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The Stern- Gerlach experiment is a seminal experiment in quantum physics, involving the interaction between a particle with spin
and an applied magnetic field gradient. A recent article [Wennerström et al., Phys. Chem. Chem. Phys., 2012, 14, 1677-1684]
claimed that a full understanding of the Stern-Gerlach experiment can only be attained if transverse spin relaxation is taken into
account, generated by fluctuating magnetic fields originating in the magnetic materials which generate the field gradient. This
interpretation is contrary to the standard quantum description of the Stern-Gerlach experiment, which requires no dissipative
effects. We present simulations of conventional quantum dynamics in the Stern-Gerlach experiment, using extended Wigner
functions to describe the propagation of the quantum state in space and time. No relaxation effects are required to reproduce
the qualitative experimental behaviour. We also present simulations of quantum dynamics in the Rabi experiment, in which an
applied radiofrequency field induces spin transitions in the particle wave.

1 The Stern-GerlachExperiment

It would be hard to exaggerate the influence of the 1922 Stern-
Gerlach (SG) experiment on modern physics. The splitting of
the beam of silver atoms into two branches by an applied mag-
netic field gradient is a stunningly lucid demonstration of the
two quantized angular momentum states of an unpaired elec-
tron with spin-1/2, as well as the link between angular momen-
tum and magnetism. Although the actual Stern-Gerlach exper-
iment, as originally performed, includes elements of serendip-
ity1 and is not quite as straightforward as depicted in standard
textbooks, the experiment stands out as a milestone in quan-
tum theory and atomic physics.

It is therefore surprising that the quantum mechanism of the
SG experiment remains contentious. It has even been claimed
that quantum mechanics might not be involved at all2. A re-
cent paper by Wennerström and Westlund (WW)3 studies the
SG experiment by using dynamical simulations of particle tra-
jectories and concludes that in some circumstances, dephasing
of the electron spin by an external agency is necessary to ex-
plain the results. The dephasing is attributed to interactions of
the traversing particle with the electron spins in the magnetic
pole pieces that generate the magnetic field gradient. This in-
terpretation runs contrary to the standard treatment of the SG
experiment, which contains no elements other than the spin-
1/2 particle and the applied magnetic field gradient, which is
considered to be time-independent and free from fluctuations.

The standard quantum theory of the SG experiment involves
quantum states possessing both space and spin degrees of free-
dom. For the sake of concreteness, consider the case in which
the particle beam moves in the z-direction, while the magnetic
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Fig. 1 Basic geometry of the Stern-Gerlach experiment as simulated
in the following. The axes are chosen such that the magnetic field is
along y, while the magnetic field gradient is along x. The beam
propagates in the +z direction.

field gradient, which exerts a force on the magnetic moment
of the particle, is assumed to be in the y-direction (Fig. 1).
An explicit definition of the fields is given below; Fig. 2A
shows how this magnetic field geometry can be realised by a
quadrupole magnet arrangement.

The spin state denoted |α⟩ is defined here as the eigenstate
of spin angular momentum in the y-direction, with eigenvalue
+h̄/2, and in the opposite sense for the eigenstate |β ⟩:

Ŝy|α⟩ = +
1
2

h̄|α⟩

Ŝy|β ⟩ = −1
2

h̄|β ⟩ (1)

where Ŝy is the operator for spin angular momentum along the
y-axis. The magnetic moments of the particles are in the op-
posite direction as the angular momentum (for negative mag-
netogyric ratio, as for the electron). The field gradient, which
is along the x-axis, deflects the particles in the state |α⟩ “up-
wards” (i.e. in the positive x-direction), leading at the exit of
the apparatus to a spatial wavefunction localized in the “up”
branch of the beam, denoted here |↑⟩. Hence, if the particle
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Fig. 2 A: Magnetic field gradient generated by a quadrupole
arrangement of permanent magnets. The beam path indicated (solid
blue line) passes through a region where the magnetic field is
parallel to the y-axis, but varies in magnitude along the x-axis
(uniaxial field gradient). B: Spatial beam trace in the Stern-Gerlach
experiment. C: Beam trace in the transverse momentum dimension.

