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Hollow nanostructures are paid increasing attention in many nanotechnology-related communities in view of their numerous

applications in chemistry and biotechnology, e.g. as smart nanoreactors or drug-delivery systems. In this paper we consider

irreversible, diffusion-influenced reactions occurring within a hollow spherical cavity endowed with a circular hole on its surface.

Importantly, our model is not limited to small sizes of the aperture. In our scheme, reactants can freely diffuse inside and outside

the cavity through the hole, and react at a spherical boundary of given size encapsulated in the chamber and endowed with a

given intrinsic rate constant. We work out the solution of the above problem, enabling one to compute the reaction rate constant

to any desired accuracy. Remarkably, we show that, in the case of narrow holes, the rate constant is extremely well-approximated

by a simple formula that can be derived on the basis of simple physical arguments and that can be readily employed to analyze

experimental data.

1 Introduction

Chemical processes at the nano-scale are central to many com-

plex phenomena in a wide array of modern nanotechnological

applications. For example, it has long been known that hollow

nanostructures provide some advantages in a number of ap-

plications (fillers, pigments, coatings, catalysts etc.) because

of their lower density1–5. Furthermore, physical and chemical

features of hollow nanostructures can nowadays be fashioned

in a controllable manner for a wide range of sizes, shapes, ma-

terials and structural properties of the shells, including thick-

ness, porosity, and surface reactivity. As a consequence, in-

creasing attention has been paid over the last decade to the

elaboration of different engineering methods for manufactur-

ing hollow nano-objects of various kinds.

Among many different nanostructures, hollow spheres and

capsules have stimulated great interest because of their poten-

tial applications in controlled drug delivery systems2,6,7, arti-

ficial cells8, catalysis9,10, lithium batteries1 and as compart-

ments for confined reactions10–12.

It is clear that many important physical and chemical pro-

cesses such as diffusion transfer and chemical reactions might

be considerably influenced by spatial restrictions13–18. Hol-
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low nanostructures find specific applications relative to their

bulk counterparts mostly due to pronounced size-dependent

effects emerging from the confined geometry of the reaction

volumes. Nanochemical processes occurring in confined ge-

ometries usually take place within nano-scale reaction com-

partments (often referred to as nanoreactors), whose typical

dimensions are greater than the relevant reactants sizes19,20.

For example, typical nanoreactors for drug delivery consist of

hollow spheres with reflecting walls and encapsulated prodrug

particles that are needed for the local production of the appro-

priate drug. The spherical shells of such nanoreactors have

one or several holes allowing small particles, reacting with

prodrugs, to penetrate inside the nanoreactor by passive dif-

fusion6. Other kinds of hollow spherical yolk-shell nanoparti-

cles sinthetized as delivery vehicles or nanoreactors rely on hi-

erarchical porous structures21 or are engineered as thermosen-

sitive nano-catalysts13.

Typical dimensions of reactants and compartments ensure

that reactions occurring in hollow nanostructures and meso-

porous materials are mostly diffusion-influenced. This kind

of reactions play an important role in chemistry and biology,

and appropriate mathematical theories are well established for

reactions occurring in for unbounded domains22,23. However,

despite their great potential importance in many different ap-

plications, there are very few studies devoted to diffusion-

influenced reactions occurring within hollow spheres.

To the best of our knowledge, this problem was first dis-

cussed by Adam and Delbrück24. Later Tachiya studied the

kinetics of diffusion-controlled reactions between particles en-

capsulated within a micelle to describe luminescence quench-
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ing and excimer formation25. The theory of irreversible,

diffusion-influenced quenching reactions of the type A+B∗ k−→
A+B occurring at partially absorbing sinks within a spherical

cavity and at the cavity surface were developed by Bug et al26.

Three possible schemes for the location of partially absorbing

surfaces within a spherical cavity (acceptors in the center, at

the surface and at both locations) were considered.

