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The process of attaching molecules of liquid media by dispersed nanoparticles is modeled and numerically studied. The growth
rate of the resulting nanoparticle-induced aggregates is determined by assuming the preferential attachment rule according to
which the effectiveness of the connection of a new molecular unit to aggregates is determined by their size. It is shown that,
depending on a specific function form of the growing rate, the size distribution of aggregates can display very different shapes,
including various multimodal structures. This can explain experimentally obtained complex size distributions of inhomogeneous
aggregates appearing in consequence of the adsorption of molecules by nanoparticles or in consequence of the self-assembling of
active dispersant on surfaces of nanoparticles. The time evolution and the stationarity of the size distribution are also analyzed,
yielding an insight into the long-time behavior of systems with dispersed nanoparticles.

1 Introduction
The immersion of nanoparticles (NPs) in various liquid me-
dia, especially in reactive solvents, is an effective approach
to prepare composite materials with controllable properties.1,2

Since NP inclusions cause, in general, metastability of the re-
sulting mixtures, the dispersed NPs reveal a strong tendency to
reduce the free energy of the mixtures through the processes of
segregation, aggregation, agglomeration, nucleation, or crys-
tallization.3–15 Another possibility to minimize the free en-
ergy is asociated with attaching molecules or molecular blocks
of liquid media by the NPs.16–19 Superparticles appearing as
a consequence of such aggregation, can have very different
sizes and can display very various forms, in particular dendric
and compact core-shell shapes.16–18,20,21 The superparticles
can also exhibit an ability to form organized structures with
diversified morphologies. Then, the process of organization
runs at different spatial scales giving the opportunity to con-
struct, in a controllable manner, complex materials that dis-
play appropriate functional properties on different structural
levels.22 An opposite, in some sense, motivation to study the
process of aggregation is associated with cases for which this
process is unfavorable.23

Perhaps the most basic and important characteristics of the
structural inhomogeneity of NP systems can be obtained by
investigating the size distribution (SD) of NPs or NP-induced
superparticles. This distribution can experimentally be de-
termined using the static and dynamic light scattering meth-
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ods,20,23 the NP tracking analysis,24 the small-angle X-ray
scattering technique,25 the scanning microscopy,15 the trans-
mission electron microscopy,26 etc. Whereas the time vari-
ation of SD reflects the process of organization of NP sys-
tems, including the formation of NP crystals,5,7 the long-time
behavior of SD characterizes the steady state of these sys-
tems. Depending on specific features of NP systems, the SD
of dispersed NPs have been shown to display not only differ-
ent time evolutions but also a wide diversity of long-time be-
haviors. Clearly, in cases of homogeneous (monodispersive)
or nearly homogeneous NP systems, the SD exhibits a very
narrow single-peaked form. Nearly homogeneous SDs have
been found, e.g., for systems produced during sintering of pri-
mary aggregates,12,27 for systems of thermally-reencapsulated
core-shell nanoparticles,28 and for large nanocrystals formed
through the aggregation and coalescence of small primary
nanocrystals.5 Typical SDs in inhomogeneous NP systems
have been shown to be well described by single-peaked func-
tions of different forms, ranging from relatively narrow to dis-
tinctly broad, usually skewed in the right direction.26 In gen-
eral, the significantly skewed unimodal SDs can be expected
to occur when the organization of NP ensembles proceeds
in a complex or multistage (hierarchical) manner. Indeed,
such asymmetric distributions have experimentally been de-
termined, e.g., for systems organized through the competition
between capping and reducing agents,25 as well as for sys-
tems of aggregates appeared as a result of the incorporation
of water,29 or in consequence of a two-stage process of the
attachment of monomers to NPs and the aggregation of the
resulting NPs.7 It should also be noted that the exponential
form of the SD of aggregates can arise when there is no inter-
action between aggregates or when the interactions are very
weak.29,30 Undoubtedly, the most intriguing SDs are those re-
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vealing multimodal shapes. The multimodal SDs have been
derived for aggregate systems that are organized in a strongly
heterogeneous way, due to, e.g., the adhesion of particles of
specific sizes to substrates, or due to the connection of parti-
cles to particles of other kinds.18,20,24

