PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Manuscript submitted to **PCCP**

Crystal-plane-dependent Metal-Support Interaction in Au/TiO₂

Lichen Liu,^a Chengyan Ge,^a Weixin Zou,^a Xianrui Gu,^a Fei Gao,^b* Lin Dong^{a,b}*

^a Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China

^b Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China

Abstract

Metal-support interaction in between Au and TiO₂ are studies based on Au/TiO₂ catalysts with different TiO₂ crystal planes exposed. With *ex situ* XPS, TEM and *in situ* DRIFTS, we have investigated the crystal-plane-dependent metal-support interaction effects on the physiochemical properties of Au/TiO₂ catalysts. Based on the structural characterizations and spectroscopic results, we can observe chemical oscillations (including the electronic structures of Au nanoparticles and the interaction between Au/TiO₂ catalysts and CO molecules) during alternate H₂ and O₂ pre-treatments. Their variation tendencies of oscillations are greatly dependent on the crystal planes of TiO₂ and the pre-treatment temperature. Furthermore, their surface and electronic changes after H₂ and O₂ pre-treatments can be well correlated with their catalytic activities in CO oxidation. Electron-transfer processes across the Au-TiO₂ interface are proved to be the origin accounting for their changes after H₂ and O₂ pre-treatments. The different electronic structures of different TiO₂ crystal planes should have relationships with the crystal-plane-dependent metal-support interaction effects in Au/TiO₂.

Keywords: Metal-support interaction, Au/TiO₂, Crystal-plane effect, CO oxidation, *Ex situ* XPS, *In situ* DRIFTS

Metal nanoparticles (NPs) supported on metal oxides are widely used heterogeneous catalysts in many industrial applications including chemical, food, pharmaceutical, environmental and petrochemical industries.¹ The superior catalytic performances are usually related with the metal-support interaction between metal NPs and metal oxide supports.² The classic strong metal-support interaction (SMSI) effect was firstly revealed from the interaction between Group VIII metals and TiO₂.³ Under reductive atmosphere (usually H₂) at high temperature, electrons will transfer from TiO₂ support to metal NPs, leading to the encapsulation of metal NPs by thin shells of TiO₂.⁴ Associated with these electronic and geometric changes, the chemisorption behaviors and catalytic properties are affected.^{5,6} On the other hand, the SMSI effect between the metal NPs and metal oxide supports.^{7,8} Based on numerous works, SMSI is proved to play a crucial role in catalytic properties of metal/oxide catalysts.

However, previous studies on SMSI are mainly focused on Group VIII metals (Pt, Pd, Rh etc.), while few works have discussed the metal-support interaction of Au NPs supported on oxides. Au NPs supported on metal oxides have shown excellent catalytic performances in many reactions.^{9,10} And the fantastic activities of Au NPs have been proved to be related with interaction Au NPs and the support.^{11,12} Goodman has proposed that Au/TiO₂ maybe another example of SMSI through comparing the similarities and discrepancies Au/TiO₂ and Group VIII metals/TiO₂ on their catalytic behaviors.¹³ Takeda *et al.* have studied the dynamic changes of Au/TiO₂ catalysts by *in situ* environmental TEM under reaction atmosphere. Au NPs can be encapsulated by TiO_{2-x} shells under O₂ atmosphere and electron irradiation.¹⁴ The electron transfer from Au NPs to TiO₂ support also has been *in situ* observed when Au/TiO₂ is exposed to O₂, which is different with the situation in H₂-pretreated Pt/TiO₂.^{15,16} These works imply that SMSI should also exist in Au/TiO₂ cata provide further insights into the catalytic properties.

What's more, for the classic SMSI model, the interface between metal and oxide support is thought to be the reaction zone.^{17,18} The surface structures and electronic structures of the metal-oxide interface will show significant effects on the SMSI between metal and oxide. As we know, the catalytic activities of metal NPs are greatly dependent on the crystal planes of oxide

Physical Chemistry Chemical Physics

supports.¹⁹⁻²¹ However, to the best of our knowledge, this crystal-plane effect on the metal-support interaction has not been studied, which is probably due to the difficulties in obtaining single oxide crystals with different crystal plane exposed. Considering their different surface structures and electronic structures of different crystal planes of metal oxides,²² it will be meaningful to study the crystal-plane effect on metal-support interaction.

