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We perform detailed first principles calculations of the structural parameters at zero pressure and high pressure, the elastic
properties, phonon dispersion relation, and ideal strengths of U2Mo with C11b structure. In contrast to previous theoretical
studies, we show that the I4/mmm structure is indeed a mechanically and dynamically unstable phase, which is confirmed by the
negative elastic constant C66 as well as the imaginary phonon modes observed along the Σ1-N-P line. The calculations of ideal
strengths for U2Mo are performed along [100], [001], and [110] directions for tension and on (001)[010] and (010)[100] slip
systems for shear load. The ideal shear strength is about 8.1 GPa, much smaller than tension of 18-28 GPa, which indicates that
the ductile U2Mo alloy will fail by shear rather than by tension.

1 Introduction

Uranium has received a lot of attention for its unique nucle-
ar properties and its various applications in nuclear industry.
At high temperature (1049 K< T <1405 K), the crystal struc-
ture of solid uranium is body-centered-cubic (bcc, γ phase).
On cooling, uranium experiences a solid-solid phase trans-
formation to the body-centered tetragonal (bct) structure (β
phase) and then to the complex orthorhombic structure (α
phase, Cmcm, 4 atoms per unit cell). The room temperature
α-U has some shortcomings such as poor oxidation and cor-
rosion resistance, low hardness and yield strength. In order
to improve mechanical properties and corrosion resistance of
uranium at room temperature while maintaining the high den-
sity, uranium is frequently alloyed with other elemental metal-
s. Several elements such as Mo1, Zr2, Nb3, and Ti4 exhibit a
high degree of solid solubility in the high temperature γ phase,
therefore a wide range of metastable alloys can be formed at
lower temperature5.

Mo exhibits a high solubility (∼35 at.%) in γ-U. Compared
with other high density uranium alloys and compounds, the
low-enriched uranium alloys with 6-12 wt.% of Mo have at-
tracted a great deal of attention and are recognized as the
most prominent candidates for advanced research and test re-
actors, because they have a relatively larger γ phase region
and present more stable irradiation performance6,7. For trans-
uranium-burning advanced fast nuclear reactors, it is shown
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that Mo is preferable to Zr because it is a stronger γ-stabilizer
which provides stable swelling behavior in U-Pu-Mo fuels8.
And from a safety point of view, U-Pu-Mo fuels win an ad-
vantage over U-Pu-Zr fuels due to the higher thermal conduc-
tivity, lower thermal expansion, and higher melting points.

For the light actinides (Th, U, Np), the 5f states can be ap-
propriately described by an itinerant (or delocalized) picture,
with the absence of magnetic ordering9,10. C. D. Taylor11 and
N. Stojić et al.12 performed the magnetic calculations of the
(001)-oriented α-U single-crystal surface, but there is little ex-
perimental evidence to our knowledge. For γ bcc U-Mo alloys,
the magnetic susceptibilities of a series of samples with 15-30
at.% Mo were measured, and all samples exhibited a Pauli
weak spin paramagnetism13. By using Hill’s criterion14, it is
possible to infer that U2Mo might exhibit Pauli type param-
agnetic behavior. The study of physical properties including
superconductivity15, magnetism of U-Mo alloys is still active-
ly in progress today16.