To develop the theoretical analysis of the formation of NP
systems, one can essentially exploit some of the formalisms
already introduced in studying processes of coalescence, co-
agulation, or fragmentation of molecules. For instance, the
aggregation process of NPs can be investigated using the ap-
proach based on the kinetic coagulation Smoluchowski equa-
tion, or on its modified or extended versions.31–37 It has been
argued that this equation accurately describe the aggregation
of clusters with the fractal structure.31 The resulting SD has
been shown to exhibit self-similarity for both constant aggre-
gation rates (related to the diffusion limited aggregation) and
some homogeneous aggregation rates.34,35 Numerical model-
ing and simulations of cluster and/or NP systems have mainly
been concentrated on investigating the process of formation
of fractal aggregates (taking into account the time evolution
of their shapes and SDs) as well as on investigating the ef-
fect of pair interactions between particles on the aggregation
process.13,38–43 It is remarkable that both analytical and nu-
merical approaches to analyze the evolution of NP ensembles
often refer to systems in which the maximal number of ag-
glomerates changes in time and is not strictly specified or even
unconfined. However, such systems are rather unrealistic, al-
though the number of NPs contained in real systems can fluc-
tuate in time.

In this paper, a model of complex systems in which dis-
persed NPs can attach molecules constituting fluid media, but
in which the NPs and greater particles (aggregates) do not joint
together, is considered. Consequently, within this model, the
number of the particles is independent of time. Despite the
model does not concern the formation of links between pre-
formed NPs, it can be applied to describe kinetics of a large
variety of real NP systems. These systems include ensembles
in which the contact and the connection between NPs are pre-
vented due to repulsive interaction,13,20 or due to coating NPs
by molecules of fluid media. Depending on the context, the
coated NPs are also referred to as encapsulated particles,44

NPs surface-capped by agents in reactive environments,5,25,45

core-shell NPs18,19,46 or core-shell micelles.18,46,47 An analo-
gous complex structures have also been argued to occur in liq-
uid crystal systems in which molecules with hydrophilic side
chains are attracted by small dispersed water droplets.16 The
coating process can lead to the appearance of very large ag-
gregate objects with complex molecular groups anchored to
surfaces of NPs. The attached molecular groups can exhibit
different sizes and spatial conformations, such as linear long
chains, unbranched polymers, and branched polymers (den-
drimers).17–19,45,48 Obviously, the resulting complex ensem-

bles can be strongly inhomogeneous with respect to total sizes
of aggregate objects. Then, the time evolution of individual
aggregates proceeds with different attachment rates, depen-
dent on the actual size of aggregates and on the current shape
of their surfaces. To take into consideration the possibility of
forming inhomogeneous NP-induced ensembles within the in-
troduced model, the aggregation rate is treated as a function of
the size of individual aggregates.

2 Theoretical model and calculation
procedure

In systems of NPs suspended in fluid media, the particles can,
in general, attach other particles and/or molecules of the me-
dia. Here, the case when the formation of any connections
between the preformed NPs is not allowed, in consequence,
e.g., of the electrostatic repulsion is considered. Similarly,
the merging of agglomerates created by attaching molecules
of media to NPs is also prevented. Thus, within the stud-
ied model system, dispersed preexisting NPs play a role of
seeds that absorb molecules of the dispersion phase, stabi-
lizing and functionalizing resulting greater particles (aggre-
gates). Alternatively, the model concerns systems in which
reactive molecules of media or surface-active dispersants self-
assemble on NP surface forming dense polymer layers or more
complex structures with functionalities for targeting.18 Both
the processes of adsorption and self-assembling on surface
of NPs are allowed here to lead to the formation of polydis-
persive ensemble of noninteracting particles. Consequently,
within this model, the number, say n, of preformed NPs is
constant and, at each stage of the time evolution of the sys-
tem, is equal to the total number of possible aggregates and
NPs that have not yet attached any molecule. Moreover, it is
assumed that the overall concentrations of the preformed NPs
and aggregates are low enough, so correlations between local
aggregation processes can be ignored. Although sizes of the
preformed NPs can in general be different, the size of each
of the agglomerates is expressed here by the number of their
component parts. Thus, the size of the i th, i = 1,2, ...,n, ag-
glomerate is given by si = s ′i +1, where s ′i > 0 is the number
of the molecules connected to the i th NP. Since, the pure (un-
connected) NPs are treated here as agglomerates of the size
s = 1, the agglomerates and pure NPs are henceforth referred
to as particles. Then, the number n of the preformed NPs is
equal to the number of particles.