In this work, we have prepared TiO₂ nanocrystals with different crystal planes ({100}, {101} and {001}) exposed as support of Au NPs to study the crystal-plane effect on the metal-support interaction in Au/TiO₂ catalysts. With the help of *ex situ* XPS and *in situ* DRIFTS, the dynamic changes of Au NPs supported on different TiO₂ crystal planes under reaction atmosphere are investigated. We have found some similar phenomenon like traditional SMSI in as-prepared Au/TiO₂ catalysts as well as some differences. More interestingly, the results show that the responses of Au/TiO₂ catalysts to different atmosphere at different temperature will vary with the crystal planes of TiO₂ nanocrystals. This work may provide some new insights into the Au-TiO₂ interaction and the working mechanism, especially the interfacial interaction in reaction atmosphere.

TiO₂ nanocrystals with different crystal planes exposed are synthesized according to our recent works through an anion-assisted method.²³ The as-prepared TiO₂ nanocrystals show typical XRD patterns of anatase TiO₂ without other peaks. These TiO₂ nanocrystals show regular shapes and similar sizes. Based on the TEM and HRTEM images, their dominant crystal facets are identified to $\{100\}, \{101\}$ and $\{001\}$ facets, and the percentages of specific crystal planes are as high as ca. 80%, which suggests that they are ideal model supports. Structural characterizations on the Au/TiO₂ catalysts with different TiO₂ crystal planes exposed can also be found in our recent work.²⁴ Au NPs are loaded on these TiO₂ nanocrystals through deposition-precipitation method. We can figure out that Au NPs (average size is ca. 3.6 nm) are located on specific crystal facets of TiO₂ nanocrystals. Therefore, these Au/TiO₂ catalysts can be used as model catalysts to investigate the crystal-plane-dependent metal-support interaction effect.

Fig. 1. Percentage of Au^{δ^+} calculated from the *ex situ* XPS spectra in different Au/TiO₂ catalysts at 250 °C (a), 300 °C (b) and 350 °C (c) after pre-treatments under H₂ or O₂.

According to previous works, SMSI is usually induced by the pre-treatments of reductive or oxidative atmosphere at high temperature. The interfacial electron transfer will be caused by these pre-treatments and will further have great influences on the electronic and surface structures of the catalysts. Firstly, we use *ex situ* XPS to investigate the interfacial electron transfer across the Au-TiO₂ interface during the pre-treatments at high temperature. The XPS spectra of Au 4f region are shown in **Fig. S1-S3**. In order to clarify the dynamic changes of Au NPs during the alternate pre-treatments, the percentages of cationic Au species (denoted as Au^{δ^+}) are calculated according to the fitting results.^{25,26} As displayed in **Fig. 1**, the chemical states of Au will change with the atmosphere. The percentages of Au^{δ^+} in three Au/TiO₂ samples show different variation tendencies under H₂ and O₂ atmosphere. For Au/Ti-100 and Au/Ti-101, the percentages of Au^{δ^+} </sup> are very sensitive to the atmosphere at 250 °C and 300 °C (as shown in **Fig. 1a-b**). When they are pre-treated with H₂, the percentages of Au^{δ^+} will decrease compared with those under N₂ atmosphere. When the atmosphere is shifted to O₂, the percentages of Au^{δ^+} </sup> are dramatically improved. Therefore, a chemical oscillation of chemical states of Au will appear. However, the variation tendency will</sup>

change for Au/Ti-001. At the relative low temperature (250 °C and 300 °C), Au/Ti-001 still shows insensitive to the atmosphere. The percentages of Au^{δ^+} are kept below 10% no matter pre-treated by H₂ or O₂. When the pre-treatment temperature increases to 350 °C, the percentage of Au^{δ^+} can be significantly improved by O_2 oxidation. Furthermore, the content of Au^{δ^+} will subsequently decrease after H₂ treatment. Thus, an oscillation of chemical states of Au can be also observed in Au/Ti-001 if the temperature is high enough, which may be caused by the high energy barrier for charge transfer between Au NPs and TiO₂ $\{001\}$ planes. Moreover, the high temperature also has a dramatic effect on Au/Ti-100 and Au/Ti-101. As displayed in Fig. 1c, the percentages of Au^{δ^+} in Au/Ti-100 and Au/Ti-101 are still very high after the second H₂ pre-treatment, which shows great contrast with their dramatic variation at 250 °C and 300 °C. The oscillation of chemical states of Au should be originated from the charge transfer between Au NPs and TiO₂ support under reductive or oxidative atmosphere. During H₂ pre-treatment, electrons will transfer from TiO₂ to Au NPs, resulting in the decrease of percentages of Au^{δ^+}. While during O₂ pre-treatment, electrons will flow from the Au NPs to TiO₂ support, leading to the increase of percentages of Au^{$\delta+$, 27,28} The charge transfer processes should have relationships with the electronic properties of different TiO₂ crystal planes, therefore three Au/TiO₂ catalysts show different variation tendencies during the alternate H₂ and O₂ pre-treatments.

