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The growing success of controlling the dynamics of quantum systems has been ascribed to the favorable topology of the quan-

tum control landscape, which represents the physical observable as a function of the control field. The landscape contains no

suboptimal trapping extrema when reasonable physical assumptions are satisfied, including that no significant constraints are

placed on the control resources. A topic of prime interest is understanding the effects of control field constraints on the apparent

landscape topology, as constraints on control resources are inevitable in the laboratory. This work particularly explores the effects

of constraining the control field fluence on the topology and features of the control landscape for pure-state population transfer

in a two-level system through numerical simulations, where unit probability population transfer in the system is only accessible

in the strong coupling regime within the model explored here. With the fluence and three phase variables used for optimization,

no local optima are found on the landscape, although saddle features are widespread at low fluence values. Global landscape

optima are found to exist at two disconnected regions of the fluence that possess distinct topologies and structures. Broad scale

connected optimal level sets are found when the fluence is sufficiently large, while the connectivity is reduced as the fluence

becomes more constrained. These results suggest that seeking optimal fields with constrained fluence or other resources may

encounter complex landscape features, calling for sophisticated algorithms that can efficiently find optimal controls.

1 Introduction

The broad success of optimally controlling quantum systems

with tailored external laser fields has been attributed to the

inherent attractive topology of the underlying control land-

scape, which is the functional relationship between the con-

trol objective (e.g., selective population transfer to an excited

state or unitary transformation manipulation) and the applied

control field.1 Theoretical analysis shows that control land-

scapes for finite-dimensional quantum systems possess a trap-

free topology, with no sub-optimal local extrema that can hin-

der attainment of the globally optimal objective value.2–5 This

conclusion requires the satisfaction of three Assumptions: (i)

the target quantum system is controllable,6 (ii) the map from

the space of control fields to the associated dynamical prop-

agator is surjective,2,7 and (iii) the controls are sufficiently

flexible such that the landscape may be freely traversed.3–5

As uncontrollable quantum systems that violate Assumption

(i) are expected to form a null set in the space of Hamilto-

nians,8 any arbitrary quantum system is likely to be control-

lable. Although unusual exceptions to Assumption (ii) pro-

duce landscape traps,7,9–13 extensive numerical simulations

with a broad variety of systems that avoid constraints on the

controls show that extremely high yields can be achieved with-

out encountering traps on the landscape,14,15 and experimental

landscapes on a wide variety of systems reveal no traps.16–22

In contrast, numerical simulations15,23–25 and optimal control

experiments20,21 using constrained control fields show that

landscape traps arise when sufficiently stringent constraints

are imposed. Even imposing mild constraints may increase

the required search effort and alter the apparent landscape

topology in numerical simulations when the global optimum

is reachable (i.e., no traps are observed).26–31 Thus, the lack

of satisfying Assumption (iii) plays a crucial role in limiting

free movement over the landscape topology to create apparent

traps that appear as real in practice.

A commonly employed constraint in simulations is to limit

the control field fluence in order to prevent convergence to

physically unrealistic strong control fields.1,2,32–38 In some

cases, the imposition of a stringent fluence constraint can pre-

vent attainment of very high objective yields.2,34–36 In the lab-

oratory, the fluence and bandwidth of ultrafast laser pulses are

inevitably limited, and experiments on controlled dissociative

ionization of halogenated hydrocarbons found that limited flu-

ence introduced traps on the measured control landscapes.21

Some insight into the effects of limited control field fluence on

the optimal landscape regions (i.e., near the highest objective

yield) has been gained from numerical explorations using con-

strained control fields.23 This work considers a constrained

control field parameterization along with the control fluence

acting as a control variable so that the effects on landscape

features can be examined directly and visually in numerical
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simulations.

We consider a simple two-level closed quantum system un-

dergoing unitary evolution, where the control objective is to

maximize the probability P1→2 of population transfer from the

ground state |1〉 to the excited state |2〉. Upon satisfaction of

the three Assumptions above, the landscape for the objective

of controlled population transfer (denoted Pi→ f for arbitrary

states |i〉 and | f 〉) has extrema where δPi→ f /δε(t)= 0, ∀t, only

for no population transfer, i.e., Pi→ f = 0, and optimal transfer

Pi→ f = 1.3,4 Analysis of the landscape optimum for popula-

tion transfer has revealed a special dependence of its topol-

ogy on the number N of accessible energy levels in the quan-

tum system. Theoretical analysis,4,39,40 numerical simula-

tions,15,23,41 and experiments42–44 have demonstrated that the

Hessian matrix δ2Pi→ f /δε(t)δε(t ′) at the optimum Pi→ f = 1

has at most 2N − 2 eigenfunctions (i.e., with corresponding

non-zero negative eigenvalues) specifying control paths that

lead down off the top of the landscape. Thus, when more than

2N − 2 independent and physically appropriate control vari-

ables are employed for optimization, the landscape optimum

is expected to form connected level sets of optimal solutions.

Here, a “level set” refers to a family of control fields that pro-

duce the same Pi→ f value. Such optimal level sets have been

observed in numerical simulations23,40,45 and in recent exper-

iments.21,42 Other studies indicate that at least 2N − 2 inde-

pendent controls are typically necessary for successful opti-

mization of Pi→ f .23,46 In the case of our N = 2 level system,

using N2 = 4 independent controls to drive the dynamics is ex-

pected to be sufficient for successful optimization (i.e., with-

out further significant constraints) and produce optimal level

sets with a dimensionality of at least 4− (2N− 2) = 2.23,39,46

The simulations will test these assertions. Even when using a

nominally sufficient number of independent controls, subop-

timal traps and saddle points can still exist on the landscape

if significant further constraints are present, e.g., the selected

controls are not well-chosen for the particular objective.23 The

presence of traps can hinder or prevent convergence to the

global optimum Pi→ f = 1 with a local search algorithm. It

is possible to escape from saddle points, although encounter-

ing them can slow down convergence.14,23 In order to assess

whether one or both types of suboptimal critical features arise

on the landscape, a hybrid first- and second-order procedure

will be employed for landscape climbing. Optimal level sets

will be explored using a previously employed method.23,40

Choosing reasonable control field constraints presents a

multitude of options with regard to allowed spectral frequen-

cies, amplitudes, phases, control duration, control fluence,

etc., all of which can influence the apparent topology and

structure of the resulting landscape.23,31,40 As a particular

choice of control fields to drive our two-level system with

four independent controls, we fix the spectral frequencies,

amplitudes, and control duration, while employing the spec-

tral phases and the control fluence as variables. Our choice

of a short control duration, which is advantageous for over-

coming decoherence effects in applications such as quantum

information,31,47,48 precludes convergence to unit population

transfer in our two-level system with the well-known solu-

tion of a sufficiently long resonant π pulse,48–51 thus requir-

ing a multivariate optimization of the control field. Addition-

ally, convergence to unit probability population transfer will

be shown to occur only where the field coupling to the Hamil-

tonian is strong, i.e., the Rabi frequency is on the order of

the transition in H0 and the rotating wave approximation is no

longer valid.52 The strong coupling regime is accessible ex-

perimentally, for instance, in NMR control of spin systems,48

as well as for gas phase atoms and molecules with strong RF

fields53 and ultrashort laser pulses.54 Although operating un-

der strong coupling conditions can render additional states ac-

cessible, as well as bring higher-order field coupling terms be-

yond the dipole term into play, two-level systems with strong

field dipole coupling are commonly used to model many sys-

tems,52 including high harmonic generation from atoms55,56

and laser-nucleus interactions.57 In this work, we restrict the

model to a two-level system with strong dipole coupling and

show that the resulting dynamics produce a rich, complex con-

trol landscape with extensive connected optimal level sets at a

sufficiently high control fluence. The present study presents

a detailed map of this illustrative landscape; other choices of

control variables allowing variation in the spectral amplitudes

or control duration, for instance, may produce different land-

scape structures. One general goal of this work is to lay out

procedures for such future explorations and point out subtle

landscape features that can arise.