Although there have been extensive experimental studies
on U-Mo alloys17–20, theoretical attempts are rarely includ-
ed. Alonso and Rubiolo21 first evaluated the thermodynam-
ic functions of U-Mo systems by employing first principles
calculations with a cluster expansion technique, and predict-
ed only one ground state compound, i.e., the bct U2Mo with
the C11b (MoSi2 prototype) structure as its existence was ob-
served experimentally. They also concluded that the stability
of the γU(Mo) phase was dominated by a three-body multi-
site interaction consisting of two pairs of first neighbours and
one pair of third. Later, A. Landa et al.8 studied the ground-
state properties of U-Mo solid solutions by density function-
al theory. They revealed that there was a significant drop of
the density of states in the vicinity of the Fermi level (EF )
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of C11b U2Mo which led to a decrease of the band-structure
contribution to the total energy. It was suggested that the spe-
cific behavior could promote the stabilization of the U2Mo
compound. Whereafter, this work is extended to investigate
ground-state properties of the bcc-based (γ) X-Mo (X=Np, Pu,
and Am) solid solutions22. The authors explained the reason
for an increase of the heat of formation along the actinide row
U-Mo→Np-Mo→Pu-Mo→Am-Mo alloys, as well as the in-
fluence of magnetism on the deviation from Vegard’s law for
the equilibrium atomic volume. Recently, a density-functional
theory study of mechanical and thermal properties of U2Mo
intermetallic has been reported23. The calculated elastic con-
stants satisfied the mechanical stability criteria, implying the
structural stability of C11b U2Mo. In this work, we present
a comprehensive first principles study of the structural, elas-
tic, lattice dynamical properties and ideal strength of the C11b
U2Mo. On the contrary, our results demonstrate that the struc-
ture is in fact unstable, which is in agreement with a very re-
cent study24.

This paper is arranged as follows. Section 2 describes de-
tails of the computational method. Section 3 is devoted to
the calculations and discussions of structural, elastic proper-
ties, and phonon dispersion relation of U2Mo, indicating the
instability of this bct phase. In Section 4, the stress-strain re-
lationships under tensile and shear loads are calculated. We
conclude in Section 5.

2 Computational method

First principles calculations are carried out by using the Vien-
na ab initio simulation package (VASP)25–27, with the frozen-
core projector augmented wave (PAW) method. We use GGA
descriptions for the exchange-correlation functional and set
the cutoff energy of 650 eV in plane-wave basis expansion.
Our plane wave cutoff energy is set to be much higher than
400 eV in Ref.[24], because in tensile tests the cell-volume
change may cause discontinuous changes in stress values, if
the cutoff energy is not enough. The k-point meshes in the
Brillouin Zone (BZ) are sampled by 13×13×13, determined
according to the Monkhorst-Pack scheme. We use tetrahedron
method with Blöchl corrections for the energy calculation and
Methfessel-Paxton’s Fermi-level smearing to accelerate elec-
tronic structure relaxation, respectively. The quasi-Newton al-
gorithm is adopted for the geometric relaxations, with a con-
vergence criterion of the Hellmann-Feynman force being 0.01
eV/Å.

To determine the formation energy of U2Mo, we have al-
so calculated the total energies of bcc U and Mo metals with
the cutoff energy of 650 eV and 600 eV, the k-point mesh-
es of 18×18×18 and 17×17×17, respectively. For accuracy,
the k-mesh sampling has been increased to 17×17×17 during
the elastic properties calculations. In the case of ideal shear

strength calculation, a 20×20×20 k-mesh sampling has been
applied due to the reason that shearing reduces the symmetry
of the crystal and changes the shape of Brillouin Zone. There
could be spurious changes in the energy if the k-point grid is
too coarse.

3 Structural instabilities

3.1 Structural properties

The bct U2Mo has a D17
4h (I4/mmm) space group (No. 139),

with lattice parameters a0=3.427 Å, c0=9.854 Å giving a c/a
ratio of 2.87628. When doing geometry optimization, we s-
tart with the experimental geometries and calculate the depen-
dence of total energy (E) on the volume (V ) of the phase so as
to determine the bulk modulus B0 and the equilibrium volume
V0. We calculate total energies for more than ten different vol-
umes, and do a least-squares fit of the E-V curves (shown in
Fig.1) to the third-order Birch-Murnaghan equation of state29,

E(V ) =− 9
16

B0

[
(4−B′

0)
V 3

0
V 2 − (14−3B′

0)
V 7/3

0

V 4/3

+(16−3B′
0)

V 5/3
0

V 2/3

]
+E0, (1)

with E0 being the equilibrium energy and B′
0 the pressure

derivative of B0.
The calculated lattice parameters are a=3.433 Å, c=9.713

Å, which are consistent with the experimental data and the
very recent theoretical calculations24 (shown in Table 1). The
bulk modulus is obtained as B0 = 172.9 GPa, which is in ex-
cellent agreement with Wang et al.’s study24, where B0 is 182
GPa.