The attaching rate of a new molecule to particle i is pos-
tulated to depend on the size si of the particle i. This as-
sumption reflects the supposition that the attachment rate is
determined by the shape and the surface area of a given par-
ticle as well as by the strength of interactions between parti-
cles and molecules.4,11,13,45 Consequently, the effective rate
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of connecting a molecule to i th particle can be represented as
Π(si) = ΠΣ(si)Π I(si), where ΠΣ and Π I denote the surface
and interaction contributions to the rate Π(si), respectively. In
general, the surface rate can be regarded as being proportional
to the surface area of particles. Then, the surface contribution
to the effective rate Π(si) can approximately be expressed as
ΠΣ(si)∼ sβ

i with the exponent β > 0 being independent of si.
Obviously, the underlying scaling relations between surface
areas of various objects and their sizes may not exactly be sat-
isfied, especially for small sizes of the objects. Nevertheless,
one can easily verify that 0 < β < 2/3 for the case of particles
with fractal-like surfaces, while β = 0, 1/2, 2/3 for 1D, 2D,
3D non-fractal (compact) particles, respectively. For example,
β = 0 in the case of rod like particles that attach molecules at
their ends. It should be noted that the exponent β can be found
both experimentally and theoretically by determining the sur-
face area and/or mass dimensions of particles.40,49,50 The in-
teraction part of the effective attachment rate is related to the
number, G(si), of collisions of the ith molecule (of the size
si) with a given particle, per unit surface area of the particle
and per unit time interval, i.e., Π I(si)∼ G(si). Assuming that
particles are fixed in space and that molecules of the medium
undergo the Brownian movement, one has51–54

G(si) =
4πDn0

W (si)
, (1)

where D is the diffusion constant for the dispersing medium,
n0 denotes the density of molecules of the medium. The stabil-
ity ratio W (si) is determined by interaction between particles
and molecules. This ratio can be expressed as51

W (si) = 2
∫ ∞

2
exp [V (r ; ai, a0)/kBT ]

dr
r2 , (2)

where V represents the energy due to interactions responsi-
ble for aggregation.51,55 The scaled distance r is defined as
r = 2R/(ai + a0) with R being the distance between centers
of a given particle and a molecule, and ai, a0 being radii of
the particle and the molecule, respectively. Clearly, the radius
ai is related to the particle size si. For instance, in the case
of spheroidal particles, one has a3

i = a3 +[a0(si −1) ]3, where
a is the radius of the preexisting NP. In general, the resulting
dependence of Π I on si is determined by the form of inter-
actions governing the aggregation process in particular sys-
tems. Note that, according to the Derjaguin-landau-Verwey-
Overbeak theory, particle-molecule couplings that yield main
contributions to V are the van der Waals and electrostatic
double layer interactions.55 However, to investigate general
properties of the studied model, the interaction part of the
attaching rate can also be assumed in the power form, i.e.,
Π I(si) ∼ sγ

i , where the index γ does not depend of the par-
ticle size. The effective aggregation rate is then given by
Π(si) ∼ sα

i , where α = β + γ . It should be pointed out

that this effective rate is consistent with homogenous colli-
sion kernels used to describe coalescence and aggregation pro-
cesses within the framework of the kinetic theory involving the
Smoluchowski equation.32,34,35 The main difference between
the Smoluchowski formalism and the considered approach is
that that the number of aggregates is treated here as a con-
stant. Essentially, the index γ and hence the index α can take
negative values. However, in such cases, molecules of the me-
dia are preferentially attached by small particles. Since the
aggregation processes are usually associated with the forma-
tion of relatively large particles, the investigation of the model
systems considered here is restricted to cases when α is non-
negative. Additionally, this exponent is taken to be α 6 2.
Accordingly, the functional form of the attachment rate is as-
sumed here to be