The remainder of the paper is structured as follows. Section

2 describes the theoretical formulation of the optimal control

problem and the numerical search procedures. Section 3 as-

sesses the topology of the control landscape through statistical

ensembles of optimization searches and objective evaluations.

Section 4 explores level sets in the vicinity and at the global

optimum, with a particular emphasis on the effects of the con-

trol fluence upon level set structure. Finally, Section 5 presents

concluding remarks.

2 Theoretical Methods

2.1 Formulation of the control problem

Consider a closed quantum system consisting of the field-

free Hamiltonian H0 with N states |1〉 . . . |N〉 and the dy-

namics specified by the time-dependent Hamiltonian H(t) =
H0 − µε(t), where µ is the dipole operator and ε(t) is the con-

trol field. The time-evolution of a system state |ψ(t)〉 is given

as |ψ(t)〉 = U(t,0)|ψ(0)〉, where U(t,0) is the unitary propa-

gator evolved from time t = 0 to time t, and |ψ(0)〉 is the state
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of the quantum system at t = 0. The dynamics of U(t,0) are

governed by the time-dependent Schrödinger equation

ih̄
∂U(t,0)

∂t
= H(t)U(t,0), U(0,0)≡ I. (1)

The control landscape is defined by the physical objective

as a functional of ε(t). Here, the objective is to maximize

the transition probability Pi→ f of population transfer from an

initial state |ψ(0)〉= |i〉 to target state | f 〉 of the system at time

T ,

Pi→ f ≡ |〈 f |U(T,0)|i〉|2, (2)

where the propagator U(T,0) is specified by the Schrödinger

equation (1). We assume that the system is controllable, that

is, any arbitrary propagator U(T,0) can be generated by some

ε(t) at a sufficiently long T that does not limit the dynamics.

This condition requires that the Lie algebra generated from H0

and µ forms a complete set of operators.6 As uncontrollable

quantum systems are expected to constitute a null set in the

space of Hamiltonians,8 an arbitrary N-level quantum system

is likely to be controllable. The surjectivity requirement for

the map between the control space and the associated dynami-

cal propagators (i.e., the Jacobian δU(T,0)/δε(t) is full-rank)

also appears to be generally satisfied under nearly all circum-

stances.2,7,11 Upon satisfaction of these requirements, analy-

sis shows that the landscape is trap-free, i.e. it does not con-

tain suboptimal extrema3,4 when no limitations are placed on

ε(t). Numerical simulations show a high likelihood of having

a trap-free landscape when constraints on ε(t) are sufficiently

mild.15,23,24,40 Imposing ever stronger constraints on the con-

trol field can introduce apparent traps on the landscape (i.e.,

such traps arise due to constrained freedom of movement on

the underlying trap-free landscape) and limit the maximum at-

tainable Pi→ f value,23 but there is presently no general under-

standing of where the boundary lies between adequate controls

and those that hinder reaching the objective. With this situa-

tion in mind, this paper presents a detailed examination of the

control landscape topology and structural features by using a

N = 2 level system with a constrained set of control variables

that enables complete visualization of the landscape. The vi-

sualization of the landscape features permits a glimpse of the

rich boundaries between adequate and limiting controls.

For an N level system, a proper choice of N2 control vari-

ables should produce a trap-free landscape, because N2 in-

dependent variables are sufficient to specify any propagator

U(T,0) of dimension N. In the present work, N = 2 and we

expect that N2 = 4 well-chosen control variables should be

sufficient. The capability to create an arbitrary U(T,0) (i.e.,

with a complete set of control variables) is equivalent to em-

ploying an unconstrained ε(t). In general, there is no a priori

way to determine which choice of N2 control variables effec-

tively eliminates constraints on ε(t) in any particular applica-

tion, although physical consideration can be helpful in choos-

ing a reasonable set of control variables. Previous work has

shown that choosing the control variables such that the Fourier

components of ε(t) overlap well with the transition energies

in H0 produces a favorable landscape topology, while select-

ing Fourier components in ε(t) that do not correspond to the

transition energies of H0 both increases the prevalence of traps

on the control landscape and reduces the maximum attainable

Pi→ f value.23 In this work, the control variables were chosen

with this guidance in mind.

We consider the dynamics of a two-level quantum sys-

tem under dipole interaction with the field ε(t). We may

rewrite the problem in dimensionless units by multiplying the

Schrödinger equation (1) by the control time T and dividing

by h̄:

i
∂U(τT,0)

∂τ
=

T

h̄
(H0 − µε(τT ))U(τT,0), (3)

where H0 is the field-free Hamiltonian in its diagonal basis,

µ is the dipole matrix, and τ = t/T , 0 ≤ τ ≤ 1 is the dimen-

sionless time. The energy difference between the levels of H0,

E2 −E1 = ∆E = h̄ω, may be written in the same dimension-

less units as ∆E T
h̄
= ωT . In order to satisfy the requirement

of complete system controllability at time T ,6,47 we require a

sufficiently large T such that

∆E
T

h̄
= ωT & 2π. (4)

Upon making the transformations in Eq. (3), we may pick ar-

bitrary values of ∆E in H0 and then choose T to satisfy Eq. (4).

Hereafter, we assume that all quantities are in dimensionless

units. This transformation renders the chosen system param-

eters amenable to appropriate scaling in order to correspond

to various physical systems. For the present study, the system

Hamiltonian and control field are

H0 =

[

0 0

0 2

]

(5)

µ =

[

0 8

8 0

]

(6)

ε(t) = FA(t)
4

∑
m=1

cos(mt +φm), (7)

and A(t) is a fixed Gaussian amplitude function. The width of

A(t) is chosen such that A(0) = A(T )< 0.0001A(T/2), where

the maximum of A is at time t = T/2. The amplitude A(t) is

chosen such that the field has a fluence of 1.0 before multipli-

cation by F . Thus, F2 defines the field fluence,

F2 =

∫ T

0
ε(t)2dt. (8)
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In the present study, T = 30 and the control field ε(t) is de-

fined in the time domain by 512 points on t ∈ [0,T ], which

is sufficient to ensure that time and spectral resolution do not

constrain the control field.15,23 With these choices, we satisfy

Eq. (4) with ωT = 60 >> 2π.

The control variables are F , φ1, φ2, and φ3 in Eq. (7); φ4 = 0

is the fixed carrier frequency reference phase. For clarity, the

controls will be referred to as a vector C = [φ1 φ2 φ3 F ].
We only employ four independent controls in C to enable

direct landscape visualization, allowing freedom in the field

strength F and the spectral phases φ1, φ2, and φ3. The con-

trol time T , spectral amplitudes, and spectral frequencies are

fixed. The latter frequencies are chosen such that one fre-

quency (m = 2) is resonant with the transition in H0, while the

other three frequencies are nonresonant. For simplicity, each

frequency component was given the same amplitude. This

type of control field with equally spaced frequencies having

the same amplitudes is accessible experimentally, for instance,

in an optical frequency comb.58 While other choices of con-

trol field variables could be made, we seek to uncover general

features of the control landscape and will show that the present

choice of control field permits 100% population transfer upon

many values of the controls C. As will be shown below,

optimal population transfer with this choice of Hamiltonian

and control field is only attainable with values of F & 0.15

where the field coupling in the Hamiltonian is strong. Thus,

this model system imposes the additional constraint of strong

dipole coupling dynamics52,55–57 being required to achieve

control. Here, operating in the strong field regime requires that

all of the phases φ1, φ2, and φ3 play a role in the controlled dy-

namics, even when their corresponding frequency components

are nonresonant with the transition in H0. We will demonstrate

that constraining the dynamics to lie in the strong field regime

can produce extremely rich landscape features, even in a nom-

inally simple model system.