entering the apparatus is initially in spin state |α⟩, it exits the
apparatus with a total quantum state given by a direct product
of the spatial and spin states, as follows:

Ψ = |↑⟩⊗|α⟩ (2)

Similarly, particles in spin state |β ⟩ are deflected “down-
wards”, leading to a total quantum state as follows:

Ψ = |↓⟩⊗|β ⟩ (3)

More difficulties arise when one considers the behaviour of a
particle which is not prepared in an angular momentum eigen-
state along the magnetic field, on entering the SG apparatus.
For example, consider a particle which enters the SG appara-
tus in a quantum superposition state of the form

|−z⟩= 2−1/2 (|α⟩+ |β ⟩) (4)

This state is an eigenstate of spin angular momentum along
the beam direction, i.e. perpendicular to the magnetic field
gradient:

Ŝz|−z⟩=−1
2

h̄|−z⟩ (5)

According to conventional quantum theory, this superposition
state evolves in the SG experiment into to a total quantum state
of the form

Ψ = 2−1/2
(

eiϕα |↑⟩⊗|α⟩+ eiϕβ |↓⟩⊗|β ⟩
)

(6)

where ϕα and ϕβ are phase factors. An entangled state of
this kind cannot be factorized into spin and space components.
It is not localized in the “up” or the “down” branches of the
beam, but appears in both places at the same time. Only when
the particle is observed at the end of the experiment, does
the wavefunction “collapse”, leading to the particle being lo-
calised in either the “up” or “down” branches of the beam,
with probabilities given by the square magnitude of the super-
position coefficients.

Not surprisingly, the semi-classical approach of WW en-
counters great difficulties with treating the dynamics of an en-
tangled quantum state such as that given in eq. 6. How does
one even write down the force exerted by a potential field on
a particle which is in two places at the same time? In attempt-
ing a semi-classical description, WW found it necessary to ig-
nore the spatial delocalization of the particle, and to introduce
an extraneous fluctuating field, to obtain qualitatively reason-
able results. However, there is no experimental evidence for a
role for dissipation in the SG experiment, and the conventional
quantum theory does not need to invoke such a concept.

By attempting a semi-classical description, Wennerström
and Westlund have exposed a curious reticence in the scien-
tific literature to describe in detail what happens in the SG
experiment. The outcome is well-known, and is part of cur-
rent scientific culture. Nevertheless, it is hard to find an ex-
plicit description of how the quantum state evolves in space
and time, as the particle traverses the SG apparatus, according
to conventional quantum mechanics. How does the entangled
state in eq. 6 arise, in detail? Apart from the recent attempt
by WW, which uses a semi-classical description, we are only
aware of one attempt at a detailed description, and that uses
the unconventional Bohm description of quantum mechan-
ics4. In the discussion below, we use numerical simulations
based on an extended Wigner function formulation of conven-
tional Schrödinger quantum mechanics, to help visualise the
quantum evolution.

2 Extended Wigner functions

The Wigner function formalism5–7 provides a compact de-
scription of spatial quantum states in terms of a quasi- dis-
tribution function in phase space. It incorporates essential fea-
tures of the spatial quantum state such as its coherence length
and the momentum distribution in a natural manner, and pro-
vides an intuitive picture of how the position and momentum
distributions evolve in time.

Formally, the Wigner function is defined as a Weyl integral
transform of the density operator8 ρ̂ = |ψ⟩⟨ψ|, of the follow-
ing form:

W (x, p) =
1
h

∫
e−

ips
h̄ ⟨x+ s

2 |ρ̂|x−
s
2 ⟩ ds. (7)

In its original form, the Wigner function does not take into
account the internal degrees of freedom of the particle, such as
spin, and hence cannot be applied directly to the Stern-Gerlach
experiment. However, extended Wigner function (EWF) for-
malisms, which include internal degrees of freedom, have
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been proposed9. Here we develop the extended Wigner func-
tion formalism, and use it to visualise the detailed quantum
dynamics taking place in the Stern- Gerlach experiment and
its relatives.