In order to figure out the structural changes in these samples during the pre-treatment in O_2 , we use TEM to study them after O_2 pre-treatment. When three Au/TiO₂ samples are pretreated in O_2 at 250 °C and 300 °C, no obvious morphological changes can be found (as shown in **Fig. S4-S6**). Au NPs are still located on corresponding crystal planes of TiO₂ without obvious growth of particle size. However, Au NPs will be encapsulated by a TiO₂ shell after O₂ treatment at 350 °C (**Fig. 2a-d**). This encapsulation may be caused by the strong interaction between Au and TiO₂ at high temperature in O₂ atmosphere.^{14,29} Driven by the oxidative atmosphere at high temperature, electrons will flow to TiO₂ support, forming TiO_{2-x} at the Au-TiO₂ interface.¹⁵ Then TiO_{2-x} will crawl along Au NPs, resulting in the encapsulation of Au NPs by TiO₂. Due to the encapsulation is not observed in Au/Ti-001 (**Fig. 2e-f**). No TiO₂ can be found at the Au-{001} plane interface, indicating that TiO₂ will not crawl along Au NPs in O₂ atmosphere at 350 °C. Therefore, the Au^{δ+} species in Au/Ti-001

can be reduced by H₂ at 350 °C. Specially, the mechanism of encapsulation of Au NPs observed in our work is different from classic SMSI models. The encapsulation of Au NPs in our work is induced by O₂ pre-treatment while the encapsulation of Group VIII metal NPs in previous works is induced by H₂ pre-treatment.^{30,31} Nevertheless, these Au NPs are still covered by TiO_{2-x} shells after H₂ treatment under 350 °C (see **Fig. S7**), suggesting that the encapsulation is irreversible, which is also different from the classic SMSI. This large discrepancy may be caused by the different electronic structure of Au compared with Group VIII metals.³² However, the encapsulation of Au NPs may also be caused by the surface reconstruction of TiO₂ support. At high temperature, surface structures of metal oxides will be reconstructed, which may also lead to the encapsulation of metal NPs.^{31,32} Similar encapsulation phenomenon of Au NPs is also found in some other systems which are also induced by high-temperature treatment under O₂ atmosphere.^{29,32-37} Further investigations need to be done to figure out the encapsulation mechanism of Au NPs supported on TiO₂.

Fig. 2. TEM images and HRTEM images of Au/Ti-100 (a, b), Au/Ti-101 (c, d) and Au/Ti-001 (e, f) after pretreating with O₂ at 350 °C.

Based on the *ex situ* XPS and TEM results, we can understand the In Au/Ti-100 and Au/Ti-101, the electron transfer between Au NPs and TiO₂ is facilitated due to the stronger interactions between Au NPs and {100} planes and {101} planes. Therefore, the percentages of Au^{δ^+} will show evident oscillation during the alternate pre-treatments at 250 °C and 300 °C. As to Au/Ti-001, the charge transfer across the Au-TiO₂ interface is not propitious, which makes the percentage of Au^{δ^+} stable at 250 °C and 300 °C during pre-treatment processes. However, the situation will change when the pre-treatment temperature is increased to 350 °C. In Au/Ti-100 and Au/Ti-101, Au NPs will be

encapsulated by TiO_{2-x} shells, which may hinder the electron transfer process between Au NPs and TiO_2 .^{38,39} As a consequence, the percentages of Au^{δ^+} keep stable after O₂ pre-treatment at 350 °C. For Au/Ti-001, the encapsulation is not occurred. What's more, the electron-transfer process between Au NPs and {001} facets is facilitated by the high temperature, which causes the obvious oscillation of Au^{δ^+} percentage. With the help of *ex situ* XPS and TEM, we have studied the crystal-plane effects on the electron-transfer process between Au NPs and TiO₂ supports. Then, *in situ* DRIFTS are used to study