As a final comment, propagating optical pulses must satisfy

the requirement ∫ T

0
ε(t)dt = 0. (9)

Modern few-cycle pulse shaping techniques can construct

waveforms with practically weak tails that may not affect the

system dynamics while still satisfying Eq. (9).59,60 The defi-

nition of the field in Eq. (7) and associated time discretiza-

tion can result in the value of Eq. (9) deviating slightly

from zero. To assess this deviation, we evaluated Eq. (9)

for 104 random choices of the control variables C. The sta-

tistical distribution of the value of Eq. (9) was found to be

1.4× 10−5± 5.0× 10−4, with the maximum observed values

being ±1.8× 10−3. These values are less than 1% of the typ-

ical optimal values of the RMS integral of the control field F ,

i.e., the square root of the integral in Eq. 8.

2.2 Numerical Algorithm

In order to assess landscape topology and structure during an

optimization search for control fields producing P1→2 = 1.0
to high precision, a local search algorithm is needed that is

sensitive to landscape features. This work employs the com-

bined first- and second-order local D-MORPH40 search pro-

cedure to determine the change in the controls C at each al-

gorithmic step. In particular, a first-order local search will

halt upon reaching a critical point ∂P1→2/∂C = 0 (where 0

denotes the zero vector), including suboptimal maxima and

saddle points. A second-order search can escape from sad-

dle points, but will still become trapped at local maxima. The

present combined first- and second-order procedure can there-

fore assess the prevalence of both local maxima and saddle

features on the landscape.

The D-MORPH search procedure is implemented by defin-

ing a variable s that specifies the progress of the optimal search

from an initial random vector C(s = 0) to a vector at a lo-

cal or global maximum C⋆ = C(s = S). S is the value of s

corresponding to a landscape point that satisfies the second-

order optimality condition, i.e., the all eigenvalues of the Hes-

sian (second derivative) matrix H are less than or equal to

zero. The Hessian matrix elements are given by H (Cm,Cm′) =
∂2P1→2/∂Cm∂Cm′ for control elements Cm, Cm′ ∈ C. Along

the search trajectory from s = 0 to s = S, the landscape value

P1→2(s) ≡ P1→2[C(s)] depends upon s through the control

variables C(s).

Starting from an arbitrary control C(s = 0), the first-

order gradient based search procedure considers a differential

change in the landscape value dP1→2 associated with a differ-

ential change in the progress variable ds,

dP1→2

ds
≡

∂P1→2

∂C(s)

∂C(s)

∂s
. (10)

To maximize P1→2, we require dP1→2/ds ≥ 0, which specifies

that C(s) must satisfy the differential equation

∂C(s)

∂s
= γ

∂P1→2

∂C(s)
, γ > 0. (11)

The analytical expression for the gradient on the right-hand

side of Eq. (11) has been derived previously23 and is given

in the Appendix. The present search algorithm, incorporated

into MATLAB (routine ode45),61 solves Eq. (11) using a

fourth order Runge-Kutta integrator with a variable step size

γ to determine C at the next iteration. This search process

is halted when either (a) the P1→2 value reaches the desired

convergence criterion P1→2 > 0.99999 of being at the top of

the landscape or (b) the P1→2 value between consecutive iter-

ations increases by less than 1× 10−8. The latter situation (b)

indicates that a suboptimal critical point has been reached, and
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the search algorithm is switched to the following second-order

procedure.

In order to continue climbing towards P1→2 = 1.0 from a

suboptimal critical point, the second-order variation of P1→2

must satisfy

d2P1→2

ds2
= ∑

m
∑
m′

∂Cm(s)

∂s
H (Cm(s),Cm′(s))

∂Cm′(s)

∂s
≥ 0.

(12)

Analytical expressions for the Hessian elements

H (Cm(s),Cm′ (s)) have been derived previously23 and

are given in the Appendix. To ensure that Eq. (12) holds, one

may only move the controls C in the direction of the eigen-

vector(s) of the Hessian with associated null and/or positive

eigenvalues. The Hessian matrix may be diagonalized to give

H =
4

∑
m

|Qm〉Em〈Qm|, (13)

where |Qm〉 denotes the mth eigenvector and Em the mth eigen-

value. The derivative of C(s) may then be specified as follows:

∂C(s)

∂s
= αP (s) f (s) (14)

where α is a fixed scalar step size and P (s) denotes the pro-

jection operator P (s) = ∑n |Qn(s)〉〈Qn(s)|. The latter sum is

taken over the eigenvectors corresponding to En ≥ 0, and f (s)
is a freely chosen vector of length four that specifies the di-

rection of motion from the current location in the vicinity of

the critical point.40 In principle, any arbitrary f (s) will en-

sure that dC/ds satisfies Eq. (12) as s advances. In practice,

numerical issues (e.g., slight numerical errors in solving the

Schrödinger equation) can cause the P1→2 value to decrease

by a small amount as s advances for certain choices of f (s).
The present second order climbing procedure chooses a ran-

dom value of f (s), which is only accepted when associated

movement in s increases the P1→2 value. Furthermore, pre-

vious studies23,40 found that alternating movement along the

gradient and the Hessian eigenvectors could mitigate detri-

mental effects of these errors, so the latter procedure is em-

ployed here. The tandem first- and second-order D-MORPH

climbing algorithm may be summarized as follows:

1. From the initial arbitrary control C(s = 0), the first-

order procedure in Eq. (11) is followed until (a) P1→2 >
0.99999, i.e., convergence to the optimum is reached, or

(b) the P1→2 value increases by less than 1× 10−8 be-

tween consecutive algorithmic iterations. In case (a), the

search is complete.

2. In case (b), the Hessian eigenvectors and eigenvalues in

Eq. (13) are computed, after which the projection op-

erator P (s) is computed by summing over all eigenvec-

tors with eigenvalues greater than the numerical thresh-

old value of -0.01. This threshold ensures practical move-

ment in the direction of null and/or positive eigenval-

ues.23

3. Random free functions f (s) are sampled until one is

found that increases P1→2 upon movement in s. Sam-

pling stops after 103 random choices of f (s) are tested

and none increases P1→2.

4. The chosen f (s) is followed with a fixed step size α =
0.001 (while recalculating the Hessian elements and di-

rection of motion using Eqs. (13) and (14) at each s-step)

until P1→2 rises by less than 1× 10−8.

5. Climbing with the first-order procedure is performed un-

til P1→2 rises by less than 1× 10−8. This step typically

reaches higher P1→2 values when the second-order pro-

cedure fails.

6. Steps 3 through 5 are repeated until either the search con-

verges to the optimum or no search direction is found that

increases P1→2 after exhausting 103 random choices of

f (s) in step 3.

The simulations in Section 3 will assess the probability

of reaching the global maximum when starting from ran-

dom control choices C(0) using the above combined first-

and second-order D-MORPH search procedure. Convergence

to P1→2 > 0.99999 using only first-order searching indicates

that no suboptimal critical points were encountered along the

trajectory from C(0) to the global optimum. Conversely,

convergence to P1→2 > 0.99999 only after implementation

of the second-order search procedure indicates that a saddle

point was encountered along the search trajectory. Finally,

failure to reach P1→2 > 0.99999 after implementation of the

second-order procedure suggests convergence to a subopti-

mal trapping point. However, the present second-order D-

MORPH procedure contains an inherent stochastic compo-

nent due to random choices of the free function f (s), which

means that failure to converge to P1→2 > 0.99999 could arise

from inadequate sampling of the free function f (s). Thus,

any D-MORPH search below that fails to converge to P1→2 >
0.99999 is subsequently tested with a special choice of f (s)
that orients the search towards the nearest known optimal so-

lution C∗ in the search space. This “distance minimization”

free function is

fdist(s) =
C(s)−C∗

||C(s)−C∗||
. (15)

As will be discussed below, using the distance minimiz-

ing choice for f (s) in Eq. (15) permitted any purportedly
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“trapped” search to reach P1→2 > 0.99999. This result indi-

cates that these cases were not actual traps, which is consistent

with the computed Hessian matrices always containing at least

one eigenvalue above the threshold of -0.01. In addition, this

situation also indicated that the proper choice of direction on

the landscape can be necessary for allowing movement away

from some saddle points.

