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Comment on “Decomposition mechanisms of 

trinitroalkyl compounds: a theoretical study from 

aliphatic to aromatic nitro compounds” by G. Fayet, P. 

Rotureau, B. Minisini, Phys. Chem. Chem. Phys., 2014, 

16, 6614 

Vitaly G. Kiselev
a,b

In a recent paper
1 

Fayet et al. scrutinized primary 

decomposition reactions for various derivatives of 1,1,1-

trinitrobutane (TNB) and nitroaromatics using DFT 

computations. The authors compared the calculated 

Gibbs free energy of activation (∆������ ) for various 

competing reaction channels and inferred that the C-

NO2 bond fission dominates the gas-phase thermolysis 

of all species studied. 

For clarity, we will consider the reactions of TNB at 

room temperature. In contrast to isomerisation channels 

(reactions R2 and R3 in the manuscript),
1
 the C-NO2 

bond rupture (R1) is a barrierless process, and in such 

case the variational transition state theory (TST) is 

typically used to locate the transition state (TS).
2
 In the 

framework of TST, either canonical or variational,
2
 the 

rate constant of a unimolecular reaction reads as: �	
	 = ��	 ����−∆��	��	 � 	= ��	 ����∆�
	�� ���� �−∆��	��	 �
= ��	 ���	�������	� ����−∆�����	 �																										���. 

In my opinion, the methodologies employed by the 

authors
1
 to calculate the ratio of partition functions 

������� 

(or, almost equivalently, the activation 

entropy			∆�
���� ) and activation barrier		∆���� for a 

barrierless reaction R1 (more generally, the C-NO2 bond 

rupture reactions as well), both have serious 

shortcomings. 

Let us consider first 
 � !"#$. As an estimation to ∆��%&'(  the authors

1
 simply proposed the Gibbs free 

energy of a barrierless reaction ∆��%&'( , (i.e., a 

variational TS corresponds to the asymptote •Rad1 + 

•NO2 and �� ≈ �*��). Assuming the usual 

factorization of the partition function of N-atomic 

species + = +,-�.�+-/,�.� 	+012�.345�
, the ratio of 

approximate and exact TS partition functions reads 

as: �*���� = �6�*�7���86*�7��9:;	*�7<*4=� ∙ �6���7���86��7��9:;	��7<�4=��6���7���86��7��9:;	��7<4?� 	= 

=
@AB
AC��6�*�7� ∙ �6���7��6���7� ����86*�7� ∙ ��86��7���86��7� �

�9:;/:EF.�86��G� HAI
AJ ∙ K�9:;	*�7<*4=� ∙ �9:;	��7<�4=��9:;	��7<4��� L =

= M�6��NN�7� ∙ ��86�NN�7�
�9:;/:EF.�86��G� O ∙ K�9:;	*�7<*4=� ∙ �9:;	��7<�4=��9:;	��7<4��� L = 

= PQ�<*∙R�ST�NN��	U7 �V
7�9:;/:EF.�86���� W ∙ X ��86�NN�7�

�9:;/:EF.�86��7� Y ∙ Z�9:;	*[7<*\=]∙�9:;	�[7<�\=]
�9:;	��7<\��� ^						���.  

The ratio 
 _ ` �  is dominated by the first term in 

parentheses. For brevity, we estimate from below the 

second term in curly brackets (in a very conservative 

manner) as unity. The third term comprises 

contributions from approximately conserved vibrational 

modes and is supposed to be close to unity as well. 

Assuming �6��NN�7� = 7.5 ∙ 105	 (meff = 35 a.e.m.) and the 

partition function of every TS vibrational (or hindered 

rotation) mode +9:;/:EF.�86���� ≤ 10 (corresponds to a 

harmonic vibration with a wavenumber higher than ~20 

cm
-1

); the lower estimation of the first term in (2) yields	 �*���� ≥ 	7 ∙ 10m. 

More generally, the main error stems from 

contributions from one entirely spurious translational 

degree of freedom and two vibrations/hindered rotations 

in the TS erroneously considered to be translations as 
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well. In the case of (R1), this yields at room temperature 

a spurious contribution to ∆��%&'(  of no ∙ Rpq R�*���� U −1U ≥ 6	kcal/mol. Such fictitious overestimation of ∆�s%&'( , inter alia, leads to an unrealistically high value 

of the preexponential factor t ≈ u`vw xyz R1 + ∆!|}~��� U =10%m	s-1
.
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Table 1. Activation Barriers of Thermal Reactions of Nitroalkanes (∆��(() Calculated Using Various Coupled Cluster 

Methods, Multi-Level, and DFT Procedures. In the Case of Barrierless Radical Decomposition Reactions, the C-NO2 Bond 

Energies (∆��(() are Listed in Parentheses. All Values are in kcal/mol. 