In another study, the somewhat similar problem of the des-

orption of a lipid molecule from a lipid vesicle and its incor-

poration into another vesicle at high acceptor concentrations

was reduced to solving the diffusion equation inside two con-

centric spheres27. To this end, perfectly absorbing boundary

condition were imposed on the large sphere and appropriate

matching boundary conditions were used on the surface of the

small sphere. Analogous calculations were performed by Lü

and Bülow, who solved the diffusion equation in different hol-

low geometries featuring either impermeable or permeable in-

ner cores28.

Recently, more sophisticated in silico schemes based on

complex sets of coupled reaction-diffusion boundary prob-

lems have been introduced with the aim of understanding the

cellular behavior of toxic foreign compounds. Methods mo-

tivated by homogenization techniques have been applied to

make such problem treatable, yielding good agreement with

experiments29. Along similar lines, the theory of irreversible

diffusion-controlled reactions has been applied to describe

reactions between substrates and enzymes in a whole-cell

model30. However, the Smoluchowski reaction rate constant

was used in this study, which is questionable when one takes

into account the confined geometry of the cell and crowding

effects.

Overall, many studies that investigated reactions within

confined geometries did not take into consideration the struc-

ture of the outer surface, often featuring one of more apertures

(e.g. circular pores). Generally speaking, diffusive problems

in geometries of this kind with the constraint of small aper-

tures are known as narrow escape problems31–34 and have

been widely studied in many applications, such as diffusion

in cellular microdomains35 and long dendritic spines36. Re-

cently, Sheu and Yang generalized the diffusive narrow escape

problem to a gating escape model, describing the escape pro-

cess of a Brownian particle out of a spherical cavity through a

circular gate on the surface37. The angular size of the aperture

was described by a time-dependent function θ0 (t), so that the

gate behaves like an absorbing or reflecting patch in the open

and closed states, respectively.

Remarkably, as it is done in Ref.37, absorbing boundary

conditions are usually imposed on the gate/patch with the aim

of modeling the diffusive escape of a particle from a confined

volume through a hole on its surface. As a consequence, these

theories cannot describe free diffusion of particles through the

hole. In fact, this would necessitate that the model accommo-

date for both the diffusion from the inside to the exterior and

in the opposite direction. Moreover, the mean first passage

time approach is a powerful tool to study diffusion in compact

domains but it is not appropriate for diffusion in a cavity con-

nected with an outer, unbounded domain.

The problem of leakage of Brownian particles through a

narrow pore studied in Ref.38 is much closer to the problem of

free diffusion through a hole, as the flux density of the source

on the boundary was taken into account. However, the flux

of diffusing particles was given by a prescribed function and

therefore it cannot describe free diffusion of particles through

the hole38. Along the same lines, Berezhkovskii and Barzykin

studied the kinetics of diffusive escape from a cavity through

a narrow hole in the cavity wall and successive reentry by a

formal kinetic scheme for reversible dissociation39.

The diffusion-influenced binding to a buried binding site

connected to the surface by a channel studied in Ref.40 is the

closest problem to the subject of our study that can be found

in the literature. Nevertheless, this problem was only solved

for the case of a conical pit with the aid of a constant-flux ap-

proximation or for all geometries where diffusion occurs in

interior regions that are so narrow that the problem can be ap-

proximately considered as one-dimensional.

A thorough analysis of the literature showed that up to

now there are no studies devoted to the theory of diffusion-

influenced reactions occurring in hollow spheres connected

through a circular hole of arbitrary size to the unbounded outer

space containing an excess of diffusing particles in the bulk.

This is the problem that we solve in this paper.

The paper is organized as follows. In Section 2 we present

a detailed formulation of the problem at issue. The solution of

the problem is described in section 3, where we compute the

reaction rate constant. In Section 4 we discuss our results and

we show that our problem can be considered as equivalent to

a much simpler one in the case of very small apertures. The

main conclusions of the paper and possible extensions of the

theory are given in Sec. 5. The appendix contains the details

of the calculation and the explicit expressions of the matrix

equations obtained by a dual series relations approach.