Optimal level sets corresponding to control fields producing

P1→2 > 0.99999 will be explored in Section 4 using a variation

of the above D-MORPH climbing algorithm:

1. From an optimal control C∗ producing P1→2 > 0.99999,

the Hessian eigenvectors, eigenvalues, and projection op-

erator P ′(s) are computed, where P ′(s) projects into the

null space of the Hessian.

2. A free function f (s) is chosen and utilized for 20 s-steps,

upon which a new random free function is chosen. This

procedure is repeated until a step slightly “falls off” of

the top of the landscape such that P1→2 < 0.99999.

3. Climbing with the first-order procedure is performed un-

til P1→2 > 0.99999. This step corrects for numerical is-

sues lowering the P1→2 value during level set exploration.

4. Steps 2 and 3 are repeated until (a) the maximum number

of 105 s-steps is exceeded or (b) the level set trajectory

falls below P1→2 < 0.99999 and the first-order climbing

procedure in Step 3 cannot attain P1→2 > 0.99999 after

100 s-steps.

A variation of the above level set search procedure was pre-

viously employed to explore one-dimensional optimal level

sets.23 Here, the optimal level sets are nominally expected

to be at least two-dimensional using the present four controls

(i.e., the number of nonzero Hessian eigenvalues leading off

the top of the landscape is at most 2N − 2 = 24,39,40). The

level set explorations in Section 4 will examine the degree to

which this expectation is realized.

The landscape exploration dynamical equations (11) and

(12) are highly non-linear in the controls C through the time

evolution operator U(t,0), so their treatment can be consid-

ered in analogy to the behavior of non-linear dynamical sys-

tems.62,63 In this regard, the optimal level sets are partially

functions of periodic control variables, i.e., the control values

φm and φm ± 2πnm for any integer nm produce identical con-

trol fields ε(t) through Eq. (7), while F is an aperiodic control

variable. Thus, the level sets may form periodic trajectories

over s in the control space {φm}, analogous to periodic or-

bits in nonlinear dynamical systems;62,63 such behavior was

found for the optimal level sets at low values of F in Ref.23.

At higher values of F , the latter work also observed aperiodic

“wandering” optimal level sets, which are well-documented in

the non-linear dynamics literature.62,63 In this work, the lim-

itations placed on F only revealed periodic optimal level sets

on the control landscape, but wandering level sets may exist at

higher values of F .

3 Statistical analysis of landscape topology

In order to obtain an initial general assessment of the global

landscape topology, 104 D-MORPH searches were performed

starting from randomly sampled control variables C with φm ∈
(0,2π) and F ∈ (0,1) drawn from a uniform distribution. Of

the 104 searches, 6396 converged to P1→2 > 0.99999 using

only a first order search, 3541 of the remaining searches con-

verged following implementation of a second order search,

and 63 searches failed to reach P1→2 > 0.99999. For the lat-

ter 63 searches, subsequent implementation of the D-MORPH

search procedure using the distance minimization f (s) in Eq.

(15) to orient the trajectory towards the nearest known opti-

mal point with P1→2 > 0.99999 resulted in each of the lat-

ter searches reaching P1→2 > 0.99999. Collectively, these re-

sults indicate that no local maxima exist on the landscape (to

a high probability), while saddle features are widespread on

the landscape with this system and restricted set of controls,

as revealed by more than one third of the D-MORPH searches

requiring a second-order procedure to reach the global opti-

mum.

The probability of encountering a saddle point during a D-

MORPH search was found to depend strongly on the optimal

value of the control variable F , as shown by the plot of initial

and final values of F for each of the 104 searches in Figure 1.

The green points denote D-MORPH searches that converged

using only the first-order search procedure and the red points

denote searches that converged only after additionally imple-

menting the second-order search procedure. While the initial

values of F are uniformly distributed on F ∈ [0, 1], the op-

timal values of F exist on two disconnected regions of F , at

F ∼ 0.15 and F & 0.43. Furthermore, nearly all searches con-

verging to F ∼ 0.15 were only reached after using the sec-

ond order procedure, while nearly all searches at F & 0.43

reached P1→2 > 0.99999 only using the first-order procedure.

These results suggest that saddle features are widespread in

the vicinity of the optima at F ∼ 0.15, while these features are

rare at higher F values.

The apparent existence of two disconnected ranges of F

supporting optimal fields suggests that the system undergoes

distinct dynamics upon excitation with fields in each regime.

In order to further explore these dynamics, the instantaneous

Hamiltonian H(t) = H0 − µε(t) was diagonalized to yield

eigenvalues e1(t) and e2(t), and the instantaneous state pop-

ulations p1(t) = |〈1|U(t,0)|1〉|2 and p2(t) = 〈2|U(t,0)|1〉|2

were calculated for 20 optimal fields at F ∼ 0.15 and F ∼ 0.5.

Figure 2 shows the dynamics of typical fields with (a), (b)
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F ∼ 0.15 and (c), (d) F ∼ 0.5: (top panel) field ε(t), (mid-

dle panel) Hamiltonian energy spacing ∆12(t) = e2(t)− e1(t),
and (bottom panel) state populations p1(t) (cyan, thick line)

and p2(t) (red, thin line). Even at F ∼ 0.15, the instantaneous

transition frequency in H(t) rises ∼ 30% above its value in H0,

indicating that the dynamics are not in the weak field regime,

with considerable power shifting. Nevertheless, the relatively

monotonic decrease in p1(t) and associated increase in p2(t)
for all fields at F ∼ 0.15 examined suggest that the system

dynamics are “quasi-weak-field”, at least compared to the dy-

namics exhibited for optimal fields where F ∼ 0.5. In this

higher F range, the instantaneous transition frequency in H(t)
show significant power shifting for all fields examined in this

F range. The two depicted fields exhibit distinct trajectories

of p1(t) and p2(t), with multiple instances of Rabi flopping

between the populations before the final state is reached; the

other examined fields produced additional unique state popu-

lation trajectories.

In order to understand the origin of the apparent disconnect

between the quasi-weak-field and strong field optima, we ex-

amine the statistical distributions of P1→2 yields at selected

values of F ∈ [0.12,0.5]. The entire search space range of the

phase controls φm, m = 1, 2, 3 ∈ [0, 2π) is uniformly sampled

by evaluating P1→2 in steps of δφm = 0.01× 2π over the full

range of each φm, for a total of 1× 106 P1→2 evaluations at

each value of F . Importantly, these statistical distributions at

each (fixed) value of F are not preformed to optimize P1→2,

but rather to identify the probability density of each P1→2

value at a given value of F . For ease of visualization, the

statistical distributions recorded at each value of F are plotted

in Figure 3 as a heat map, where the abscissa denotes the P1→2

value, while the ordinate denotes F , and the color indicates the

probability density as a function of both P1→2 and F . Here,

the probability density D(P1→2,F) is calculated separately

for each F value sampled, with
∫ 1

0 D(P1→2,F)dP1→2 = 1.0
at each measured value of F .

At low F values, Figure 3 shows that only high values of

P1→2 & 0.95 are observed when F ∈ [0.15,0.16], across the

entire search space of the {φm} (including optimal P1→2 >
0.99999). Both raising and lowering F from the range F ∈
[0.15,0.16] results in a drastic shift in the P1→2 distribution