Consider a particle with a finite number of internal quan-
tum states. In the discussion below, we refer to these internal
states as “spin states”, although the same formalism applies to
non-spin degrees of freedom, such as quantized rotational and
vibrational states. We extend the Wigner function by combin-
ing it with the density operator formalism commonly used in
the quantum description of magnetic resonance8. The defini-
tion of the Wigner function is extended by projecting the den-
sity operator onto the spin- state specific position state |x,η⟩,
where η = α,β , . . . denotes the spin state. This results in a
Wigner probability density matrix Wηξ (x, p), whose elements
depend parametrically on the positional variables and their as-
sociated momenta:

Wηξ (x, p) =
1
h

∫
e−

ips
h̄ ⟨x+ s

2 ,η |ρ̂|x− s
2 ,ξ ⟩ ds. (8)

For non-relativistic particles, the Hamiltonian may be writ-
ten as

Ĥ =
p̂2

2m
+U(x, Ŝ), (9)

where x is the position, and p̂ and Ŝ denote the operators
associated with the momentum, and spin degrees of freedom,
respectively. It is convenient to consider the contributions of
the kinetic and potential energy parts of the Hamiltonian to
the time derivative of the Wigner functions separately. It can
be shown through integration by parts that the kinetic energy
contribution is[

Ẇηξ (x, p)
]

T =− p
m

∂
∂x

Wηξ (x, p), (10)

while the potential energy part of the Hamiltonian contributes
as follows:[

Ẇηξ (x, p)
]

U =

1
ih̄ ∑

n

1
n!

(
h̄
2i

)n ∂ nWηξ

∂ pn

[
(−)n ∂ nUηη

∂xn −
∂ nUξ ξ

∂xn

]
.

(11)

In this expression, the basis of the spin degrees of free-
dom has been chosen to diagonalise the potential energy:
Uηξ (x)= δηξ ⟨x,η |U(x, Ŝ)|x,ξ ⟩. Obviously, this is only possi-
ble if the potential energy operator at different locations com-
mutes: [U(x1, Ŝ),U(x2, Ŝ)] = 0 ∀x1,x2. An expression corre-
sponding to (11) for the general case is given in the supple-
mentary material.

The series (11) converges rapidly if the coherence length
lc of the quantum state represented by the Wigner function
is short compared to the length scale of variation of U . In
the momentum dimension, the Wigner function typically has a
Gaussian shape of width h̄/lc, and the derivatives ∂ nWηη/∂ pn

scale with (lc)n. By contrast, the spatial derivatives of a har-
monic potential with period L scale with L−n. Together, the

terms in (11) therefore scale as (lc/L)n/n!. If lc ≪ L, (11)
may be truncated to first order, yielding

[
Ẇηξ (x, p)

]
U =Wηξ

Uηη −Uξ ξ

ih̄
−

∂Wηξ

∂ p
Fηη +Fξ ξ

2
, (12)

where Fηη(x)=−∂Uηη/∂x is the force acting on the quantum
state η .

This set of partial differential equations may be integrated
numerically, forming the basis of detailed simulations of the
quantum state propagation in the presence of inhomogeneous
fields. In the form given above, which assumes a diago-
nal Hamiltonian, the different elements of the Wigner ma-
trix (Wηξ ) are decoupled, and therefore evolve independently
from each other. If the Hamiltonians in different positions do
not commute, however, the full version of (11) applies, which
couples the internal states.

We now use these equations to simulate the quantum dy-
namics during the Stern-Gerlach and Rabi experiments on
atomic and molecular beams.

3 Analysis of the Stern-Gerlach Experiment

In the Stern-Gerlach experiment, a beam of spin-1/2 particles
is exposed to a lateral magnetic field gradient. We define the
axis of the molecular beam apparatus as z, and assume that
the magnetic field varies in the transverse x-direction. The
potential energy part of the Hamiltonian in the presence of an
external magnetic field B is then given by

U(Ŝ,x) =−h̄γB(x) · Ŝ. (13)

The original magnet design used by Stern and Gerlach10

produces divergent magnetic field lines at the location of the
beam. This corresponds to a biaxial magnetic field gradient
tensor, requiring two spatial dimensions to be included in the
Wigner function. To avoid this complication, we use a differ-
ent arrangement, in which the magnetic field gradient is uni-
axial. In this case, the magnetic field lines are all parallel, but
vary in density in the direction perpendicular to the magnetic
field itself. Magnetic fields of this type occur in quadrupole
polarisers, as shown in Fig. 2A.