Table 1 Experimental and theoretical structural parameters for
U2Mo.

a(Å) c(Å) c/a V0(Å3) ∆E f orm
(kJ/mol)

Expt.30 3.427 9.834 2.8696 115.49
FPLAPW21 3.44 9.9 2.8779 117.15 ∼ -6.13
FPLAPW23 3.440 9.631 2.80 113.97
EMTO8 117.96 ∼ -3.32
DFT24 3.417 9.714 2.843 113.42
Our study 3.433 9.713 2.829 114.48 -6.467

The formation energy of U2Mo compound relative to the
bcc U and Mo metals is also calculated as

∆E f orm = EU2Mo − (EU +EMo), (2)
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Fig. 1 (Color online) Total energy of U2Mo as a function of
unit-cell volume. The total energy at equilibrium is chosen as the
zero of energy. The solid curve is a least-squares fit to the
third-order Brich-Murnaghan equation of state 29.

Fig. 2 (Color online) The lattice parameters a, c and V/V0 as
functions of applied pressure.

where EU2Mo, EU and EMo are the total energies of the com-
pound, uranium and molybdenum, respectively. Our calcu-
lated formation energy of -6.467 kJ/mol is in agreement with
the earlier theoretical result of -6.13 kJ/mol21 but much lower
than -3.32 kJ/mol8.

Then we further study the crystallographic structure under
compression. Figure 2 displays the calculated lattice parame-
ters a and c, as well as V/V0 as functions of applied pressure
at 0 K, respectively. One can see that the lattice parameter c
decreases faster with applied pressure than a in Figure 2.

3.2 Elastic properties

After calculating the high-pressure structural properties of
C11b U2Mo, we further investigate the single-crystal elastic
constants which determine the stiffness of a crystal against an

externally applied strain. When the undistorted structure is de-
formed into a strain state ε , the deformed lattice vectors can
be obtained as R′ = R(I+ ε), where I is the identity matrix,
and the strain tensor ε is defined as (Voigt’s notation)

ε =

 e1 e6/2 e5/2
e6/2 e2 e4/2
e5/2 e4/2 e3

 ,

where ei are the components of the strain vector e =
(e1,e2,e3,e4,e5,e6). For small deformations, the total ener-
gy E subjected to the strain can be expanded as

E = E0 +V0

6

∑
i=1

σiei +
1
2

V0

6

∑
i, j=1

Ci jeie j + · · · , (3)

with the stress vector σ = (σ1,σ2,σ3,σ4,σ5,σ6). For a tetrag-
onal crystal there are only six independent elastic constants:
C11 =C22, C12, C13 =C23, C33, C44 =C55, and C66. The oth-
ers are either zero or satisfy the general condition Ci j = C ji.
Individual elastic constants Ci j can be determined by comput-
ing the total energy as function of specific strain states. For
instance, e(δ ) = (0,0,0,0,0,δ ) corresponds to the shear de-
formation in the 6-direction, and for a bct crystal Eq.(3) is
reduced to E(δ ) = E0 +

V0
2 C66δ 2, which allows a direct cal-

culation of C66 by fitting the E-δ curve. We list the different
strain configurations to obtain the six independent elastic con-
stants of bct crystal systems in Table 2. For each case listed in
Table 2, we have used 13 different values of δ : δ=0, ±0.003,
±0.006, · · · , ±0.018.

Table 2 Parametrizations of strains used to calculate the six
independent elastic constants of bct U2Mo.