towards lower values. As F increases to F > 0.17, the P1→2

distribution shifts towards lower values until F ∼ 0.34, be-

yond which the distribution begins to contain progressively

higher P1→2 values as F increases. Finally, the optimum

P1→2 > 0.99999 becomes reachable again at F & 0.43, with

the distribution of P1→2 values not changing significantly

from F ∼ 0.45 to F ∼ 0.5. This detailed statistical analy-

sis of the landscape explains the results from D-MORPH op-

timization searches and confirms that the constrained land-

scape exhibits at least two disconnected optimal regions, one

at F ∈ [0.15,0.16], and the other at F > 0.43. Figure 3 also

shows that the density of optimal solutions is slightly higher at

F ∈ [0.15,0.16] (e.g., D(0.99999,0.16)= 8.1×10−4) than at

F > 0.43 (e.g., D(0.99999,0.45)= 1.4×10−5). Nevertheless,

the behavior in Figure 1 indicates that the optimal solutions at

F ∈ [0.15,0.16] are significantly more difficult to find, likely

due to the high density of good, but not optimal values of P1→2

in the range of F ∈ [0.15,0.16], many of which may be saddle

points based on the D-MORPH results. This occurrence sug-

gests that optimal controls in the strong field regime may gen-

erally be easier to find than quasi-weak-field solutions, likely

because there is additional freedom in the system dynamics to

attain a high quality yield at the desired final time T . Below,

insight into the landscape features both near and at the opti-

mum is attained by examining level sets at the two optimal

regions.

4 Exploring level sets at high P1→2 yields

We examine the level sets at P1→2 ≥ 0.99 at the two discon-

nected optimal F ranges in Figure 1. Level sets near the top

of the landscape (i.e., P1→2 ∈ [0.99, 0.9999]) are obtained by

cubic spline interpolation over the values of the controls C

producing the appropriate P1→2 values from the statistical dis-

tributions plotted in Figure 3. The higher quality optimal level

sets at the top (P1→2 > 0.99999) required application of the

D-MORPH level set exploration technique outlined in Sec-

tion 2.2. Because there are N2 = 4 independent controls, the

optimal level sets are nominally expected to be at least two-

dimensional submanifolds based on the Hessian structure at

the optimum.4,39,40 No similar analysis exists for the level sets

at lower objective values; the present numerical results serve

to illustrate the types of features that can arise in landscape

regions near the global optimum. In particular, the analysis

of such level sets has important implications for experimen-

tal landscape explorations, where the global optimum is likely

unreachable due to experimental constraints that prevent satis-

faction of Assumption (iii).2–5,21 The discussion below sepa-

rately considers the two disconnected regions of F that pro-

duce optimal P1→2 values, as distinct features are found to

arise on each optimal region.

4.1 Level sets at F ∼ 0.15

We first examine level sets of P1→2 yields just below the

optimum at P1→2 = 0.99, 0.999, 0.9999 with F = 0.15 and

F = 0.16, shown in Figure 4(a), (b), and (c), respectively. The

structures of these level sets change dramatically when go-

ing from P1→2 = 0.99 → 0.999 → 0.9999 when F remains

fixed at either 0.15 or 0.16. Not only do the level sets shrink

in size, but also in some cases shift to distinct regions in the

space of the phases {φm}. Furthermore, comparing F = 0.15

and F = 0.16 shows that the level set structure significantly
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changes upon making a small change in F . These observa-

tions suggest that any optimal level sets with P1→2 > 0.99999

over this range of F will have different structures from those

exhibited in Figure 4, which is verified below.

The D-MORPH searches converging to P1→2 > 0.99999

with F ∈ [0.15, 0.16] appear to fall on three disconnected re-

gions in the {φm} space. To fully explore these regions, D-

MORPH level set trajectories were initialized at 20 points

identified from D-MORPH climbs into each region and were

run until the objective value fell to P1→2 < 0.99999 and a gra-

dient climb couldn’t return quickly to the optimum, as dis-

cussed in Section 2.2. Additional D-MORPH trajectories were

initialized with random free functions on points identified by

the first set of trajectories to ensure sufficient sampling of

points on each level set as well as to determine its boundary.

In some cases, additional trajectories were run with the dis-

tance minimization free function given in Eq. (15) in order to

determine whether seemingly disconnected points on the level

set could be connected by specifying an appropriate trajectory.

For each of the resulting three disconnected level sets, at least

100 individual trajectories with at least 106 total s-steps were

sampled. The three level sets are shown in Figure 5 labeled

as (a), (b), and (c), where the three phase variables are shown

along the three cartesian axes, and F is denoted by color ac-

cording to the bar on the right of each plot. Although not

shown, each of the three level sets was found to exist at inter-

vals of φm → φm ±2π for each m = 1, 2, 3, in accordance with

the periodic nature of the three phase controls. Additionally,

level sets (a) and (c) appear to be related by inversion sym-

metry about the point φ1 = 3.95, φ2 = 4.78, φ3 = 2.37 (c.f.,

Section 4.2.3 for further discussion).

Two features of these level sets are of particular interest.

First, each is a closed disconnected region. Second, each level

set appears to be a three-dimensional volume, suggesting the

existence of three null Hessian eigenvalues. Evaluating the

Hessian at 104 randomly selected points on each level set (a),

(b) and (c) reveals three null Hessian eigenvalues and only one

nonzero eigenvalue, as shown by the statistical distributions of

the eigenvalues in Figure 6(a). Furthermore, the eigenvector

Q1 corresponding to the negative eigenvalue has nearly all of

its magnitude along the direction of F , (i.e., the vector element

along F has an absolute value greater than 0.9998, while all

other elements are of magnitude less than 0.01 along Q1). In

contrast, the three eigenvectors Q2, Q3, and Q4 corresponding

to null eigenvalues have large statistical distributions of ele-

ments along each control variable, except F , where the latter

element is always of magnitude less than 0.01. These features

are shown in Figure 6(b). The separable Hessian structure in-

dicates that nearly all movement off of the level set is in the

direction of F , which is consistent with the results above (c.f.,

Figure 3) indicating that the reachable P1→2 values decrease

rapidly as F moves away from F ∼ 0.15. In contrast, the val-

ues of the phase variables extend over large ranges on each

level set in Figure 5, which is consistent with the null eigen-

vectors having large amplitudes along the phase variables in

Figure 6(b).

The Hessian analysis above is consistent with the level sets

being three-dimensional volumes. In order to verify the di-

mensionality of the level sets, “slices” of level set (a) from

Figure 5 (i.e., at fixed values of one phase variable, with the

other two varied over their full ranges) are plotted in Figure 7

at selected values of φ1 = 3.50±0.02 in 7(a), φ2 = 3.70±0.02

in 7(b), and φ3 = 1.50± 0.02 in 7(c), where the other two

phase controls are plotted on the cartesian axes and the color

denotes F . The level set appears to be “dense” across each

slice, but the seemingly disconnected regions of each slice

were found to lie on the same level set by running three trajec-

tories with the distance minimization free function in Eq. (15)

between pairs of points in Figure 7(a). All three straight line

trajectories remained on the level set, showing that the seem-

ingly separated regions are actually connected to the precision

employed here, which suggests that the optimal level sets are

closed volumes. This feature of the level sets with an extra

nullspace dimension has also been observed in studies of Pi→ f

optimization in higher dimensional systems.15,40

4.2 Level sets at F ≥ 0.43

At F & 0.43, the level sets at high, but not optimal (i.e.,

P1→2 < 0.99999), values both increase in volume and become

more connected as F rises. Figure 8 shows the P1→2 = 0.99

level set at (a) F = 0.43, (b) F = 0.45, and (c) F = 0.5 where

the values of the {φm} label the three Cartesian axes. At

F = 0.43, the level set consists of a few small, isolated regions.