electron-transfer process between Au NPs and TiO2 supports. Then, in situ DRIFTS are used to study the effects of H₂ and O₂ pre-treatments on the interactions between CO molecules and Au NPs supported on different TiO₂ crystal planes. At first, the effects of H₂ pre-treatments are discussed. As shown in Fig. S8-S10, two peaks appear in all the three Au/TiO₂ catalysts after N₂ pretreatment. They can be ascribed to Au^{δ^+} -CO (2110-2120 cm⁻¹) and Au^0 -CO (2070-2080 cm⁻¹), respectively.^{38,39} Notably, the peaks corresponding to Au^{δ^+} -CO will disappear and new adsorption signals (2063-2067) cm⁻¹) can be observed after H₂ reduction. The new adsorption peaks are corresponding to Au^{δ} -CO, which should result from the CO adsorbed on negative charged Au NPs.⁴⁰ The intensity of Au⁰-CO will decrease with the increase of temperature. Ex situ XPS have proved that electrons will transfer from TiO_2 to Au NPs during H₂ pre-treatment, leading to the accumulation of negative charge in Au NPs. After pre-treated by H₂ at higher temperature, more electrons will transfer to Au NPs, which is not favoured for the adsorption of CO.^{29,40} For negative charged Au NPs, CO adsorption is not facilitated, which have already been reported in some previous works.^{41,42} For Au/Ti-100 and Au/Ti-101, the adsorption of CO is very weak after high temperature reduction. For Au/Ti-001, the peak corresponding to Au^{δ} -CO is still fairly strong, implying that the amounts of negative charges accumulated in Au NPs may vary with the crystal planes of TiO₂. Under the H₂ pre-treatment at same temperature, more electrons may flow to Au NPs on $\{100\}$ and $\{101\}$ planes than those on {001} planes.

Fig. 3. *In situ* DRIFTS of CO adsorption on Au/Ti-100 (a), Au/Ti-101 (b) and Au/Ti-001 (c) after pretreated with O₂ at 250 °C, 300 °C and 350 °C. The intensity scale bar is put at the top left corner of each figure.

What's more, we also track the influences of O₂ pretreatments on the adsorption properties of Au/TiO₂ catalysts to CO molecule. Three Au/TiO₂ catalysts are firstly pretreated in O₂ atmosphere at different temperature and then the spectra of CO adsorption on Au/TiO₂ are collected every minute. The experimental results of Au/Ti-100 are presented In Fig. 3a. Two peaks corresponding to Au^{δ+}-CO (2110~2120 cm⁻¹) and Au⁰-CO (2070~2080 cm⁻¹) can also be observed. Interestingly, as the time prolongs, the intensity of Au^{δ^+} -CO gradually goes down and the intensity of Au^0 -CO grows up. The transformation of Au^{δ^+} to Au^0 should be caused by the reduction of Au^{δ^+} by CO. When the temperature increase from 250 °C to 300 °C, the intensity of Au^{δ^+}-CO at the beginning stage (0 min) becomes stronger, indicating that O₂ pre-treatment at higher temperature will produce more surface Au^{δ^+} species. However, when the temperature increases to 350 °C, the intensities of the CO adsorption peaks decrease dramatically (It should be noted that the scale bar is different in Fig. 3a-350 °C). As shown in Fig. 2, Au NPs will be encapsulated by TiO₂ when Au/TiO₂ catalysts are pretreated with O₂ at 350 °C. These TiO_{2-x} shells will prevent the adsorption of CO on Au NPs, which results in weak adsorption of CO.^{29,43} The *in situ* DRIFTS results of Au/Ti-101 are shown in Fig. 3b. The changing tendencies of these curves are similar with those of Au/Ti-100, which is consistent with the results obtained in activity tests and TEM images. The initial intensities of Au^{δ^+} -CO peaks in Au/Ti-100 are stronger than the corresponding peaks in Au/Ti-001(Fig. 3c), because there are more Au^{δ^+} species in Au/Ti-100 sample according to *ex situ* XPS. As for Au/Ti-001, the intensity of Au^{δ^+}-CO peak at starting stage is much weaker than those of Au/Ti-100 and Au/Ti-101, which is consistent with the low percentages of Au^{δ^+} in *ex situ* XPS. When Au/Ti-001 is pre-treated with O₂ under 350 °C, much stronger Au^{δ^+}-CO peak can be observed when CO is just pumped in. This change can be well correlated with the sudden increase of Au^{δ^+} percentage in *ex situ* XPS after O₂ pre-treatment at 350 °C.

Fig. 4. CO oxidation activities of Au NPs supported on different TiO₂ crystal planes at 30 °C. The catalysts are firstly pretreated under different atmosphere for 1 h at different temperature before testing the CO oxidation activities at 30 °C: (a) 250 °C, (b) 300 °C and (c) 350 °C.