Strain configuration ∆E/V0 to O(δ 2)

1 e = (δ ,δ ,0,0,0,0) (C11 +C12)δ 2

2 e = (0,0,0,0,0,δ ) 1
2C66δ 2

3 e = (0,0,δ ,0,0,0) 1
2C33δ 2

4 e = (0,0,0,δ ,δ ,0) C44δ 2

5 e = (δ ,δ ,δ ,0,0,0) (C11 +C12 +2C13 +
C33

2 )δ 2

6 e = (0,δ ,δ ,0,0,0) (C11
2 +C13 +

C33
2 )δ 2

In Table 3, we summarize our calculated elastic constants,
and compare with previous theoretical results. It is shown
that our calculated results are in reasonable agreement with
the very recent calculation24. It is worth noting that we have
obtained a negative C66 of -34.6 GPa, whereas Jaroszewicz et
al.23 gave the value of C66 of ∼20 GPa by considering the
tetragonal crystal lattice structure U2Mo in the space group
P4/mmm (No.123) and demonstrated the mechanical stabili-
ty.
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Table 3 Calculated elastic constants (in GPa) of bct U2Mo.

C11 C12 C13 C33 C44 C66

DFT24 255 165 124 302 37 -12
FPLAPW23 254 161 125 295 38 ∼ 20
Our study 243.7 148.9 148.5 285.1 17.2 -34.6

In order to examine the influence of these elastic constants
Ci js on the mechanical stability, we refer to the well-known
Born-Huang stability criteria31 for the tetragonal crystal sys-
tems:

(2C11 +C33 +2C12 +4C13)> 0,
C11 > 0,C33 > 0,C44 > 0,C66 > 0,
(C11 −C12)> 0,(C11 +C33 −2C13)> 0. (4)

From Table 3 we can see that all the predicted elastic con-
stants satisfy these conditions except C66 < 0, indicating that
the tetragonal phase is mechanically unstable against the shear
deformation along the direction of the C66 elastic tensor at zero
temperature, which is consistent with Wang et al.’s results24

where C66 =−12 GPa.
Based on the obtained six single-crystal elastic constants of

U2Mo, one can further study its noteworthy polycrystalline
elastic properties according to Voigt-Reuss-Hill approxima-
tion32–34. In Voigt theory, the bulk (BV ) and shear modulus
(GV ) can be obtained as

BV =
2C11 +C33 +2C12 +4C13

9
, (5)

GV =
2C11 +C33 −C12 −2C13 +6C44 +3C66

15
, (6)

while in Reuss theory,

1
BR

= 2(S12 +S23 +S13)+S11 +S22 +S33, (7)

1
GR

=
1
5
(S44 +S55 +S66)−

4
15

(S12 +S23 +S13)

+
4
15

(S11 +S22 +S33), (8)

where Si j are the elastic compliance constants, derived from
the inverse of Ci js. Then the elastic modulus of the poly-
crystalline aggregates can be given by Hill’s average B =
1
2 (BV +BR) and G = 1

2 (GV +GR). The Young’s modulus Y ,
and the Poisson’s ration ν can be calculated as

Y =
9BG

3B+G
,ν =

3B−2G
2(3B+G)

. (9)

Employing the relations above, the calculated bulk modu-
lus, shear modulus, Young’s modulus and Poisson’s ratio for
U2Mo are summarized in Table 4. For polycrystalline phas-
es, Pugh35 has introduced the ratio of bulk to shear modulus
B/G by considering that the shear modulus G represents the
resistance to plastic deformation, while the bulk modulus B
represents the resistance to fracture. A high (low) B/G value
is associated with ductility (brittleness). Although this param-
eter is generally applied for cubic materials, it is interesting
to examine U2Mo. The B/G value for the brittle bcc-U is
0.66, whereas for bcc-Mo is 1.09. In present work the value
of U2Mo is as high as 5.9, suggesting high ductility of this
compound.

Table 4 The calculated bulk modulus B, shear modulus G, B/G,
Young’s modulus Y and Poisson’s ratio ν of bcc-U, bcc-Mo, U2Mo;
all except for ν (dimensionless) in GPa.