As F is increased to F = 0.46, some of the previously discon-

nected regions merge together to become connected, and even

more connectivity is observed at F = 0.5. Another important

property of these nearly optimal level sets is that they appear

to become more one-dimensional in character as F rises, with

the level set at F = 0.5 appearing to consist of fleshed-out one-

dimensional curves. The optimal level set at P1→2 > 0.99999

is expected to be at least one dimensional for controls φ1, φ2,

φ3 with fixed F based on theoretical predictions,4,39,40 and nu-

merical simulations with phase controls on systems of N = 3

with 2N − 1 = 5 independent controls showed that the level

sets were one-dimensional.23 This behavior indicates that the

level sets slightly below the optimal objective value should

approach the structure of the optimal level sets, in this case at

sufficiently high (fixed) F .

When F is allowed to vary, the optimal level set at P1→2 >
0.99999 is expected to be a two-dimensional submanifold, as-

suming that the number of non-zero Hessian eigenvalues is at

the maximum of 2N − 2 = 2. Here, we explore the optimal

level set for F ≤ 0.5 (i.e., not far from F∗ = 0.434, identified
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in Figure 1 as the lowest value capable of reaching the opti-

mal level set), where the submanifold can be directly visual-

ized in the variable space. From initialization at 100 distinct

optimal solutions found by D-MORPH climbs with F < 0.5,

second-order D-MORPH trajectories using random free func-

tions were run to map out the optimal level set, and trajec-

tories were terminated if the value of F grew from its initial

value to exceed F = 0.5. Additional D-MORPH trajectories

allowing F to vary freely revealed that the level set extends to

values of at least F > 1 (not shown here). Unlike the F ∼ 0.15

level sets in Figures 5 and 7, no D-MORPH trajectory ever

fell off the optimal P1→2 value. Overall, ∼ 6× 106 points

on this level set were sampled, which appear to map out one

fully connected level set. Figure 9 shows the optimal level set,

where the values of {φm} are given on the Cartesian axes and

F is denoted by the color according to the accompanying bar

(analogous to Figure 5). For reference, the thick black curved

lines correspond to one-dimensional D-MORPH trajectories

across the optimal level set operating with fixed F = 0.5;23

these curves denote particular boundaries of the level set for

the present analysis (i.e., we consider the optimal level set for

only F ≤ 0.5). Four important features of the optimal level set

are apparent from Figure 9:

1. Dimensionality: the level set is a two-dimensional sur-

face, in contrast to the three-dimensional optimal level

sets at F ∼ 0.15.

2. Periodicity: the entire two-dimensional submanifold

structure repeats itself in each variable φm → φm ±2π, as

shown by the pairs of black circular curves correspond-

ing to trajectories with fixed F = 0.5 labeled (1) and (2)

on Figure 9.

3. Inversion symmetry: There appears to be at least approx-

imate inversion symmetry (i.e., (Φ∗+∆Φ)→ (Φ∗−∆Φ)
where Φ = {φm}) with respect to the point Φ∗ = [φ1 =
3.82, φ2 = 4.86, φ3 = 5.31].

4. Topology: Both local minima and saddle points with

respect to changing F (with associated variation in the

{φm}) are visible. The former indicate distinct “critical”

values of F to reach the optimum.

Below, each of these observations is expanded into a fuller

discussion with additional figures and analysis.

4.2.1 Level set dimensionalityHessian analysis was per-

formed at 104 random points on the level set with F < 0.5,

with the statistical distributions of the Hessian eigenvalues

shown in Figure 10(a). Unlike the F ∼ 0.15 level sets, the sec-

ond Hessian eigenvalue is distinctly nonzero, as shown mag-

nified in the inset. Figure 10(b) shows the distributions of the

absolute value of the Hessian eigenvector elements along each

variable. Although the distribution of Q1 (corresponding to

the largest negative Hessian eigenvalue) has a mean absolute

value of ∼ 0.98 along F , the elements along the {φm} devi-

ate significantly more from zero than for the F ∼ 0.15 optimal

level set in Figure 6. This result indicates that the φm variables

play a larger role in moving off of the optimal level set when

F is not so severely constrained, reflecting a larger variation

in the Hessian matrix structure. The two eigenvectors Q3 and

Q4 with zero eigenvalues have small but significant contribu-

tions from F , indicating that a cooperative interplay among all

four controls in C is necessary to stay on the top level set (i.e.,

consistent with the behavior in Figure 9).

4.2.2 PeriodicityThe D-MORPH searches reveal periodic

structures on the optimal level set over the {φm} space, as re-

placing φm by φm±2π produces the same optimal control field

via Eq. (7). Figure 9 shows only one complete period of the

optimal level set, as well as pairs of one-dimensional level sets

at F = 0.5 (black curves labeled (1) and (2) in Figure 9) that

are the repeated level sets at φm = φm + 2π for m = 1, 2, 3.

These curves are denoted as “closed” periodic level sets,23

as they form a closed curve in {φm} space. The additional

one-dimensional level sets at F = 0.5 (black curves that out-

line all regions of the level set on Figure 9) are “open” peri-

odic level sets (i.e., each forms a non-connecting curve in the

{φm} space),23 which were followed for at least two periods

to verify their periodicity (not shown). Collectively, this evi-

dence shows that the entire two-dimensional optimal subman-

ifold is periodic in the {φm} space upon allowing F to vary, as

has been observed in previous work using only phase controls

with sufficiently low values of F .23 This result is consistent

with the existence of periodic orbits in nonlinear dynamical

systems.62,63

4.2.3 Inversion symmetryFrom Figure 9, it is apparent

that slicing the level set in half through the central symmetry

point along any of the three φm axes and reversing the axis la-

bels on one of the halves will produce a very similar portion of

the level set, which indicates a degree of inversion symmetry

existing over the entire level set structure. Figure 11 illus-

trates this property by slicing the level set along φ1 = 3.82 to

produce two portions. This choice of splitting value was made

by visual inspection of the level set in Figure 9, with φ1 = 3.82

corresponding to the median value of recorded level set points

along φ1. The two portions correspond to (A) with φ1 < 3.82

and plotted as in Figure 9, and (B) with φ1 > 3.82 and plotted

with each of the three φi axis values reversed (i.e., from high

to low values instead of low to high values). The similarity

between portions (A) and (B) is striking; the only obvious dif-

ferences between these two portions of the level set are where

they meet at φ1 ∼ 3.82. At the lower value of φ2, there are

two disconnected portions of the total level set, indicated by

the arrows in (A) and (B). At the higher value of φ2, however,
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the two portions of the level set are connected by a region of

low F values, as indicated by the braces. Because there is no

obvious inversion symmetry in the construction of the control

field, the origin of this near inversion symmetry must arise in

the dynamics. The identified “near” symmetry may be related

to the general subjects of almost periodic functions64,65 and

quasisymmetric functions.66,67

4.2.4 Topology of the level set with respect to FOf par-

ticular interest is the topology of the level set in Figure 9 in

terms of F , keeping in mind that P1→2 > 0.99999 over the en-

tire level set. Here, minima with respect to F are points on the

optimal level set corresponding to a locally critical value F∗;

moving in any direction that lowers F below F∗ (with any as-

sociated movement in the {φm}) results in a suboptimal P1→2

value. In particular, finding the globally minimal F∗ value

needed to reach an optimal P1→2 yield is important, particu-

larly with limited experimental resources. Thus, if multiple

locally minimal F∗ values exist, large regions of optimal level

sets may need to be explored to find the globally minimal F∗

value. Saddle points separate the isolated regions of low F on

the optimal level set (blue regions in Figure 9) from the con-

nected regions at higher F (red regions on Figure 9). No local

maxima with respect to F were observed on this level set be-

cause the maximum F was artificially limited to F ≤ 0.5. In

order to assess the significance of these topological features

in terms of the connectivity of the level set and its apparent

inversion symmetry, further examination of the minima and

selected saddle regions is conducted here.