Π(si) =
( si

smax

)α
, i = 1,2, ...,n , (3)

where 0 6 α 6 2 and smax is the maximal size of parti-
cles at the current stage of the evolution of the system, i.e.,
smax = max{si}i=1,2,...,n. Thus, by virtue of the above defini-
tion, Π(si) takes values from the unit interval (0,1]. This defi-
nition is based on the assumption that the number, n, of parti-
cles (seeds) is constant in time. Obviously, the number, Nu, of
unconnected molecules of the medium decreases as the aggre-
gation process proceeds. Notwithstanding, the SD can reliably
be calculated even if Nu is assumed to be constant, provided
that Nu ≫ n.51 Alternatively, the attachment rate might be
determined as being normalized. However, this would consid-
erably elongate duration of numerical simulations of the long
time behavior of aggregation ensembles. It should be noted
that analogous definitions of attachment rate have been shown
to be equivalent for evolving networks, in the sense that one
obtains the identical distribution of node degrees for both the
definitions.56

It should be pointed out that the model does not take into
account correlations between the growth of particles. Thus,
it corresponds to the case when the concentration of NPs is
low at every stage of the evolution of the system, i.e., when
the number of unconnected molecules of the media is much
larger than the number of particles. Obviously, the algorithm
can easily be modified to reflect the aggregation process more
precisely. In particular, the attachment rate can be generalized
to include the disaggregation by assuming that the size si can
randomly decrease by one with a rate, different, in general,
from the aggregation rate. Although the model involves only
one control parameter (the index α), it is shown below to be
capable of recovering kinetic behaviors of the most real NP
systems.

Numerical analysis of the aggregation kinetics presented
below refers to an initial ensemble of n preformed NPs (with
sizes si = 1, i = 1,2, ...,n, and with smax = 1). At each time
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step, the algorithm for simulating the growth process of parti-
cles runs though the following stages:

(1) A particle, say i, is randomly chosen from the ensemble
of n particles.

(2) The size si of the randomly chosen particle is increased
by one (i.e., a single molecule is attached to the selected parti-
cle) with the likelihood determined by the effective attachment
rate Π(si).

(3) In the case when si > smax (after accomplishing the sec-
ond stage of the aggregation algorithm), the maximal particle
size smax is magnified by one.

To select the particle at random (stage (1)) and to determine
the likelihood of connecting a new molecule (stage (2)), the
random number generator involving the shuffled nested Weyl
sequences57 is applied, assuming the same starting point for
each of the simulated particle ensembles. The calculation pro-
cedure is repeated until the total number of attached molecules
reaches the value N = n×N, where N is the average number
of the molecules connected to a preformed NP. Next, the SD
is determined by registering numbers N(s) of particles of sizes
s = 1,2, ...,smax, where smax denotes the maximal particle size
of the ultimate ensemble. Note that, since N uniformly grows
as successive molecules are attached to particles, this quan-
tity can be interpreted as the time of evolution of the system.
(Such interpretation of N would be rather questionable in case
when particles could joint together, as in this case N would
non-uniformly grow.)

3 Results and discussion

In order to apply the above model for investigating the kinetic
behavior of inhomogeneous systems, especially systems with
very large particles, the SD of particles have been determined
for relatively large total number N of attached molecules.
Generally, the number of preformed NPs has been taken to be
n = 105, while the average numbers of connected molecules
has been assumed to be N = 103. Additionally, the depen-
dence of the particle SD on N has also been investigated within
the range 10 6 N 6 2×103. This dependence can be consid-
ered as the discrete time evolution of the particle SD. Clearly,
the N-variability of SD appropriately characterizes the evo-
lution of particle ensembles generated by the aggregation al-
gorithm, although the discrete N-variability of the model en-
sembles does not precisely match the continuous time evolu-
tion of real systems. The behavior of the particle size distri-
bution N(s), determined by counting the number of particles
for each particle size 1 6 s 6 smax, is illustrated in Figs. 1
and 2 for values of the exponent α selected from the range
0 6 α 6 1. The graphs plotted for α > 0 reflect the inhomo-
geneity of the size of particles evolving under the preferential

Fig. 1 Semi-log plots of the particle size distribution obtained for
n = 105, N = 103, and for several values of the exponent α . Contin-
uous lines are used for a better visualization.