B G B/G Y ν
bcc-U Expt.36 134 203.01 0.66

Our study 132.2 204.4 0.647
bcc-Mo Expt.37,38 267.67 245.72 1.09

Our study 261.4 234.3 1.12
U2Mo FPLAPW

method23
180 36 5 102 0.4

U2Mo Our study 184.4 21.7 5.9 62.64 0.44

3.3 Phonon dispersion relation

As stability requires that the energies of phonons be positive
for all the wave vectors in the Brillouin Zone39, the dynamical
instability of U2Mo can be investigated by the full phonon dis-
persion relation. The calculations are performed with the code
of Phonopy40,41 by constructing a 2×2×2 supercell. The full
phonon dispersion of U2Mo consists of 18 branches. Results
of our calculations along the high-symmetry lines of the bc-
t BZ are shown in Figure 3. The imaginary frequencies of
the unstable modes are represented as negative values. Lattice
instabilities are observed to occur around the high-symmetry
directions Σ1-N-P, where the phonon branches exhibit highly
large imaginary frequencies, suggesting that this structure is
dynamically unstable.

4 Stress-strain relationship and ideal strength

In view of the great interest of the study of the intrinsic (ideal)
mechanical properties of materials, in this Section we focus on
the intrinsic stress-strain relationship of U2Mo under tension
and shear. The term ”intrinsic” refers to bulk perfect crys-
tal without any defects. The ideal strength, which provides
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Fig. 3 (Color online) Phonon dispersion for U2Mo along symmetry
lines in the body centered tetragonal BZ. The imaginary frequencies
of the unstable modes are plotted as negative values.

an upper bound of stress that the material can attain under
uniform deformation without any extrinsic effects, has been
recognized as an essential mechanical parameter of material-
s42,43. It has obtained considerable attention theoretically and
experimentally44. This is first because it is sometimes useful
to know the highest strength a particular material can possibly
have. Secondly, this upper bound is actually reached or closely
approached in a number of experiments of nano-structures or
nano regions thanks to the development of material processing
techniques. The most common case is deformation via stress-
induced phase transformations, since some ductile metals and
alloys could approach the limit of strength in the region of
stress concentration before a crack45. Moreover, with recent
advances in modern computational techniques, first principles
studies based on density-functional theory have been success-
fully employed to provide quantitatively believable estimates
of these upper limits42,46.

For the determination of the theoretical strength of a perfect
crystal, one has to calculate the stress-strain curves for large
strains which yield the ideal strengths. We compute the stress-
strain dependence by incrementally deforming the modeled
cell in the applied strain direction. The atomic basis vectors
perpendicular to the applied strain are simultaneously relaxed
until the other components vanish. Meanwhile, all the internal
freedoms of the atom are fully relaxed at each step. To ensure
that the strain path is continuous, the starting atomic position
at each strain step is taken from the relaxed coordinates of the
previous smaller strain step. According to Ref.[42], the uni-
axial tensile stress σ is derived from

σ =
1+ ε
V (ε)

∂E(ε)
∂ε

, (10)

and the shear stress τ is given by

τ =
1

V (γ)
∂E(γ)

∂γ
(11)
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Fig. 4 (Color online) The stress-strain curve of Mo under [100]
tension. The black squares represent Luo et al.’s calculation47.

where E(ε) and E(γ) are the strain energies, V (ε) and V (γ)
are the volumes at the corresponding tensile strain ε and shear
strain γ , respectively.

In order to check the reliability of our method, we have first-
ly calculated the ideal tensile strength of bcc Mo in the [100]
direction (shown in Figure 4), since there has been some the-
oretical results to compare with47. Figure 4 indicates that our
results are in perfect agreement with Luo et al.’s47 study and
confirms our method.

The calculations of ideal tensile strengths for U2Mo are per-
formed along [100], [001] and [110] crystallographic direc-
tions, respectively. Figure 5 shows the unit cell and the rede-
fined supercell of bct U2Mo adopted in our calculation. The
unit cell (black frame) is used to calculate the [100] and [001]
tensile stress-strain curves; while the supercell (red frame)
with specific crystal directions is adopted to simulate the ten-
sion in [110] direction. Much finer meshes of 17×17×17 are
used to sample the Brillouin Zone when carrying out cell and
atomic relaxations.