Reactions 
∆���� (∆��((), kcal/mol 

CCSD(T)/ 

CBS(T,Q)a,b 

CCSD(T)-F12/ 

CBS(D,T)a,b 

CCSD(T)-F12/ 

VDZ-F12b 

PBE0c M06-2Xd 

C3H7C(NO2)3 → ••••C3H7C(NO2)2 + ••••NO2 (R1)e   (44.0) (35.0) (44.0) 

C3H7C(NO2)3 → C3H6=C(NO2)2 + HONO (R3)e   42.7 37.9 41.7 

C3H7C(NO2)3  → C3H7C(NO2)2ONO (R2)e   59.5 59.2 62.1 

CH(NO2)3 → •CH(NO2)2 + •NO2  (46.5) (46.0) (38.9) (46.1) 

CH(NO2)3 → C(NO2)2N(O)OH  50.4 50.7 45.7 48.7 

CH(NO2)3 → CH(NO2)2ONO  61.1 60.5 60.6 62.8 

CH3CH(NO2)2 → •CH3CH(NO2) + •NO2  (48.5) (47.8) (41.1) (47.4) 

CH3CH(NO2)2 → CH2=CH(NO2) + HONO  44.4 45.0 41.3 43.6 

CH2(NO2)2 → •CH2(NO2) + •NO2 (49.1) (49.3) (48.6) (44.3) (48.8) 

CH2(NO2)2 → CH(NO2)N(O)OH 54.7 54.7 54.8 51.1 53.2 

CH3CH2NO2 → •CH3CH2 + •NO2 (NE1) (61.0) (61.1) (60.2) (57.5) (62.1) 

CH3CH2NO2 → CH2=CH2 + HNO2 (NE2) 47.4 47.3 47.8 45.6 47.0 
a The two-point complete basis set extrapolations (aVTZ:aVQZ and VDZ-F12:VTZ-F12, respectively) were employed. b Single point CCSD(T)/aug-cc-pVTZ, 

CCSD(T)/aug-cc-pVQZ, CCSD(T)-F12b/cc-pVDZ-F12, and CCSD(T)-F12b/cc-pVTZ-F12 energies were calculated using the M06-2X/6-311++G(2df,p) 

optimized geometry. ZPE and thermal corrections to enthalpy were computed at the same level of theory. c PBE0/6-31+G(d,p) level of theory was used. d M06-

2X/6-311++G(2df,p) level of theory was used. e The reactions are named in accordance with ref 1. 

Moreover, even higher error to ∆��%&'(  is 

introduced by quantum chemical calculations of ∆��((.
3
 

As we have previously demonstrated,
4
 some DFT 

functionals remarkably underbind polynitromethanes 

(e.g., B3LYP lowers D0(C-NO2) in trinitromethane by 

~11 kcal/mol).
4 

PBE0 performs similarly and 

underestimates D0(C-NO2) in TNB by ~9 kcal/mol in 

comparison with CCSD(T)-F12 values (cf. the 

benchmark results in Table 1). More generally, the 

results of Table 1 indicate poor performance of PBE0 

for decomposition and H-transfer reactions of 

polynitroalkanes. 

Thus, the difference between a true ∆�G%&'(   and 

reported
1
 ∆�G%&'(  of the reaction (R1) is at least ~15 

kcal/mol (ca. 11 orders of magnitude in �v|v at room 

temperature). At the same time, the ∆�∆�G%&'( � of the 

reactions (R1) and (R3) was reported to be 16.4 

kcal/mol.
1
 However, PBE0 also underestimates the 

activation barrier of (R3) by ~5 kcal/mol (Table 1) and 

(R1) most likely remains a dominating primary reaction. 

The correct conclusion
 
is therefore a result of partial 

error compensation between the computed 

activation energies of (R1) and (R3). 

On the other hand, PBE0 reproduces well the 

activation barriers of nitro-nitrite rearrangements (Table 

1). Thus, calculations of ∆-�(( at PBE0 level along with 

incorrect estimations of ∆�s%&'(  render branching ratios 

intrinsically biased towards radical decomposition of 

nitroalkanes. E.g., the calculated in such manner ∆�∆�G%&'( � of reactions NE1 and NE2 (Table 1) is less 

than 1 kcal/mol, while the isokinetic temperature for 

these channels was estimated to be higher than 600 K.
5
 

Note that the M06-2X functional
6
 provides 

reasonable accuracy (Table 1, last column) and can be 

used for feasible calculations in the case of large 

nitroaliphatics and nitroaromatics. 
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