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mechanism is a resonant Raman process involving electronic 

resonances which give rise to strict SERS selection rules. A 

photoinduced metal-to-molecule charge-transfer process (CT-SERS) 

is responsible for the selective enhancement of mode 8a at neutral 

surface charges. At negative electrode potentials, SERS records are 

dominated by the enhancement of mode 9a due to a resonant 

Raman process involving plasmon-like excitation inside the silver 

cluster (PL-SERS). The effectiveness of non-radiative channels is 

therefore modulated by the electrode potential and determines the 

overall SERS enhancement. NR processes play a key role in SERS given 

that they reduce the efficiency of resonant mechanisms but 

unfortunately, it is not yet possible to quantify it. NR channels are less 

operative as the surface charge is made more negative because the 

electronic repulsion between the charged metal and the dipole of 

the adsorbate decouples both moieties. In that situation, the 

resonant Raman scattering becomes stronger and the selection rules 

derived from each S0-CTF0 and S0-P0c
* transitions dominate the 

relative enhancements. As a conclusion, it should be very difficult to 

quantify SERS enhancement factors from a single spectrum given 

that different bands can be related to different mechanisms and even 

a single band can contain different kinds of contributions. 

 All the theoretical calculations carried out predict the selective 

enhancement of mode 9a at negative charges, irrespective of the 

functional, the basis set, the single or multi-state approximations 

with the uncorrected or size-corrected energies of plasmon-like 

states, P0 and P0c respectively (Figs. S2-S4). Even similar results are 

obtained if the plasmon-like states are not taken into account in 

multi-state calculations (Fig. S5). This means that the enhancement of 

mode 9a is due to the overall electronic structure of the [Ag3-Py]-1 

hybrid and is not exclusively caused by the particular P0
* state.  

 One of the most interesting features of SERS is its ability to 

perform single-molecule experiments (SM-SERS). Until quite recently, 

it has been assumed that the enormous enhancement needed to 

record SM-SERS was exclusively due to the excitation of surface 

plasmons localized in hot spots. The calculated electromagnetic field 

in the gap between two metal clusters was sufficient to account for 

the needed enhancement, i.e., no additional resonant processes 

(chemical mechanisms) were required. However, it has been recently 

reported that quantum effects in such small metallic gaps could 

reduce significantly the plasmonic enhancement,14 what would make 

necessary to resort to chemical contributions like the here discussed 

ones in order to account for these experiments. Some of the reported 

SM-SERS correspond to non-absorbing molecules under VIS 

excitation like adenine. Therefore, it is possible that electronic 

resonances involving charge transfer excited states of the metal-

molecule hybrid or plasmon-like states of the metal could be 

involved in these experiments. These resonances are very poorly 

known but standard electronic structure calculations could be very 

useful in order to characterize them.  

 If the close relationship between the SERS spectra and the 

electronic structure of M-A hybrids is confirmed in future works the 

SERS will become a very powerful tool to get insight into the 

electronic structure of interfaces at a molecular level. This would 

allow for improving the control of adsorption or electrochemistry 

processes as well as the design of heterogeneous catalysts or circuits 

based on molecular electronics. 

 It is to be stressed that some of these conclusions are only valid 

for the silver-pyridine system given that any chemical interaction is 

very dependent on the nature of the M-A system and the 

experimental conditions. 

 We are grateful to the Spanish MINECO (CTQ2012-31846) and 

Junta de Andalucía (FQM-5156/6778) for financial support and to 

SCAI and R.Larrosa (UMA) for computational facilities. 
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