2 The problem

Let us consider particles B with bulk density ρB diffusing into

a randomly distributed 3D system of hollow spheres with im-

mobile reactants A (sinks) encapsulated inside them. We as-

sume the hollow spheres to be either fixed in space or mobile

but much larger than the size of B particles, so that they can be

considered as immobile. Furthermore, we assume that ρB is

much smaller than the density of hollow spheres, so that one

can consider the equilibrium of B particles reacting with an

isolated hollow nanoreactior.

For the sake of simplicity, we treat hollow spheres as in-
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Another condition at the hole can be formulated in general as

follows44

∂u−

∂ r

∣

∣

∣

∣

∂Ω−
0

− 1

R(θ0)

[

u−
∣

∣

∂Ω−
0
− u+

∣

∣

∂Ω+
0

]

= 0 (8)

The parameter R(θ0) gauges the contact resistance that parti-

cles experience across the hole separating the two media and

is related to the microscopic mechanism underlying the het-

erogeneity in substrate mobility inside and outside the cavity.

In general, in the limit θ0 → π one should consistently recover

Do = Di and continuity of the substrate concentration field

u−
∣

∣

∂Ω−
0
− u+

∣

∣

∂Ω+
0
= 0 (9)

corresponding to R → 0. In the following, we will assume that

there is no interfacial resistance associated with substrate flow

in the radial direction across the hole, so that we can enforce

the continuity condition (9) for all values of θ0.

Conditions (9) and (7) for Di 6= Do are often called the weak

discontinuity conditions for the concentration field u(r). To

complete the set of boundary conditions, the two-sided surface

of the hollow sphere is assumed to be reflecting both from the

inside ∂Ω+
1 and from the outside ∂Ω−

1 , i.e.

∂u+

∂ r

∣

∣

∣

∣

∂Ω+
1

=
∂u−

∂ r

∣

∣

∣

∣

∂Ω−
1

= 0 (10)

This is of course an approximation, as ligand-wall interactions

are known to be important in certain applications, such as the

release of a guest particle from mesoporous matrices, catalysis

taking place in porous materials or processes occurring in sep-

aration techniques45–48. However, we note that our theoretical

framework can be easily modified to accommodate for guest-

host interactions by introducing an intrinsic reaction constant

at the inner (and possibly outer) surface, which means consid-

ering radiative instead of reflecting BCs in eq. (10).

2.1 The reaction rate constant

We are interested in the pseudo-first-order irreversible bulk

diffusion-influenced reaction between sinks A (encapsulated

in hollow spheres with a hole) and reactants B freely diffusing

in 3D space

A+B
kD−−⇀↽−−
k−D

A ·B kin−→ A+P (11)

where A ·B denotes the so-called encounter complex, kD and

k−D are the association and dissociation diffusive rate con-

stants, respectively, and kin is the intrinsic rate constant of the

chemical reaction occurring at the sink surface. Reactions of

the kind (11) are customary dealt with by enforcing radiation

boundary conditions † at the reaction surface ∂Ωa, i.e.

[

4πa2Di

∂u+

∂ r
− kinu+

]

∂Ωa

= 0 (12)

Thus, we can consider that hollow spheres effectively act as

sinks of infinite capacity according to the pseudo-first-order

reaction scheme

A+B
ka−→ A+P (13)

where the forward diffusion-influenced rate constant ka is de-

fined by the formula

ka =
∫

∂Ωa

Di

∂u+

∂ r

∣

∣

∣

∣

r=a

dS (14)

Using this rate constant one can approximately describe the

kinetics of the effective reaction (13) as

cB (t) = cB(0)exp(−kacAt) (15)

where cA = const is the bulk concentration of hollow spheres,

cB(t) is the time-dependent effective bulk concentration of B

particles. We stress that our schematization of the problem

holds under the excess reactant condition ρA ≪ ρB, ρA being

the bulk number density of sinks. Our goal is to compute the

rate constant (14).