attachment of molecules. For α = 0, the system should es-
sentially be homogeneous and, thereby, the SD should bears a
strong resemblance to the Dirac delta function. However, as
can be seen from Fig. 1, the SD obtained for α = 0 displays a
narrow peaked shape and, thereby, has not strictly the form of
the Dirac’s function. Obviously, this is a consequence of the
finiteness of the system and numerical imperfections. A char-
acteristic feature of SD obtained for relatively small values of
α , more precisely, for 0 < α < 1, is the systematic broadening
of the peak and the increase in right skewness of the shape as
α grows. It is also evident that the SD exhibits an exponential
decay at α = 1 and that the SD has not a single-peaked form
with a maximum at s > 1 when α > 1 (Fig. 2). In general, the
particle SD becomes very irregular for α > 1, displaying the
scale-free property for relatively small particles, revealing the
multimode form for intermediate values of s, and exhibiting
right long tail behavior at isolated values of the particle size.

It is remarkable that the model under study here does not
predict the lognormal SD. Such a distribution have experimen-
tally been found in various polydispersive systems.58–60 The

Fig. 2 Continuation of diagrams shown in Fig. 1 for greater values
of α: 1.1, 1.2, 1.3. The log-log scale is used.
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Fig. 3 Particle size distribution as a function of s and α , determined
for n = 105, and N = 103. (a) 3D surface plot, (b) inhomogeneously
scaled post map, where points at which N(s,α) is nonzero are repre-
sented by filled circles of diameters proportional to logN(s,α).

lognormal form of the SD has been explained by means of nu-
merical simulations, using the assumptions that the increase of
the volume of each particle is proportional to its surface and
that the time of particle residence in the growth zone is lognor-
mally distributed in consequence of the diffussion and strong
drift.61 Since the second assumption is not satisfied within the
framework of the described model (with the preference rate
(3)), the model cannot yield the lognormal SD for any value
of the index α .

To gain a more detailed insight into the size dispersion of
the model system studied here, the particle SD has been pre-
sented as a function, N ′(s,α), of both α and s (Fig. 3). Since
the surface diagram (Fig. 3a) has been obtained by using in-
accurate (by necessity) gridding and interpolation methods,
this diagram does not represent the function N ′(s,α) quite
correctly in some variable regions. Therefore, the function
N ′(s,α) has additionally been mapped onto the logs,α plane.

Points of the resulting discrete map represent values of vari-
ables for which N ′(s,α) > 0. In order to reflect the variabil-
ity of N ′(s,α) in this map, circles of diameters proportional
to logN ′(s,α) have been ascribed to points of the map (Fig.
3b). The results, graphically shown in Fig. 3, evidently indi-
cate that the range of particle sizes grows as α increases. Ac-
cordingly, the maximal size smax is an increasing function of
α , displaying a rapid growth as α exceeds the value 1 (Fig.
4). This corresponds to the gelling phenomenon or to the
”winner-takes-all” effect occurring when almost all particles
do not attach any molecule and, simultaneously, one particle
connects enormously many molecules.32 However, even if α
is rather large, say α > 1.3, there exist distinctly isolated val-
ues and/or ranges of s for which N ′(s,α)> 1. The regions of s
for which the SD takes zero and nonzero values are distinctly
separated from each other. Such a multimode behavior of the
SD is a consequence of a specific aggregation process occur-
ring in the model systems under discussion here. Indeed, in
these systems, particles do not join together and all particles
that attached molecules at early stages of the evolution of the
resulting particle ensemble remain unchanged or evolve into
greater particles. However, due to the inhomogeneity (size
dependence) of the aggregation rate, the growth of larger par-
ticles is faster than the growth of smaller objects. Then, the
combination of evolutionary rules that forbid particles from
linking together and that allow particles to connect molecules
in a preferential way with respect to the particle size leads, for
α > 1, to the appearance of multimode behavior of the SD. It
is remarkable that the modes of SD are completely separated
for sufficiently large α , i.e., regions of s in which they appear
do not overlap each other.