At last, we use H₂ and O₂ to pre-treat three Au/TiO₂ catalysts and employ CO oxidation as probe reaction to investigate the relationships between Au-TiO₂ interaction and the catalytic properties. During the H₂ and O₂ pre-treatments, electrons will transfer across the Au-TiO₂ interface driven by the atmosphere at high temperature. In Fig. 4, the CO oxidation activity of Au/TiO₂ catalysts are tested at 30 °C after different pre-treatments at three temperature 250 °C, 300 °C and 350 °C. After the pre-treatments, the sample is kept in reaction steam for 15 min to reach the balance before measure the activity. Obviously, three catalysts show distinct variation tendencies under alternant reductive and oxidative pre-treatments at different temperatures. At 250 °C and 300 °C, for Au/Ti-001, only small changes in activity can be observed, suggesting that Au NPs supported on {001} planes of TiO₂ are not sensitive to the pre-treatments at those conditions. For Au/Ti-101 and Au/Ti-100, the CO conversion will slightly decrease after H₂ pre-treatments at 250 °C and 300 °C because of the weak adsorption of CO. However, an O₂ pre-treatment will remarkably improve the CO conversion of Au/Ti-101 and Au/Ti-100. After O₂ pre-treatment, electrons will flow from Au NPs to TiO₂ supports, resulting in the formation of Ti³⁺ sites around Au NPs.¹⁵ Theoretical study have proved that O_2 activation will be facilitated by the Au^{δ^+}-Ti^{3^+} structure.^{44,45} Thus, activity oscillations can be observed for Au/Ti-101 and Au/Ti-100 when they are pre-treated with H₂ and O₂ before CO oxidation tests, which is similar with their oscillations of Au^{δ^+} percentages. According to our previous work and related references, the percentages of cationic Au species can be well correlated with the CO oxidation activities.^{21,24} Therefore, Au^{δ^+} species should be the major active species in CO oxidation in our samples. Notably, Au/Ti-100 shows higher CO conversions than Au/Ti-101 both after H₂ and O₂ treatments, which should be related with their different Au-TiO₂

interface structures as we discussed in our previous work.²⁴ There are more surface hydroxyl groups on the {100} planes than {101} and {001} planes, which would facilitate the CO oxidation at the Au-TiO₂ interface.⁴⁶ But the situation changes when the pre-treatment temperature increases to 350 °C. The inert Au/Ti-001 sample shows enhanced CO oxidation activity after O₂ pre-treatment at 350 ^oC, which is in accordance with its increase of Au^{δ^+} percentages. And the activity will fall back after H₂ treatment, which is similar with the behaviours of Au/Ti-100 and Au/Ti-101 when they are pre-treated at 250 °C and 300 °C. As for Au/Ti-100 and Au/Ti-101, both H₂ and O₂ pre-treatments at 350 °C will deactivate the catalysts. The CO conversion decrease to below 10% after O₂ pre-treatment at 350 °C. The improvement of O₂ treatment seems ineffective at high temperate for Au/Ti-100 and Au/Ti-101, which is totally different with their variation tendencies at 250 °C and 300 °C. Combining the above ex situ XPS, TEM and in situ DRIFTS results, we can infer that the encapsulation of Au NPs should be the reason for the low CO oxidation activities after O₂ According to above analysis based on structural and spectroscopic characterizations and activity

measurements, we can have a comprehensive discussion on the crystal-plane-dependent metal-support interaction effects on Au/TiO₂ catalysts. A schematic illustration about the structural changes of three Au/TiO₂ catalysts during pre-treatments under H₂ and O₂ atmosphere at different temperatures are displayed in Fig. S11. For Au/Ti-100 and Au/Ti-101, electrons can be flexibly transferred between Au NPs and $\{100\}$ and $\{101\}$ planes driven by H₂ and O₂ pre-treatments at 250 °C and 300 °C. As a result, The percentages of Au^{$\delta+$} and CO oxidation activities will show oscillations during alternate pre-treatments. For Au/Ti-001, electron-transfer process between Au NPs and {001} facets are not favoured at 250 °C and 300 °C. No apparent oscillations can be found in the percentages of Au^{δ^+} and CO oxidation activities can be observed. These results show that the metal-support interaction effects are greatly dependent on the crystal planes of TiO₂ supports. The charge-transfer process between Au NPs and TiO₂ supports are affected by the electronic structures of TiO₂. When the pre-treatment temperature increases to 350 °C, the situation changes. Much stronger metal-support interaction effects occurred due to the high-temperature pre-treatments. So, the Au-TiO₂ interaction is also related with the temperatures because the electron-transfer processes should be driven by high heating. Apparent oscillations of the percentages of Au^{δ^+} and CO oxidation