Equation (3) with the boundary conditions (4), (9),(7)

and (12) completely specify our mathematical problem. It

is expedient in the following to use the dimensionless spatial

variable ξ = r/R. The problem at issue can be cast in the fol-

lowing form

∇2u± = 0 in Ω± (16a)

∂u+

∂ξ

∣

∣

∣

∣

ξ=ε

−hu+(ε) = 0 for 0 ≤ θ < π (16b)

lim
ξ→∞

u−(ξ ) = 1 (16c)

∂u±

∂ξ

∣

∣

∣

∣

ξ=1∓
= 0 for θ0 < θ < π (16d)

u+
∣

∣

ξ=1− − u−
∣

∣

ξ=1+
= 0 for 0 ≤ θ ≤ θ0 (16e)

χ
∂u+

∂ξ

∣

∣

∣

∣

ξ=1−
− ∂u−

∂ξ

∣

∣

∣

∣

ξ=1+
= 0 for 0 ≤ θ ≤ θ0 (16f)

where ε = a/R and h = kinR/(4πa2Di). The limit h → ∞ cor-

responds to considering the boundary ∂Ωa as a perfectly ab-

sorbing sink. In this case the reaction (11) becomes diffusion-

limited, as the chemical conversion from the encounter com-

plex A ·B to the product P becomes infinitely fast with respect

to the diffusive step leading to the formation of A ·B.

† This kind of boundary conditions are also known as Robin boundary condi-

tions.
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3 The solution

We look for solutions in the form

u−(ξ ) = 1+
∞

∑
n=0

An

ξ n+1
Pn(µ) for ξ ≥ 1 (17a)

u+(ξ ) =
∞

∑
n=0

[

Bn

ξ n+1
+Cnξ n

]

Pn(µ) for ξ ≤ 1 (17b)

where An,Bn and Cn are constants, µ = cosθ and Pn(µ)
are Legendre polynomials of order n. Inserting eq. (17b) in

eq. (16b), we get

Cn = αnBn (18)

with

αn =
n+1+hε

ε2n+1(n−hε)
(19)

Formula (14) leads to the reduced reaction rate

k∗a =
ka

k+S
=

1

2

∫ 1

−1

∂u+

∂ξ

∣

∣

∣

∣

ξ=ε

dµ (20)

where k+S = 4πDia is the internal Smoluchowski rate constant

for an ideal spherical sink of radius a. Inserting eq. (17b) in

eq. (20) and making use of eqs. (18) and (19), we get

k∗a =−B0

ε
(21)

So the problem is reduced to the calculation of the constant

B0. The mixed boundary-value problem (16a)-(16f) can be

solved with the method of dual series relations (DSR)49. DSR

admit solutions in the form of an infinite-dimensional system

of algebraic equations for a new set of unknown coefficients

Xn,Yn, that are linearly related to An,Bn
50

Zn = Z0
n +

∞

∑
m=0

MnmZm, (n = 0,∞) (22)

Here Zn = (Xn,Yn)
T ,Z0

n =
(

X0
n ,Y

0
n

)

and

Mnm =





M11
nm M12

nm

M21
nm M22

nm



 (23)

where M
i j
nm are four infinite-dimensional matrices of known

elements, functions of the relevant geometrical and physical

parameters ε,h and χ (see appendix A for the details of the

calculation and the explicit expressions of the matrices M
i j
nm).

In particular, the expression for the rate as a function of the

new coefficients is

k∗a =−Y0

ε
(24)

4 Results and discussion

Let us start by considering the limit ε → 1, that is, a → R. Fur-

thermore, for the sake of simplicity, let us consider diffusion-

limited reactions, i.e. h → ∞. This case corresponds to con-

sidering a perfectly absorbing circular patch on an otherwise

reflecting sphere of radius R. The rate constant for this system

can be characterized by a steric factor fR(θ0) ∈ [0,1]

kR

k−S
= fR(θ0) (25)

where k−S = 4πDoR is the external Smoluchowski rate con-

stant for an ideal spherical sink of radius R. The steric factor

fR(θ0) can be calculated to any necessary accuracy with the

DSR method50. In particular, it was found that

fR(θ0)∼
1

2π
(θ0 + sinθ0) as θ0 → 0 (26)

In the general case a < R, it is expedient to normalize the re-

action rate constant ka to the rate constant (25). This is tan-

tamount to characterizing the sink inside the spherical cavity

through a normalized effective steric factor f̂ (θ0;ε,χ)∈ [0,1],
defined as

f̂ (θ0;ε,χ) :=
ka

kR

=
ka

k−S fR(θ0)