We assume the magnetic field points along the y-axis, and
varies linearly in magnitude along the x-axis, B(x,y,z) =
(By0 + xGxy) ey, where By0 is the magnetic field at x = 0, and
Gxy = ∂By/∂x. This field is fully consistent with Maxwell’s
equations, since it satisfies ∇ ·B = 0. The field gradient has
only a single non- zero cartesian component ∇B = Gxy exey.
We choose the spin states |α⟩ and |β ⟩ as the eigenstates of
Ŝy, such that the matrix elements of the potential part of the
Hamiltonian are

Uαα(x) =− 1
2 γ h̄By(x) Uαβ (x) = 0

Uβα(x) = 0 Uββ (x) = + 1
2 γ h̄By(x).

(14)

The resulting equations of motion for the EWF matrix ele-
ments are given in the SI.
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Fig. 3 A: Evolution of Wαα and Wββ under the influence of a magnetic field gradient in a Stern-Gerlach experiment on Ag atoms in a field
gradient of 10 G µm−1, moving at a velocity of 550 m/s (rms velocity at an oven temperature of 1300 K). B: Evolution of the real part of the
off-diagonal element Wαβ , assuming a coherent state initially polarised along the x-axis. The strength of the magnetic field gradient has been
reduced by a factor of 5×104 compared to A in order to make the spatial modulation visible.

In its original form, the Stern-Gerlach experiment was con-
ducted on a beam of Ag atoms emanating from an oven at
a temperature of about 1300 K. The magnetic field gradi-
ent was of the order of 10 G/cm over a length of 3.5 cm1.
At magnetic fields larger than the hyperfine splitting (about
610 G11 in the case of Ag), the electron spin of the Ag atoms
is decoupled from the nuclear spin of Ag, and the nuclear
spin may be ignored. In this regime the silver atoms may be
treated as (electron) spin 1/2 particles. The root mean square
velocity of Ag atoms at 1300 K is approximately 550 m/s.
After leaving the oven, the Ag atoms are collimated by a
pair of collimation slits 30 µm wide and separated by 3 cm.
The longitudinal momentum of the silver atoms is approxi-
mately 6 × 104 gmol−1 ms−1. The collimation aspect ratio
of 1:1000 therefore results in a transverse momentum un-
certainty of ∆p = 60 gmol−1 ms−1, which corresponds to a
30 µm wide beam with a transverse coherence length of about
lc = h/∆p ≈ 7 nm.

An unpolarised beam entering the magnetic field gradi-
ent is represented by a unity spin density matrix, such that
Wαα(t = 0) = Wββ (t = 0) = W0(x, p), where the initial state
W0(x, p) is a two-dimensional normalised Gaussian function
centred at (x, p) = (0,0), with widths given by coherence
length lc and the beam width ∆x. The off-diagonal Wigner
functions vanish: Wαβ =Wβα ≡ 0, and the diagonal ones can
be obtained in closed form by integrating the equations of mo-
tion (cf. Methods section).

Fig. 2B shows the projections of the Wigner matrix ele-
ments Wαα and Wββ onto the spatial axis as a function of posi-
tion along the beam path in blue and green, respectively. The
initially unpolarised beam begins to split after about 10 mm,
and is completely separated after 25 mm. As expected, the
separation of the two beams grows quadratically along the

beam path. The corresponding projection onto the momen-
tum dimension is shown in Fig. 2C. Due to the constant, equal
and opposite forces experienced by the two polarisation states,
the transverse momentum grows linearly along the beam path.
It is interesting to note that in the momentum dimension, the
beam is fully polarised beyond 5 mm, while spatial separa-
tion does not occur until 25 mm. This is also reflected in the
Wigner function “snapshots” shown in Fig. 3A. In these pan-
els, the transverse momentum and position are plotted on the
horizontal and vertical axes, respectively. The beam is ini-
tially unpolarised and centred. Under the influence of the field
gradient, it splits into two separate spots in the momentum
direction first, which gradually drift apart in the position di-
mension, as well. The peaks of the two distributions Wαα and
Wββ describe parabolic trajectories in the x, p-plane in oppo-
site directions. The evolution of the Wigner matrix elements
also shows the gradual shearing due to ballistic drift, which
leads to divergence of the beams. The final separation of the
beams at z = 3.5 cm amounts to about 200 µm, which is in
quantitative agreement with Stern and Gerlach’s observation.