The multimodal behavior of SD have been found experi-
mentally in various NP systems. A spectacular example of a
very complex multimode SD of real NP systems is given by
the SD determined in the case of aggregates created as a result

Fig. 4 The maximal particle size as a function of the index α . This
dependence has been derived for n = 105, N = 103, and discrete val-
ues of α (marked with dots).
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Fig. 5 Dependence of the size distribution N(s,N) on the particle
size and time (represented by the average number N of molecules
linked to a particle) as obtained for n = 105 and α = 1.2. (a) 3D
surface plot, (b) inhomogeneously scaled post map, where circles
correspond to values of s and N at which N(s,N)> 0.

of heterogeneous nucleation of polyaniline particles on sur-
faces of large particles, preformed due to homogeneous nucle-
ation.20 The process of the heterogeneous nucleation can be
described by applying the model considered in this paper. Ob-
viously, mechanisms underlying multimodal SDs determined
for various real NP systems can have more complex character
than the mechanism considered within the studied model.20,24

Nevertheless, this model is capable of yielding an adequate de-
scription of various nontrivial aggregation structures and, con-
sequently, can be considered as a starting point for describing
realistic complex NP systems.

In consequence of the size dependence of the attachment
rate, specific dispersion properties of evolving particles be-
come observable when the evolutionary process is continued
sufficiently long, i.e., when the average particle size becomes
large enough. Clearly, the corresponding temporal evolution
of the SD is dependent on α . For α > 1, the time variabil-
ity of the SD turns out to be very complicated. This is il-

lustrated in Fig. 5, where the distribution of particle sizes,
N(s,N), is plotted for α = 1.2, as a function of s and time,
represented by the average number N of molecules linked to
a particle. The plots in Fig. 5 indicate that the evolution of
small particles, especially those having the size s = 1, is rela-
tively slow, whereas the process of evolution of large particles
is very rapid. It is obvious that small particles are allowed to
attach molecules at each stage of the evolution process, but the
growth of large particles, especially the increase of the largest
particle, proceeds faster and faster for each α > 1, accord-
ing to the particle size. However, the time dependence of SD
is not, in general, monotonously increasing for a given s, as
seen in Fig. 5. Indeed, positions of peaks, approximately oc-
curring between s = 102 and s = 104, shift in the direction
of increasing s as N grows. Consequently, the distribution
N(s,N) primarily increases and after a while decreases (for
a given 102 6 s 6 104). This illustrates a more general prop-
erty of particle ensembles generated by attaching molecules
according to the preferential rate with α > 1, i.e., the non-
monotonicity of the time dependence of the SD appearing for
each α > 1, at some fixed s and, simultaneously, the mono-
tonicity at other values of s. Thus, when α > 1, the s and N
dependence of N(s,N) does not factorize for all s. This prop-
erty is in contrast with the typical factorization features of the
cluster size distribution determined by using the coagulation
Smoluchowski equation with homogeneous kernels (collision
rates) involving nonnegative exponents.32 It should, however,
be pointed out that although the ratio N(s,N)/N(1,N) de-
pends, in general, on time for fixed 1 < s ≪ smax, it remains
time independent, or nearly time independent, for sufficiently
large s and N (provided that α > 1). Indeed, the evolution of
the smallest particles is enormously slowed down for large N
and then N(s,N) is approximately constant in time. Simul-
taneously, the evolution of very large particles (appearing at
large N), especially the evolution of the largest particles, is
fast, but the large particles are unique and hence N(s,N) = 1
for sufficiently large s (as seen in Fig. 5). Since the largest
particle connects almost all molecules for α > 1 and N ≫ 1,
one can expect that, if α > 1 and N ≫ 1, the maximal par-
ticle size smax grows linearly with N. The appropriate time
evolution of smax is graphically presented in Fig. 6 for differ-
ent values of α . It is seen that smax can really be expressed in
the linear form for large enough N, such that N > 103, even
if α is slightly less than one. More precisely, one then has
smax ≈ cα N, where the coefficient cα satisfies the inequality
cα ′ > cα for α ′ > α . It is remarkable that, within the range of
intermediate values of N, say 102 6 N 6 103, the time evolu-
tion of SD varies in a rather irregular way as α changes. For
a given α , the time dependence of smax is visibly nonlinear in
the intermediate range of N. This follows from the fact that,
when N is rather small, the maximal particles are too small
in order to dominate the aggregation process, and there ex-
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Fig. 6 Time dependence of the maximal size of n = 105 particles as
derived for different values of the index α (time is represented by N).

ist relatively many smaller particles that, however, undergo a
quite fast growth process. As N increases, the evolution of
aggregates smaller than the largest particle gradually become
slower, while the growth of the largest particle is increasingly
faster. As a result, SD changes its shape as the evolution of the
system progresses.