=
εχ

fR(θ0)

(

ka

k+S

) (27)

The physical meaning of f̂ (θ0;ε,χ) is to gauge how effec-

tive is the inner sink of radius a in trapping a particle diffus-

ing through the spherical cap hole with respect to the situa-

tion when the particle is instantaneously trapped the moment

it touches the cap from the outside (a = R). Indeed, as the sink

grows to touch the internal wall of the cavity, one has

lim
ε→1

f̂ (θ0;ε,χ) = 1 (28)

independently of χ , as the inner sphere merges with the outer

one. Conversely, as the sink shrinks, one has

lim
ε→0

f̂ (θ0;ε,χ) = 0 (29)

uniformly with respect to χ . In this case, the effective steric

factor vanishes as there is no sink within the spherical cavity

SR.

In Fig. 2 we plot the normalized effective steric factor as a

function of the inner sink size a for different values of the an-

gular aperture of the circular hole. As the aperture decreases,

f̂ feels less and less the dependence on a, which appears to

be limited to two boundary layers in the vicinity of a = 0 and

a = R. Between the two boundary layers, the effective steric
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Fig. 2 (Color online) Plot of the normalized effective steric factor (27) as a function of the radius of the inner sphere for different sizes of the

spherical cap hole and different values of χ . The inner encapsulated sphere is taken as perfectly absorbing, i.e. the calculations are performed

for h → ∞.

factor is nearly constant.

In view of the Gauss-Ostrogradsky theorem, this is tanta-

mount to saying that for small patches the inner sphere feels

a constant flux on the surface r = R. Hence, the rate does not

depend on the surface used for evaluating the integral (20).

The value of f̂ within the plateau is a measure of how much

the whole system is less effective in trapping a tracer parti-

cle from the exterior with respect to the patched sphere SR.

Therefore, it is a measure of the portion of incoming particle

flux through the hole that does not reach the inner sink, e.g.

the flux that escapes back to the exterior through the aperture

in the cavity.

Interestingly, we see that the such value increases when the

outside diffusion coefficient decreases with respect to the in-

side (increasing χ). There are many situations where this

might happen, such as when the ligand diffuses in an ob-

structing or otherwise confining outside medium, and/or at in-

creased ligand density. In such situations, the single-particle

diffusion coefficient of the ligand decreases. We conclude

that, in order to reach diffusively the inner target more ef-

fectively through the hole, the inner medium should be less

densely populated or less confining than the outside. This can

be rationalized in terms of a reduced escape probability to-

wards the exterior. A different way to picture this effect is to

recall that in the limit χ → ∞ the continuity condition (16f)

turns the spherical hole into a perfectly reflecting patch from

the interior. Again, no particles allowed to escape outside the

spherical cavity.

The plateau value of the effective steric factor for small

θ0 is proportional to the fraction of flux that reaches the in-

ner sink at equilibrium, Φin, while its complement to one is

proportional to the flux Φout that leaves the inside of SR. As

Di/Do increases, we see that Φout goes to zero, meaning that

particles become more and more trapped once they have dif-

fused inside SR. A measure of Φout can thus be obtained by

plotting the plateau value of f̂ as a function of χ . This is

shown in Fig. 3 for the choice a/R = 0.5 and θ0/π = 0.02, so

as to ensure that the boundary layers are sufficiently thin (see
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Fig. 3 (Color online) Plot of the plateau value of the normalized

effective steric factor (27), f̂plat = f̂ (a/R = 0.5,θ0/π = 0.02) as a

function of the inner-to-outer diffusivity ratio χ = Di/Do (symbols).

The inner sphere is taken as a perfectly absorbing sink, i.e. the

calculation is performed for h → ∞. The dotted curve is a plot of the

theoretical prediction, eq. (30).

again bottom right panel in Fig. 2). We see that, for large val-

ues of the ratio Di/Do, the system behaves as a single sphere

of radius R with a small absorbing patch (practically no flux

leaking back to the outside), i.e. ka → k−S fR(θ0) (see again the

definition (27)).