pre-treatments at 350 °C.^{29,43}

activities can be observed in Au/Ti-001 at 350 $^{\circ}$ C. However, the Au NPs will be encapsulated by TiO₂ in Au/Ti-100 and Au/Ti-101, leading to the deactivation of Au NPs and disappearance of chemical oscillations. Herein, it should be noted that although we have observed some similar phenomenon like traditional SMSI in Group VIII metals, we still cannot confirm that we have observed SMSI in Au/TiO₂ catalysts.

Fig. 5 Schematic illustrations of the band-structure bending and electron flows of different Au-TiO₂

interfaces during the pre-treatments of H₂ and O₂ at different temperatures.

The physiochemical origins of metal-support interaction effects in Au/TiO₂ catalysts are the electron-transfer processes between Au and TiO₂ supports. Band structure diagram of different TiO₂ crystal planes are different according to theoretical calculations and experimental measurements.^{23,47} These TiO₂ nanocrystals show the same valence band positions and different conduct band positions. Because of their different band structures, the electronic interactions between Au NPs and different TiO_2 crystal planes under H₂ and O₂ pre-treatments will be distinct with each other. We can use a band energy scheme to demonstrate the changes of electronic structures under H₂ and O₂ pre-treatments. At first, charge equilibriums between Au NPs and TiO₂ nanocrystals with different crystal planes exposed (as shown in **Fig. 5**) after Au NPs are loaded on TiO_2 nanocrystals. When Au/TiO₂ catalysts are exposed to O₂ or H₂, band bending will occur in the Au-TiO₂ heterojunction, leading to electron transfer across the Au-TiO₂ interface.^{48,49} When Au/TiO₂ samples are pre-treated with O_2 , the Fermi energy of Au NPs (denoted as $E_F(Au)$) will become higher than that of TiO₂ nanocrystals (denoted as $E_F(TiO_2)$).⁵⁰ The degrees of bending of the energy band (equal to the work function differences between Au NPs and TiO₂ nanocrystals) may be larger between Au NPs and {100} planes and {101} planes than {001} planes, leading to a more favoured electron transfer from Au NPs to TiO₂ nanocrystals.⁵¹ When Au/TiO₂ samples are pre-treated with H₂, E_F(Au) will be lower than $E_F(TiO_2)$, resulting in an opposite electron transfer from TiO_2 nanocrystals to Au NPs.⁵⁰ The accumulated electrons in TiO₂ nanocrystals with flow back to Au NPs. As a consequence, chemical oscillations will appear after alternate pre-treatments. At relative low temperature (250 °C and 300 °C), the more apparent chemical oscillation can be observed in Au/Ti-100 and Au/Ti-101 because of their larger degrees of bending of energy band than Au/Ti-001. At higher temperature (350 °C), the degree of bending of energy band in between Au NPs and TiO₂ nanocrystals will become larger. So, apparent chemical oscillations can also be observed in Au/Ti-001. For Au/Ti-100 and Au/Ti-101, driven by high temperature, the Au NPs are encapsulated by TiO_{2-x} shells, leading to the loss of catalytic activities.

In summary, we have studied the crystal-plane-dependent metal-support interactions in Au/TiO₂ using TiO₂ nanocrystals with specific crystal planes exposed as model supports. Using *ex situ* XPS, TEM and *in situ* DRIFTS, we have found that chemical oscillations can be observed during alternate

 H_2 and O_2 pre-treatments. These chemical oscillations are greatly dependent on the crystal planes of TiO₂ nanocrystals. As a consequence of these chemical oscillations, their CO oxidation activities also show corresponding variations to the pre-treatments. Considering the discrepancies of different TiO₂ crystal planes in electronic structures, the electronic interactions between Au NPs and TiO₂ nanocrystals will be distinct with each, which should be the origins for their different metal-support interaction effects. However, more works still need to be done to further investigate the crystal-plane effects on metal-support interaction mechanism Au/TiO₂ at a molecular level. Maybe theoretical calculations⁵²⁻⁵⁴ and studies on surface model catalysts⁵⁵ will provide some more information. We think this present study will provide some new insights to understand the metal-support interaction effects in Au/TiO₂ and may help to design more active Au/TiO₂ catalysts based on suitable pre-treatments.