The behaviour of the diagonal Wigner function elements
Wαα and Wββ , shown in Fig. 3A, are readily understood in
terms of the magnetic force acting on the spin by the field gra-
dient. The semi-classical analysis developed by WW3 repro-
duces such behaviour reasonably well. A less intuitive situa-
tion is presented by the off-diagonal Wigner function elements
Wαβ and Wβα , which correspond to spins in phase-coherent
superposition states upon entering the SG apparatus.

Instead of an unpolarised Ag beam, consider one that has
been fully polarised in the x direction before entering the field
gradient shown in Fig. 2A. This could be accomplished, for
example, by preceding the magnet with a similar one rotated
by 90◦ about the z-axis, and selecting one of the two resulting

4 | 1–6

Page 4 of 6Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



A

B

C

520 mm 580 mm20 mm

Gradient G Gradient –GHom. + RF

100 x [μm]

–100

D

E

100 x [μm]

–100

100 

–100

p g   m
mol  s

100 

–100

p g   m
mol  s

Oven Magnet A Magnet B DetectorMagnet C

z

x

Fig. 4 A: Schematic of the original Rabi apparatus (adapted
from 12). B, C: Simulated spatial (B) and momentum (C) beam
traces for By0 far from the resonance condition. D, E Simulated
spatial (D) and momentum (E) traces at the magnetic resonance
condition. In (E) note the periodic spin state exchanges induced by
the resonant radiofrequency field.

traces.
Polarisation along the x-axis corresponds to a spin quan-

tum state 2−1/2(|α⟩+ |β ⟩), and the initial conditions for the
EWF matrix elements are then Wαα = Wββ = Wαβ = Wβα =
1
2W0. Under the potential energy term (14), the off-diagonal
terms undergo a harmonic oscillation with a linearly position-
dependent frequency. This leads to a spatial modulation with
wave number k = ±γGxyt. At the same time, however, the
ballistic drift shears the Wigner function. Therefore, the di-
rection of the phase modulation in the (x, p)-plane gradually
rotates, and the Wigner function is modulated in both the po-
sition and momentum domain. This is shown in Fig. 3B. It
should be noted that the spatial frequency of the modulation
grows very quickly as a function of time; the field gradient
used for the simulation shown in Fig. 3B was reduced by a
factor of 5× 104 compared to Fig. 3A in order to make the
modulation visible. Under the true field gradient in the SG
experiment (10 G µm−1), the wavelength of the spatial modu-
lation after only 45 µs would already be less than 1 nanometre.

Hence, due to the shear of the EWF due to ballistic drift, the
projections of the off-diagonal element of the EWF on either
the momentum or the position axis vanish. In the quantum de-
scription, no external dissipative agency is required to dephase
the off-diagonal elements of the extended Wigner function be-
yond any hope of recovery: the dephasing happens by itself as
a consequence of the quantum dynamics.

4 Analysis of the Rabi Experiment

As a second example, we treat the classic magnetic resonance
experiment introduced by Rabi and coworkers in order to mea-
sure nuclear gyromagnetic ratios12. The apparatus is shown
in Fig. 4A. It relies on two magnetic field gradients of oppo-
site polarity (Magnets A and B). The first gradient imparts a
curvature to the beam path depending on the spin state of the
entering particle. This curvature is reversed in the second gra-
dient, thus refocusing the beam. In between the two sets of
gradients, there is a region with a homogeneous static mag-
netic field By0 (Magnet C), combined with a radio frequency
field Bx(t) = B1 cos(ωrf t).