Fig.6 shows the stress-strain and energy-strain relationship-
s of U2Mo loaded in tension, respectively. It can be seen that
the ideal tensile strength are about 18-28 GPa. The tensile
strength along the [001] direction is about 27.6 GPa, high-
er than those in [100] (∼ 18.1 GPa) and [110] (∼ 20.5 GPa)
directions. Moreover, the shape of stress-strain curves in d-
ifferent directions are different from each other. The stress-
strain curves are discontinuous except [110] tension. There
is only one maximum in [110] tension, the subsequent stress
smoothly decreases. However, for the other two cases, the
stress-strain curves become much more complex that at first
the stress is incrementally increasing until the energy reaches
an inflection point, and subsequently exhibits more character-
istics. For [100] tension, a rapid decrease occurs at a strain of
0.15; then the stress increases smoothly up to a second maxi-
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Fig. 5 (Color online) A schematic projection of U2Mo in the ab
plane, with Mo shown in grey, U in black. The black profile is the
unit cell with six atoms. The red one is the redefined orthorhombic
supercell, with [110], [1̄10], and [001] representing the three
orthogonal lattice vectors a′, b′, and c′, respectively.

mum at strain of about 0.3, after that it changes its sign from
positive to negative at strain between 0.38 and 0.4. This tran-
sition in stress have close relation with structural changes in
deformed U2Mo as shown in Fig.7.

We show the behavior of lattice vectors during [100] ten-
sion in Figure 7. The [100] lattice vector is always controlled
to increase linearly during tension; whereas [010] and [001]
lattice parameters reveal the decaying tendency. Nevertheless,
an abrupt increase of the length of lattice vector c but a de-
crease of b appears from strain of 0.38 to 0.4, i.e., an abrupt
increase of the ratio c/b from 2.61 to 3.05 corresponds to the
transition in stress from positive value to negative.

For simple shear deformations, the volumes are fixed at the
initial equilibrium volumes, whereas they are changed under
shear load. For the slip modes of (001)[010], the calculated
stress shows an oscillating and decaying behavior, and the ide-
al strength is 8.1 GPa with the critical strain of ∼0.3 as shown
in Fig.8(a). Abrupt changes appear in the region [0.3, 0.45],
which have close relation with structural changes in the de-
formed U2Mo as shown in Fig.8(b). Compared with tension,
the shear energy-strain relationship is consistently below that
of tensile curves. It indicates that the shear modulus of U2Mo
in the considered slip system is smaller than Young’s modu-
lus. For the slip mode of (010)[100], the calculated stress is
negative at the very beginning, which implies that the C11b
structure is unstable under shear load on (010)[100] slip sys-
tem and is consistent with the negative C66.
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Fig. 6 (Color online) Stress-strain (a) and energy-strain (b) curves
of U2Mo under tensile load.

Fig. 7 (Color online) The length of lattice vectors as a function of
tensile strain along [100] direction. An abrupt change occurs
between strain of 0.38 and 0.4, corresponding to the transition of
stress from positive to negative value as shown in Fig.6.
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Fig. 8 (Color online) Stress-strain relationship (a) and the length of
vectors as a function of strain on (001)[010] slip system (b) under
shear load.

5 Conclusions

In summary, we have comprehensively studied the structural,
elastic properties, lattice dynamics and ideal strength of the
experimentally observed C11b U2Mo alloy by first principles
calculations. In contrast to the previous theoretical studies,
our results imply that U2Mo is unstable since the elastic con-
stant C66 is negative and violates the well-known Born-Huang
stability criteria. Another evidence is provided by phonon in-
stabilities along Σ1-N-P.