The flux through the hole that reaches the sink is propor-

tional to Di, while the incoming flux into the cavity is pro-

portional to Do. We can thus surmise that, when the rate into

the sink becomes independent of its size a for small values

of θ0, the fractions of flux reaching the sink and leaking back

through the hole are approximately given by Di/(Di+Do) and

Do/(Di +Do), respectively. This leads us to conjecture that

the value of the effective steric factor (27) for sinks occupying

the bulk region of the cavity, i.e. the plateau shown in Fig. 2,

is given by

f̂plat =
Di

Di +Do
=

χ

1+χ
(30)

Fig. 3 shows that Eq. (30) yields a perfect interpolation of the

plateau values, confirming the validity of our simple physical

reasoning.

4.1 Rationalizing the results through a simplified effec-

tive model

From the above discussion it should be clear that, for small θ0,

we may model our system as a single sphere of radius R en-

dowed with a partially absorbing surface, characterized by an

effective intrinsic reaction rate constant keff. This means that

our boundary problem, for small values of the hole aperture,

should become equivalent to the following reduced problem

d

dξ

(

ξ 2 du

dξ

)

= 0 (31a)

(

du

dξ
−heffu

)∣

∣

∣

∣

ξ=1

= 0 (31b)

lim
ξ→∞

u(ξ ) = 1 (31c)

The parameter heff = keff/k−S gauges the effective absorbing

power of the sphere SR. This should depend on the steric fac-

tor fR(θ0), which guarantees that only a portion of the surface

is potentially absorbing by construction, and on χ = Di/Do. It

is easy to check that the rate constant k for the above reduced

problem is given by

k

k−S
=

heff

1+heff

(32)

Recalling the definition (27), we see that eqs. (32) and (30) fix

the effective reactivity of the reduced model, i.e.

heff =
χ fR(θ0)

1+χ[1− fR(θ0)]
(33)

5 Conclusion and perspectives

In this paper we investigated an irreversible, diffusion-

influenced reaction occurring within a spherical cavity en-

dowed with a circular hole on its surface. Importantly, our

model is not limited to small values of the angular aperture θ0

of the hole on the cavity surface. In our model, B particles can

freely diffuse inside and outside the cavity through the hole,

and react at a spherical boundary A encapsulated in the cavity

and endowed with a given intrinsic rate constant. This model

is relevant for chemical and biochemical reactions occurring

in hollow nano-structures, which are intensively studied for a

wide array of nanotechnological applications.

We work out the solution of the above problem, enabling

one to compute the reaction rate constant for the encapsulated

sphere within the cavity to any necessary accuracy.

Remarkably, we find that, for small values of the hole aper-

ture, the rate constant ka becomes independent of the size of

the inner reactive sphere. In this case, the rate is simply pro-

portional to the fraction of diffusive flux that is actually ab-

sorbed by the sink and thus does not leak back through the

hole into the bulk. We show how this situation can be encapsu-

lated in a simple effective model, whose theoretical prediction

provides a simple yet powerful formula, i.e.

ka = k−S fR(θ0)
χ

1+χ
(34)

Here χ = Di/Do is the ratio of the inside to outside diffu-

sion coefficients, k−S = 4πDoR is the outside Smoluchowski
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rate constant into the spherical cavity and fR(θ0) ≃ (θ0 +
sinθ0)/(2π) is the steric factor that characterizes the rate into

the cavity when the hollow sphere is modeled as a perfectly

absorbing patch (the hole) on an otherwise reflecting surface.

Eq. (34) is a key result of this paper.

Future follow-ups of this work may include extending

our mathematical framework to diffusion-influenced reactions

with two axially symmetric hollow spheres and to situations

where the encapsulated sink is no longer concentric with the

hollow sphere but lies at an arbitrary location in the interior51.
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A

In this appendix we describe in detail the solution of the mixed

boundary-value problem(16a)-(16e) with the method of dual

series relations (DSR).