Supporting Information

The preparation methods, characterizations and some other related data are shown in supporting information. This material is available free of charge via the Internet at http://pubs.acs.org.

Corresponding Author

gaofei@nju.edu.cn (F.G.) donglin@nju.edu.cn (L.D.) Tel.: +86 25 83592290; fax: +86 25 83317761.

Notes

The authors declare no competing financial interests.

Acknowledgement

The financial supports of the National Natural Science Foundation of China (No. 21203091), Natural Science Foundation of Jiangsu Province (BK2012298).

References

- 1 G. Ertl, H. Knozinger, F. Schuth and J. Weitkamp, *Handbook of Heterogeneous Catalysis*, Wiley-VCH, Weinheim, 2008.
- G. A. Somorjai and Y. Li, *Introduction to Surface Chemistry and Catalysis*; John Wiley & Sons, Inc.: Hoboken, NJ, 2010.
- 3 S. J. Tauster, Acc. Chem. Res., 1987, 20, 389-394.
- 4 S. J. Tauster, S. C. Fung and R. L. Garten, J. Am. Chem. Soc., 1978, 100, 170-175.
- 5 S. J. Tauster, S. C. Fung, R. T. K. Baker and J. A. Horsley, *Science*, 1981, **211**, 1121-1125.
- 6 Q. Fu and T. Wagner, Surf. Sci. Rep., 2007, 62, 431-498.
- 7 L. R. Baker, A. Hervier, H. Seo, G. Kennedy, K. Komvopoulos and G. A. Somorjai, J. Phys. Chem. C, 2011, 115, 16006-16011.
- 8 E. Gross and G. A. Somorjai, *Topics in Catalysis*, 2013, 56, 1049-1058.
- 9 A. S. Hashmi and G. J. Hutchings, Angew. Chem. Int. Ed., 2006, 45, 7896-7936.
- 10 Y. Zhang, X. Cui, F. Shi and Y. Deng, Chem. Rev., 2012, 112, 2467-2505.
- 11 M. Chen and D. W. Goodman, Acc. Chem. Res., 2006, 39, 739-746.
- 12 J. Gong, Chem. Rev., 2012, 112, 2987-3054.
- 13 D. W. Goodman, Catal. Lett., 2005, 99, 1-4.
- 14 Y. Kuwauchi, H. Yoshida, T. Akita, M. Haruta and S. Takeda, Angew. Chem. Int. Ed., 2012, 51, 7729-7733.
- 15 T. Tanaka, K. Sano, M. Ando, A. Sumiya, H. Sawada, F. Hosokawa, E. Okunishi, Y. Kondo and K. Takayanagi, *Surf. Sci.*, 2010, **604**, L75-L78.
- 16 W. Jochum, D. Eder, G. Kaltenhauser and R. Kramer, Top. Catal., 2007, 46, 49-55.
- 17 Q. Fu, W. X. Li, Y. Yao, H. Liu, H. Y. Su, D. Ma, X. K. Gu, L. Chen, Z. Wang, H. Zhang, B. Wang and X. Bao, *Science*, 2010, **328**, 1141-1144.
- 18 J. A. Rodriguez, S. Ma, P. Liu, J. Hrbek, J. Evans and M. Perez, Science, 2007, 318, 1757-1760.
- 19 Z. Zhong, J. Ho, J. Teo, S. Shen and A. Gedanken, Chem. Mater., 2007, 19, 4776-4782.
- 20 L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He and K. N. Fan, J. Phys. Chem. C, 2008, 112, 6981-6987.
- 21 R. Si and M. Flytzani-Stephanopoulos, Angew. Chem. Int. Ed., 2008, 47, 2884-2887.