Although the calculated structural properties of bcc-U and
U2Mo by using the VASP-PAW method compare reasonably
well with experimental data as shown in Table 1 and Table
4, it should be noted that this method could overestimate
the strength of the bcc-U instability48. In Ref.[48], the au-
thors calculated phonon dispersions for bcc-U by employing
self-consistent ab initio lattice dynamics (SCAILD)49 coupled
with the full-potential linear muffin-tin orbitals (FPLMTO)
method and with the VASP-PAW method. They found that
the latter method presented stronger unstable dispersions es-
pecially the Γ−H branch because of too soft H-point phonons.
However, it is still not clear whether the mechanical instability
as well as dynamical instability of U2Mo in the present work
can be attributed to the VASP-PAW method as indicated by
Ref.[48]. Further theoretical and experimental scrutinies are
required.

Moreover, we have studied the ideal strength of U2Mo un-
der tensile and shear loads, respectively. The ideal shear

strength for (001)[010] is about 8.1 GPa, much smaller than
tension of 18-28 GPa, implying that U2Mo will fail by s-
hear rather than by cleavage. This result is consistent with
the above-mentioned result that the C11b structure is unstable
against the shear deformation along the direction of C66 elastic
tensor.

Note added.–After completion of our study, another work
appeared24 where the structural instability of U2Mo was ob-
served. These two investigations are finished independently
almost at the same time.
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22 A. Landa, P. Söderlind and P. E. A. Turchi, J. Nucl. Mater., 2013, 434,
31–37.

23 S. Jaroszewicz, E. L. Losada, J. E. Garcés and H. O. Mosca, J. Nucl.
Mater., 2013, 441, 119–124.

24 X. Wang, X. Cheng, Y. Zhang, R. Li, W. Xing, P. Zhang and X. Q. Chen,
Phys. Chem. Chem. Phys., 2014, 16, 26974–26982.

25 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558.
26 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15.
27 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169.
28 A. E. Dwight, J. Nucl. Mater., 1960, 2, 81.
29 F. Birch, Phys. Rev., 1947, 71, 809.
30 E. K. Halteman, Acta Crystallographica, 1967, 1, 1948–23.
31 M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford

University Press, New York, 1988.
32 D. W. Voigt, Lehrbuch der Kristallphysik, Teubner Press, Leipzig, 1928.
33 A. Reuss and Z. Angew, Math. Mech., 1929, 9, 55.
34 R. Hill, Proc. Phys. Soc. Sect. A, 1952, 65, 349.
35 S. F. Pugh, Philos. Mag., 1954, 45, 823.
36 D. Roundy, C. R. Krenn, M. L. Cohen and J. W. Morris, Phys. Rev. Lett.,

1999, 82, 2713.
37 G. Simmons and H. Wang, Single Crystal Elastic Constants and Calcu-

lated Aggregate Properties: A Handbook, MIT Press, Combridge, 2nd
edn, 1971.

38 J. Donohue, The Structure of the Elements, Wiley, New York, 1974.
39 D. M. Clatterbuck, C. R. Krenn, M. L. Cohen and J. W. M. Jr., Phys. Rev.

Lett., 2003, 91, 135501.
40 A. Togo, F. Oba and I. Tanaka, Phys. Rev. B, 2008, 78, 134106.
41 A. Togo, L. Chaput, I. Tanaka and G. Hug, Phys. Rev. B, 2010, 81,

174301.
42 J. Wang, J. Y. Qi and X. Zhou, Mater. Sci. Eng. A, 2012, 534, 353–364.
43 S. Ogata, Y. Umeno and M. Kohyama, Modelling Simul. Mater. Sci. Eng.,

2009, 17, 013001.
44 J. Li, MRS Bull., 2007, 32, 151.
45 J. W. M. Jr., C. R. Kreen, D. Roundy and M. L. Cohen, Mater. Sci. Eng.,

2001, A309-310, 121–124.
46 R. F. Zhang, S. H. Sheng and S. Veprek, Appl. Phys. Lett., 2007, 91,

031906.
47 W. Luo, D. Roundy, M. L. Cohen and J. W. M. Jr., Phys. Rev. B, 2002, 66,

094110.
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