The constants An and Bn can be determined by imposing

the boundary conditions (16d) and the two continuity condi-

tions (16e) and (16f). Recalling eq. (18), we get the two fol-

lowing coupled DSRs

∞

∑
n=0

{(1+αn)Bn −An −δn0}Pn(µ) = 0,

0 ≤ θ ≤ θ0 (35a)

∞

∑
n=0

(n+1)AnPn(µ) = 0, θ0 < θ < π (35b)

∞

∑
n=0

{(n+1)An −χ[n(1−αn)+1]Bn}Pn(µ) = 0,

0 ≤ θ ≤ θ0 (35c)

∞

∑
n=0

[n(1−αn)+1]BnPn(µ) = 0, θ0 < θ < π (35d)

where δi j is the Kronecker delta. The above DSRs can be cast

in canonical form by defining

Xn =

(

n+1

2n+1

)

An (36a)

Yn =

(

n(1−αn)+1

2n+1

)

Bn (36b)

which gives

∞

∑
n=0

XnPn(µ) = G(θ) 0 ≤ θ ≤ θ0 (37a)

∞

∑
n=0

(2n+1)XnPn(µ) = 0 θ0 < θ < π (37b)

∞

∑
n=0

YnPn(µ) = F(θ) 0 ≤ θ ≤ θ0 (37c)

∞

∑
n=0

(2n+1)YnPn(µ) = 0 θ0 < θ < π (37d)

with

G(θ) =
∞

∑
m=0

[

Xm

2(m+1)
+βmYm

]

Pm(cosθ)− 1

2
(38a)

F(θ) =
∞

∑
m=0

[

2m+1

χ
Xm −2mYm

]

Pm(cosθ) (38b)

and

βm =
(1+αm)(2m+1)

2[m(1−αm)+1]
(39)

The DSRs (37a),(37b),(37c),and (37d) admit a formal solu-

tion in the form of the infinite-dimensional system of algebraic

equations49

Xn =

√
2

π

∫ θ0

0
ducos

[(

n+
1

2

)

u

]

d

du

∫ u

0

G(θ)sinθ dθ√
cosθ − cosu

(40a)

Yn =

√
2

π

∫ θ0

0
ducos

[(

n+
1

2

)

u

]

d

du

∫ u

0

F(θ)sinθ dθ√
cosθ − cosu

(40b)

The integrals appearing in eqs. (40a) and (40b) can be com-

puted explicitly52, by noting that ‡

∫ u

0

Pm(cosθ)sinθ dθ√
cosθ − cosu

=
2
√

2

2m+1
sin

[(

m+
1

2

)

u

]

(41)

which finally gives

Xn =
∞

∑
m=0

(

M11
nmXm +M12

nmYm

)

+X0
n

Yn =
∞

∑
m=0

(

M21
nmXm +M22

nmYm

)

+Y 0
n

‡ I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products,

Academic Press, Eq. 7.225.
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where

M11
nm =

1

2(m+1)
Φnm, M12

nm =
(1+αm)(2m+1)

2[m(1−αm)+1]
Φnm

M21
nm =

2m+1

χ
Φnm, M22

nm =−2mΦnm

X0
n =−Φn0

2
Y 0

n = 0

Φnm =
1

π

[

sin(m+n+1)θ0

m+n+1

+
sin(m−n)θ0

m−n
(1−δmn)+θ0δmn

]

Note that Φnm = 0 for θ0 = 0, which gives Y0 = 0. Hence

the rate vanishes in this limit, as it should. The other interest-

ing limit is θ0 = π , when the larger external sphere no longer

exists. In this case it is easy to see that Y0 = (α0 + 1− χ)−1.

However, in the limit θ0 = π , one has to consider Di =Do =D,

as the separation between the two spatial domains r < R

and r ≥ R becomes immaterial. Hence, recalling eqs. (19)

and (24), we get

k

kS

=− 1

α0ε
=

hε

1+hε
=

kin

kS + kin

(43)

where kS = 4πDa, which is the correct result for a partially

absorbing sphere with intrinsic reaction rate constant kin. The

limit of fully absorbing sphere k = kS is recovered in the limit

kin → ∞.
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