Since smax rapidly increases as α exceeds the value α = 1
(Fig. 4), the rate of attaching a molecule to a small particle
tends to zero as N increases and then small particles stabi-
lize. On the other hand, the rate of attaching a molecule to
the largest particle is equal to one and, for α > 1, the largest
particle grows linearly with N. In the case of particles of in-
termediate sizes, their growth (for α > 1) is relatively fast at
early evolution stages, but becomes very slow at late stages
(Figs. 4 and 5), unexpectedly leading to a multimodal behav-
ior of the SD. As is seen in Fig. 5, the respective peaks of the
SD shift toward greater values of the particle size, but heights
of the peaks remain nearly unchanged. It must be stressed that
the appearance of peaks of the SD at special particle sizes is
rather difficult to explain. Beside the multi-peak character of
the SD, the multimodality manifest itself in vanishing of the
SD function within some ranges of the particle size (Fig. 3).
For α greater than α ≈ 1.3, the intervals within which the SD
vanishes appear in regions of both large and relatively small
values of the particle size.

An irregular time variability of the shape of the SD has also
been recorded experimentally in various NP systems evolving
in consequence of aggregation processes.18,20,24 It is remark-
able that, although the detailed mechanisms underlying such
a behavior of the SD is, in general, determined by specific
properties of individual systems, the complex time variabil-
ity of the SD can be reproduced within the considered general
model (for α > 1). This is because the model reflects the com-
petition between largest and smaller real particles in attaching
molecules. Moreover, the interparticle interactions occurring
in real system depend, in principle, on the size of particles.

Obviously, an important role in the evolution of the studied
model of NP ensembles plays the constraint that the number
of particles is constant. Even though this restriction cannot be
satisfied in many real systems, the model can also be useful
for studying some systems that evolve in consequence of the
particle-particle aggregation and that are close to the liquid-gel
phase transition. In such real systems, the average concentra-
tion of large particles is usually low and, then, the formation of
connections between large particles is unlikely. Instead, large
particles frequently attach small particles, analogously to the
process of attaching molecules by particles considered within
the studied model. Thus, this model can also be applied to
describe particle-particle aggregation in strongly inhomoge-
neous systems at late stages of their time evolution. For in-
stance, in the case of α > 1, the model predicts the formation
of large particles and simultaneous stabilization of small par-
ticles. In some sense, such a process is similar to the Ostwald
ripening phenomenon.62 Since this phenomenon is associated
with a continuous dissolution of small particles and, in conse-
quence, with the ultimate disappearance of small particles, the
resulting stable SD has a monomodal shape.62–64 Usually, the
underlying mechanism of the dissolution and the size coarsen-
ing due to the redeposition of the dissolved species onto large
particles is described by assuming that the interfacial tension
is constant in time. However, if particle surface areas increase
and surfactants stabilizing the particles do not desorb, the sur-
face tension of the molecules varies (in this case, the parti-
cle surface is called to be elastic).65 For relatively low sur-
face elasticity, numerical simulations have shown that the SD
evolves over time toward a stable bimodal distribution (with
a nonzero minimal particle size).65 This indicates that, if the
dissolution of small particles with elastic surfaces runs faster
than the growth of large particles, the total number of particles
formed at late stages of the ripening process can be considered
to be constant. In such cases, the ripening process can be de-
scribed by applying the model of preferential attachment of
molecules.

4 Conclusions

The simple kinetic model considered in this paper can essen-
tially be applied to analyze the process of the attachment of
molecules of liquid media to dispersed NPs. This model in-
volves only one control parameter, i.e., the exponent charac-
terizing the aggregation rate and, therefore, cannot precisely
describe various complex aggregation processes occurring in
various real systems. However, the model can easily be ex-
tended or modified, e.g., by allowing dispersed particles to
connect not only molecules of media but also other particles,
or by refining the aggregation rate. It is rather evident that a
potentially precise theoretical recovery of properties real ag-
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gregate ensembles, in particular the recovery the SD of aggre-
gates, can enable a better understanding of complex aggrega-
tion processes. This can also give the opportunity to elaborate
effective methods to produce aggregation systems of desirable
features.
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