechanisms was introduced. However, more

measurements are needed on a variety of samples to determine the actual role of the dCE

mechanism during DNP. The source of the relatively large di�erence between the experiment

and simulations at the center of the EPR line is not clear at the moment, and could not

be accounted for by introducing the SSE(δνexcite) and SdCE(δνexcite) spectra. It may be a

consequence of the assumptions made during the calculations of the Pe,j(δνje) pro�les or the

basic Sn(δνje) line-shapes, or from an additional DNP processes, such as the Overhauser

E�ect in solid dielectrics[57].

Figure 8: Measured (square symbols) and simulated iCE (red lines) DNP pro�les. The
measured spectra were obtained at 40 K (a), 20 K (b), and 10 K (c), using a texcite values of
about 5T1n. The simulated spectra were derived from eq. 25 using the parameters given in
Tabs. 3 and 4. Both experimental and simulated data were normalized with respect to the
average of the magnitudes of the enhancement at its maximum and minimum. The dashed
gray line shows the di�erence between the measured and simulated normalized pro�les. The
EPR-line shape of TEMPOL[36] is given by the gray line at the top of the �gure.

6 Summary and conclusions

In this paper we characterized the in�uence of the electron spectral di�usion (eSD) mech-

anism on the DNP spectra. First, the e�ect of the eSD on the nuclear polarization in

electron-nuclear model systems was considered. There it was shown that in the case of the
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CE, a change in the di�erence between the electron polarizations results also in a change of

the nuclear polarization, due to the CE state mixing. This nuclear polarization is correlated

to this di�erence, which can be the result of a direct MW irradiation on the CE electron

pair (dCE) or from irradiation on other electrons that indirectly depolarize the CE electron

pair via a eSD type of process (iCE). In particular, the relationship between the electron

and nuclear polarizations were derived and checked numerically. Finally, the dependence

of the nuclear enhancement on the CE condition, and the polarization buildup times were

calculated for a model iCE system.

Following these calculations, the steady state SE , dCE, and iCE DNP line-shapes of

real samples were simulated, in analogy to the work presented in Refs. [36, 37, 38] but this

time taking the e�ects of the electron depolarization into account. This was possible after

deriving the electron polarization distributions, using parameters that allowed simulated

ELDOR spectra to be �tted with experimental ones[48]. In the present study ELDOR and

DNP data were obtained from a 40 mM TEMPOL sample at 10, 20, and 40 K and the

shapes of the three steady state basic DNP spectra were calculated for each temperature. It

was shown that the electron polarization pro�les strongly in�uence these shapes, including

changes in the frequency separation between the maximum and minimum enhancements. In

addition, it was shown that the maximal iCE contribution to the enhancement can also be

calculated.

A comparison of the simulated basic DNP spectra with the experimental DNP spectra

showed that the iCE mechanism can explain most of the detected spectral features at all

three temperatures, and account for the measured enhancement values. This result di�ers

from the DNP spectral analysis presented in Refs. [36, 37, 38], where the eSD and iCE

mechanisms were not considered, and the changes in the DNP line-shapes as a function

of temperature were interpreted as a change in the relative contribution of the dCE and

SE mechanisms. In the present analysis the features originating from the SE are indirectly

in�uencing the DNP results via the eSD induced depolarization of the electrons, and leading

to iCE enhancements.

Future work must include an extension of the electron depolarization model[48] such

that it will include also the iCE mechanism. This will allow for simultaneously �tting

of both ELDOR and DNP experimental data both as function of frequency and of time,

and also including the DNP enhancement values themselves. As such, new insight into the

contributions of the MW irradiation and the di�erent relaxation mechanisms, including the

eSD, to the DNP enhancement will be gained. Further experiments are needed to reduce

the number of �tted parameters used in our present model, and in order to determine the

interplay between the di�erent DNP mechanisms under various conditions, such as the MW
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power, radical type and sample characteristics.
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