The spins undergo nutations at a frequency proportional
to B1, if ωrf is sufficiently close to the Larmor frequency
ω = −γBy0, where γ denotes the gyromagnetic ratio. This
nutation interferes with the refocusing of the beam, and leads
to a measurable decrease in the detected beam intensity. The
gyromagnetic ratio can then be inferred from the frequency
ωrf at which the effect is maximal.

Using the EWF formalism, it is straightforward to simulate
this experiment. We assume that the beam consists of NaF
molecules emanating from an oven at 1300 K. The molecules
are treated as single spin-1/2 systems with a gyromagnetic ra-
tio corresponding to 19F; the Na nuclear spin is ignored. The
geometry of the apparatus and the magnitudes of the magnetic
fields and field gradients have been taken from ref.12.

The evolution of the EWF matrix elements has been com-
puted numerically as detailed in the Methods section. Fig. 4B
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Fig. 5 Predicted beam intensity in the Rabi experiment as a function
of magnetic field B0 in the homogeneous section. Dashed line:
single velocity v = 500 m/s; solid line: average over 4 different
velocities from 450 to 550 m/s.

and C show the position and momentum traces in the case of
a large resonance offset. The first magnet splits the beam in
a manner analogous to the Stern-Gerlach experiment. A nar-
row collimation slit then admits only the centre of the beam
to the homogeneous magnet region. As a result, the beam en-
tering C is unpolarised in the spatial domain, but completely
polarised in the momentum direction (i.e., the transverse mo-
mentum and spin states are entangled). The two beams retain
their spin “identity”, and are then spatially refocused by the
inverse field gradient (Magnet B). The situation is different
when the magnetic field By0 is close to resonance (Fig. 4D
and E). The spin states are now exchanged periodically under
the influence of the resonant radio frequency field in Magnet
C. As a result, a large fraction of the beam intensity is further
deflected by the refocusing magnet, leading to a decrease of
the detector signal.

Fig. 5 shows the computed beam intensity at the detector as
a function of By0, assuming an rf frequency and amplitude of
7.90 MHz and 20 G, respectively. Assuming a single velocity
of the NaF molecules leads to a sinc-shaped resonance line
(dashed line), which is smoothed out if the results are averaged
over a 20% velocity variation. This results in a line shape that
is very similar to the ones reported in the original work by
Rabi et al12.

5 Computational Methods

In the case of the Stern-Gerlach experiment, the equations of
motion are decoupled due to the diagonal potential energy part
of the Hamiltonian (14). Moreover, the forces acting on the
αα and ββ elements are equal in magnitude and opposite in
sign. Under these conditions, the equations of motion can be

integrated symbolically. One obtains

Wαα(x, p; t) =Wαα(x−
p
m

t +
F

2m
t2, p−Ft;0)

Wαβ (x, p; t) = exp
(
−2it

h̄
F(x− pt

2m
)

)
Wαβ (x−

p
m

t, p;0),

(15)

where F = −∂Uαα/∂x = 1
2 γ h̄Gxy. Analogous expressions

hold for Wββ and Wβα . The results shown above have been
obtained by assuming an initially centred Gaussian distribu-
tion of width ∆p= 60 g mol−1 ms−1 and ∆x = 30 µm at t = 0.
The graphs shown in Fig. 3 were obtained by propagating the
initial Gaussian according to (15).

In the case of the Rabi experiment, the potential energy part
of the Hamiltonian can no longer be diagonalised in a sin-
gle coordinate frame throughout the experiment. As a conse-
quence, the equations of motion cannot be solved in closed
form. Instead, the extended Wigner functions were repre-
sented on a rectangular grid, and the partial derivatives eval-
uated using a first-order quadrilateral finite element approach.
The equations of motion given by (12) were integrated numer-
ically using a fourth-order Runge-Kutta algorithm.

6 Conclusions

In summary, we have used an extended Wigner function ap-
proach to simulate the quantum dynamics operating in the
Stern-Gerlach and Rabi experiments. A detailed picture of the
evolution of the quantum state emerges. No dissipative effects
are required to reproduce the experimental observations, even
when the particle enters the apparatus with a spin polarization
perpendicular to the magnetic field gradient.
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