- 22 G. Liu, J. C. Yu, G. Q. Lu and H. M. Cheng, Chem. Commun., 2011, 47, 6763-6783.
- 23 L. Liu, X. Gu, Z. Ji, W. Zou, C. Tang, F. Gao and L. Dong, J. Phys. Chem. C, 2013, 117, 18578-18587.
- 24 L. Liu, X. Gu, Y. Cao, X. Yao, L. Zhang, C. Tang, F. Gao and L. Dong, ACS Catal., 2013, 3, 2768-2775.
- 25 L. Qi, C. Tang, L. Zhang, X. Yao, Y. Cao, L. Liu, F. Gao, L. Dong and Y. Chen, *Appl. Catal. B: Environ.*, 2012, **127**, 234-245.
- 26 R., Meyer, C. Lemire, S. K. Shaikhutdinov and H.-J. Freund, Gold Bull. 2004, 37, 72-124.
- 27 Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu and W. Huang, J. Phys. Chem. C, 2007, 111, 12434-12439.
- 28 D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Laegsgaard, B. Hammer and F. Besenbacher, *Science*, 2007, **315**, 1692-1696.
- 29 X. Liu, M. H. Liu, Y. C. Luo, C. Y. Mou, S. D. Lin, H. Cheng, J. M. Chen, J. F. Lee and T. S. Lin, J. Am. Chem. Soc., 2012, 134, 10251-10258.
- 30 V. A. O'Shea, M. C. Galvan, A. E. Prats, J. M. Campos-Martin and J. L. Fierro, *Chem. Commun.*, 2011, 47, 7131-7133.
- 31 S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. López Cartes, J. A. Pérez Omil and J. M. Pintado, *Catal. Today*, 2003, 77, 385-406.
- 32 H. Iddir, S. Öğüt, N. Browning and M. Disko, Phys. Rev. B, 2005, 72.
- 33 H. Onishi and Y. Iwasawa, Surf. Sci., 1994, 313, L783-L789.
- 34 P. Stone, R. A. Bennett and M. Bowker, New J. Phys. 1999, 1, 1.1-1.12.
- 35 H. Yin, Z. Ma, H. Zhu, M. Chi and S. Dai, Appl. Catal. A: Gen., 2010, 386, 147-156.
- 36 G. W. Graham, A. E. O'Neill and A. E. Chen, Appl. Catal. A: Gen., 2003, 252, 437-445.
- 37 G. W. Graham, H.-W. Jen, W. Chun and R. W. McCabe, J. Catal. 1999, 182, 228-233.
- 38 L. Li, A. Wang, B. Qiao, J. Lin, Y. Huang, X. Wang and T. Zhang, *Journal of Catalysis*, 2013, 299, 90-100.
- 39 M. Mihaylov, E. Ivanova, Y. Hao, K. Hadjiivanov, H. Knözinger and B. C. Gates, *J. Phys. Chem. C*, 2008, **112**, 18973-18983.
- 40 M. Mihaylov, H. Knozinger, K. Hadjiivanov and B. C. Gates, Chem. Ing. Tech. 2007, 79,

795-806.

- 41 F. Boccuzzi, A. Chiorino, M. Manzoli, D. Andreeva and T. Tabakova, J. Catal., 1999, 188, 176-185.
- 42 F. Boccuzzi, A. Chiorino and M. Manzoli, Surf. Sci., 2000, 454-456, 942-946.
- 43 S. Bonanni, K. Aït-Mansour, H. Brune and W. Harbich, ACS Catal., 2011, 1, 385-389.
- 44 Y. G. Wang, Y. Yoon, V. A. Glezakou, J. Li and R. Rousseau, J. Am. Chem. Soc., 2013, 135, 10673-10683.
- 45 Y. F. Li and A. Selloni, J. Am. Chem. Soc., 2013, 135, 9195-9199.
- 46 J. Saavedra, H. A. Doan, C. J. Pursell, L. C. Grabow and B. D. Chandler, *Science*, **2014**, 345, 1599-1602.
- 47 J. Lu, Y. Dai, H. Jin and B. Huang, Phys. Chem. Chem. Phys., 2011, 13, 18063-18068.
- 48 N. Cabrera, N. F. Mott, Rep. Prog. Phys. 1949, 12, 163-184.
- 49 A. Motayed and S. N. Mohammad, J. Chem. Phys., 2005, 123, 194703.
- 50 P. B. Weisz, J. Chem. Phys. 1953, 21, 1531.
- 51 Z. Zhang and J. T. Yates, Jr., JAm Chem Soc, 2010, 132, 12804-12807.
- 52 I. X. Green, W. Tang, M. Neurock and J. T. Yates, Jr., Science, 2011, 333, 736-739.
- 53 M. Farnesi Camellone and D. Marx, J. Phys. Chem. Lett., 2013, 4, 514-518.
- 54 P. Ganesh, P. R. C. Kent and G. M. Veith, J. Phys. Chem. Lett., 2011, 2, 2918-2924.
- 55 F. Gao and D. W. Goodman, Annu. Rev. Phys. Chem., 2012, 63, 265-286.