Nine local minima with associated critical values F∗ ex-

ist on the level set, eight of which exist in pairs labeled (α),
(α′), (β), (β′), etc., while the ninth, (ε), spans the two halves

plotted in Figure 11 and does not have a paired level set.

The recorded critical values F∗ on each isolated minimum are

given in Table 1; only one value is recorded for (ε), as it has no

paired level set. For each pair of minima on level sets (A) and

(B), the F∗ values agree to within ∆F∗ < 0.001, but small dis-

crepancies are evident. The distinct critical F∗ values across

the optimal level set are consistent with previous explorations

of optimal level sets using phase controls with fixed values of

F .23 The existence of many locally minimal F∗ values sug-

gests that for optimal control of population transfer in general,

large regions of optimal level sets may need to be explored

in order to find the globally minimal value of F∗ that permits

achievement of the optimal P1→2 yield.

A total of 18 saddles exist on the optimal level set over the

region in Figure 9, each in pairs on level sets (A) and (B) in

Figure 11. These saddles isolate the regions of the optimal

level set with the lowest F values from each other, indicat-

ing why the optimal level set exists in isolated regions at low

F , while becoming more connected as F rises. Two of the

saddle pairs are labeled (a), (a’), (b), and (b’) in Figure 11

and are magnified in Figure 12, where they are plotted with

axes reversed for (a’) and (b’) as in Figure 11. The approx-

imate location of each saddle point (determined graphically)

is marked with a black ‘x’. Close examination of the saddle

pairs shows that the saddle points themselves lie at slightly

different values of F for each member of the pair: the saddle

(a) appears around F ∼ 0.474 (cyan), while the saddle (a’) ap-

pears around F ∼ 0.478 (green). Similarly, the saddle (b) is

around F ∼ 0.497, while the saddle (b’) is around F ∼ 0.498.

Furthermore, the width of the level sets (a) and (b) along the

narrow axis around their saddles appear to be wider than those

of level sets (a’) and (b’), respectively. These results indi-

cate that the inversion symmetry on portions (A) and (B) of

the optimal level set may be only approximate or call for high

precision in simulations to fully assess.

5 Conclusion

This work examined the constrained control landscape for

population transfer in a two-level system, where the landscape

features could be visualized directly in terms of the four con-

trol variables. Particular emphasis was placed on the effect

of the control field fluence F2 on the topology and features

of the landscape, as the fluence is commonly constrained in

optimal control simulations1,2,32–38 and limited pulse energy

is inevitable in experiments.21 Previous research has shown

that introducing fluence constraints can limit the achievable

objective yield in simulations,2,23,34–36 as well as shrink the

volume and connectivity of level sets producing an optimal

control yield in both simulations23 and experiments.21 This

work explicitly shows the effects of constraining fluence on

the topology and features of the control landscape for a simple

two-level model system by choosing a set of control variables

that allow direct visualization of the landscape.

In Section 3, the landscape was found to contain no sub-

optimal traps, demonstrating that three well-chosen spectral

phases along with the field strength F constitute a sufficient set

of control variables to satisfy Assumption (iii) of control land-

scape theory2–7 for the two-level system investigated here.

This observation is consistent with the fact that N2 = 4 ap-

propriate variables are sufficient to specify an arbitrary N = 2

dimensional unitary propagator U(T ) at a sufficiently long

control time T . Although no traps were observed on the con-

trol landscape, a significant fraction ∼ 33% of optimization

searches encountered saddle features on the landscape, as they

required a second-order algorithm to achieve convergence to

the globally optimal yield. As analysis shows that saddle fea-

tures do not exist on the unconstrained landscape for popu-

lation transfer,4 this result indicates that the present set of 4

control variables imposes some mild constraints on control-

ling the system. The observed preponderance of saddles at

low values of F ∼ 0.15 suggests that the limited field fluence
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may be the source of these mild constraints.

Examination of level sets both near and at the top of the

landscape in Section 4 at the two disconnected regions of F

values enabling achievement of P1→2 > 0.99999 (i.e., F ∼
0.15 and F & 0.43) revealed significant differences between

the associated level sets. At F ∼ 0.15, the optimal level set

over the phase variables was found to consist of three dis-

connected regions. These disconnected level sets were found

to be three-dimensional submanifolds arising from there be-

ing only one non-zero Hessian eigenvalue (i.e., the submani-

fold has dimension N2 − 1 = 3). Both the distinct topology

and isolated nature of the level sets at F ∼ 0.15 results in

a slightly further increase of F above F ∼ 0.16 preventing

achievement of P1→2 > 0.99999 until F ∼ 0.43. This behav-

ior suggests some inherent difference in the control mecha-

nism between optimal control fields at F ∼ 0.15 and F & 0.43.

At F & 0.43, the optimal level set appears to be a single

connected two-dimensional submanifold possessing interest-

ing topological features in terms of changes in F and the {φm}
with P1→2 > 0.99999 maintained, where nine minima possess-

ing different locally critical values F∗ and eighteen saddles

were identified. The connectivity of the optimal level set, as

well as the level sets at high yield P1→2 = 0.99, was found to

increase as F was raised above its critical value of F ∼ 0.43,

indicating that constraints on F induce fracturing of the under-

lying connected level set. Level set fracturing with decreasing

F is of practical importance, because it suggests that search-

ing for optimal control fields with the minimum necessary F

may require searching over multiple disconnected regions of

the underlying optimal level set.

This work presented an investigation of the topology and

features of the optimal control landscape for population trans-

fer in a particular two level system, where the control variables

were carefully chosen both to allow direct visualization of se-

lected landscape regions and explore the effects of constrain-

ing the control field fluence on the landscape features, with a

special focus on the role of fluence. The particular quantum

system and control field parameterization employed resulted

in optimal population transfer only being attainable in the

strong coupling regime, where even the low fluence “quasi-

weak-field” optimal solutions induced significant changes in

the instantaneous transition frequency of H(t), indicating sig-

nificant power shifting. Even the role of fluence is linked to

that of the other controls, as free movement on the optimal

level set calls for coordinated changes in F , φ1, φ2, and φ3. In

order to fully understand the effects of constraining fluence,

further investigations along the lines performed here via simu-

lations and experiments on other quantum systems are needed,

including with different control field parameterizations. The

importance of other control resources beyond fluence needs to

be investigated in a like manner in order to provide a greater

understanding of the consequences of constraining necessary

control resources upon the apparent control landscape.

Appendix

The first derivative of P1→2 with respect to a control φm may be

obtained by the chain rule using the expression for the control

field in Eq. (7) along with the Schrödinger equation,23

∂P1→2

∂φm

=
∫ T

0

δP1→2

δε(t)

∂ε(t)

∂φm

dt

= 2F Im

∫ T

0
〈q|k〉A(t)sin(ωmt +φm)dt, (A.1)

where |q〉 = U†(T,0)| f 〉〈 f |U(T,0)|i〉 and |k〉 =
U†(t,0)µU(t,0)|i〉. Similarly, the first derivative of P1→2 with

respect to F is

∂P1→2

∂F
=

∫ T

0

δP1→2

δε(t)

∂ε(t)

∂F
dt

= 2Im

∫ T

0
〈q|k〉∑

m

A(t)cos(ωmt +φm)dt. (A.2)

The Hessian matrix elements with respect to two phase con-

trols φm, φm′ were derived in Ref.23. Using the shorthand no-

tation µ(t) =U†(t,0)µU(t,0), the Hessian matrix elements are

given by

H (φm,φm′) = 2F2 Re

∫ T

0
dt A(t)sin(ωmt +φm)

[

−〈i|

∫ T

0
dt ′µ(t ′)

×A(t ′)sin(ωm′t ′+φm′)U†(T,0)| f 〉〈 f |U(T,0)|k〉

+ 〈q|

∫ T

t
dt ′µ(t ′)A(t ′)sin(ωm′t ′+φm′)|k〉

+ 〈q|µ(t)

∫ t

0
dt ′µ(t ′)A(t ′)sin(ωm′ t ′+φm′)|i〉

]

+ 2 Im

∫ T

0
dt δ(m,m′)〈q|k〉A(t)cos(ωmt +φm),

(A.3)

where δ(m,m′) denotes the Kronecker delta function. In a

similar manner to the derivations in Ref.23, the off-diagonal

Hessian elements with respect to one phase control φm and F

are given by differentiating Eq. (A.1) with respect to F

H (φm,F) = 2F Re

∫ T

0
dt A(t)sin(ωmt +φm)

[

〈i|
∫ T

0
dt ′µ(t ′)

×∑
m

A(t ′)cos(ωmt ′+φm)U
†(T,0)| f 〉〈 f |U(T,0)|k〉

− 〈q|
∫ T

t
dt ′µ(t ′)∑

m

A(t ′)cos(ωm′t ′+φm′)|k〉

− 〈q|µ(t)
∫ t

0
dt ′µ(t ′)∑

m

A(t ′)cos(ωm′ t ′+φm′)|i〉

]

.

(A.4)
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Finally, the Hessian elements with respect to differentiating

twice by F are

H (F,F) = 2Re

∫ T

0
dt

[

−〈i|

∫ T

0
dt ′µ(t ′)

×∑
m

A(t ′)cos(ωm′ t ′+φm′)U†(T,0)| f 〉〈 f |U(T,0)|k〉

+ 〈q|

∫ T

t
dt ′µ(t ′)∑

m

A(t ′)cos(ωm′t ′+φm′)|k〉

+ 〈q|µ(t)

∫ t

0
dt ′µ(t ′)∑

m

A(t ′)cos(ωm′t ′+φm′)|i〉

]

×∑
m

A(t)cos(ωmt +φm). (A.5)
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label level set (A) level set (B)

α 0.43393 0.43382

β 0.43585 0.43653

γ 0.44236 0.44145

δ 0.44766 0.44749

ε 0.43564

Table 1 Minimal values of F on each local minimum labeled by

Greek letters in Figure 11. The local minimum ε spans level sets (A)

and (B) so only one value is recorded.
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Fig. 1 Optimal values of F versus initial values of F for 104

D-MORPH searches. Green: searches where P1→2 > 0.99999 was

reached using only first-order optimization. Red: searches where

P1→2 > 0.99999 was reached after additionally following the

second-order climbing procedure. The plot shows that optima only

exist at F ∼ 0.15 and F & 0.43.
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excitation with optimal control fields ε(t) with F ∼ 0.15 (a), (b), and

F ∼ 0.5 (c), (d). The top panel shows the field ε(t), the middle panel

shows the instantaneous Hamiltonian transition frequency

∆12(t) = e2(t)−e1(t), and the bottom panel shows the state

populations p1(t) (green, thick line) and p2(t) (red, thin line). The

label “a.u.” denotes “arbitrary unit”.
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Fig. 3 Probability density of P1→2 values as a function of F , in

non-uniform steps indicated by the discrete jumps evident along the

colored bars in the figure. The P1→2 values at each F are obtained

from uniformly sampling the control phase variables over a total of

106 points. The abscissa denotes P1→2 on a logarithmically

increasing scale approaching the value 1.0, the ordinate denotes F ,

and the color indicates the probability density according to the bar

on the right hand side. The probability density is normalized to

integrate to 1.0 in each step region of F , as explained in the text.

White regions correspond to a probability density of < 10−6. The

plot clearly shows a nonzero probability density at P1→2 ∼ 0.99999

only in the region of F ∼ 0.15−0.16 and F & 0.435. In contrast,

only low P1→2 values are observed at intermediate values of F ,

which explains why no D-MORPH searches converged to these F

values.
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Fig. 4 Level sets near the optimum at F = 0.15 (green) and

F = 0.16 (red). (a) P1→2 = 0.99. (b) P1→2 = 0.999. (c)

P1→2 = 0.9999. Significant differences are observed between the

level sets at F = 0.15 and F = 0.16, as well as at the three different

P1→2 values. These level sets are not optimal, as higher P1→2 values

can be achieved near F ∼ 0.15−0.16.
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Fig. 5 Three optimal level sets with P1→2 > 0.99999 at F ∼ 0.15,

identified from the optimal solutions of D-MORPH climbs (c.f.,

Figure 1). Each level set was sampled via second-order D-MORPH

level set trajectories over at least 106 points. The level sets are

periodic with φm → φm ±2π and level sets (a) and (c) appear to be

related by inversion about the point φ1 = 3.95, φ2 = 4.78, φ3 = 2.37.
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of the four Hessian eigenvalues for level sets (a) (blue), (b) (red),

and (c) (green) in Figure 5 with their highest and lowest values

shown as squares and circles, respectively. The three “null”

eigenvalues are magnified in the inset. (b) Statistical distributions

over 104 sampled level set points of the absolute values of the four

Hessian eigenvector elements for level set (a) in Figure 5, indicated

by color in the legend. The eigenvector Q1 (blue), which

corresponds to the large negative eigenvalue, has negligible

variation in the elements along φ1, φ2 and φ3, with the element along

F always near 1.0. The eigenvectors Q2, Q3 and Q4 specifying the

null space have nearly zero contribution along F .
Fig. 7 Slices in two dimensions from level set (a) in Figure 5. Each

panel (a), (b), and (c) corresponds to a slice at the indicated fixed

value of the remaining phase. The black lines in (a)correspond to

straight line trajectories followed between pairs of apparently

disconnected points on the level sets without falling off the level set.

Thus, the domains in Figure 5 are shown to be three-dimensional

volumes.
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Fig. 8 Level sets at the suboptimal value of P1→2 = 0.99 for (a)

F = 0.43, (b) F = 0.45, and (c) F = 0.5. The connectivity of these

level sets increases with F , which suggests that the optimal level

sets may also be more connected at higher F .
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Fig. 9 The optimal level set with 0.434 ≤ F ≤ 0.5. The arabic

numeral labels (1) and (2) denote periodic one-dimensional level

sets at F = 0.5. The remaining black curves denote additional

one-dimensional level sets at F = 0.5. The latter curves are also

periodic and were followed for two periods to confirm their

periodicity (not shown). Collectively, these black curves denote the

boundaries of the optimal level set for the present analysis.
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Fig. 10 (a) Hessian eigenvalues on the F < 0.5 level set in Figure 9.

The inset magnifies eigenvalues indexed 2, 3, and 4, showing that

the second eigenvalue is distinctly nonzero. (b) Statistical

distributions over 104 sampled level set points of the absolute values

of the Hessian eigenvector elements for the eigenvalues in (a).

Compare these to Figure 6.
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Fig. 11 (A) Optimal level set with φ1 < 3.82. (B) Optimal level set

with φ1 > 3.82, with the values of all three axes reversed. The Greek

letter labels denote all of the local minima on the level set in terms

of F (i.e., deep blue regions located adjacent to the labels), and the

Roman letter labels denote selected saddle regions. The arrows

denote regions on the level set where the apparent inversion

symmetry is broken (c.f., Section 4.2.3).
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Fig. 12 Magnified regions of the level set in Figure 9 showing four

saddle regions (a), (a’), (b) and (b’) labeled in Figure 11. The saddle

structures expressed in terms of systematic color variations are

clearly visible, and the saddle points (estimated graphically) are

labeled with a black ‘x’. Blank spaces within the level set regions

are due to under-sampling by the D-MORPH algorithm.
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