
This is an Accepted Manuscript, which has been through the 
Royal Society of Chemistry peer review process and has been 
accepted for publication.

Accepted Manuscripts are published online shortly after 
acceptance, before technical editing, formatting and proof reading. 
Using this free service, authors can make their results available 
to the community, in citable form, before we publish the edited 
article. We will replace this Accepted Manuscript with the edited 
and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes 
to the text and/or graphics, which may alter content. The journal’s 
standard Terms & Conditions and the Ethical guidelines still 
apply. In no event shall the Royal Society of Chemistry be held 
responsible for any errors or omissions in this Accepted Manuscript 
or any consequences arising from the use of any information it 
contains. 

Accepted Manuscript

www.rsc.org/pccp

PCCP

http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/


1 
 

Accurate Estimation of Physicochemical Properties of Ternary 
Mixtures Containing Ionic Liquids via Artificial Neural Networks 

John C. Cancilla, Pablo Díaz-Rodríguez, Gemma Matute, José S. Torrecilla* 

Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad 
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Abstract 

 The estimation of density and refractive index of ternary mixtures comprised of 
the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate, 2-propanol, and 
water at a fixed temperature of 298.15 K has been attempted through artificial neural 
networks. The obtained results indicate that the selection of this mathematical approach 
was a well-suited option. The mean prediction errors obtained, after simulating with a 
dataset never involved in the training process of the model, were 0.050% and 0.227% 
for refractive index and density estimation respectively. These accurate results, which 
have been attained only using the composition of the dissolutions (mass fractions), 
imply that, most likely, ternary mixtures similar to the one analyzed, can be easily 
evaluated utilizing this algorithmic tool. In addition, different chemical processes 
involving ILs can be monitored precisely, and, furthermore, the purity of the 
compounds in the studied mixtures can be indirectly assessed thanks to the high 
accuracy of the model. 
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1. Introduction 

 In industrial and chemical fields, ecological concerns are becoming a more and 

more important issue every day. Because of this, the search of environmental-friendly 

chemical compounds is increasing by the moment. Good examples of these are ionic 

liquids (ILs), mainly because of their very low vapor pressure (1), which leads to a 

virtual absence of contaminating air emissions. This chemical property, together with 

the characteristic thermal stability of ILs (2) and the fact that they are salts which are 

generally in a liquid state at room temperature (melting points below 100°C), turn these 

compounds into a safe and low-polluting alternative for many applications. For 

instance, they are being employed as liquid-liquid extraction media in many separation 

processes (3,4) or as entrainers to break down azeotropic mixtures (5,6). They are also 

utilized as catalysts to speed up various organic chemical reactions (7,8) and even as 

biocatalysts where a room temperature liquid media is usually required (9). 

 ILs are formed by organic cations, such as imidazolium- or pyridinium-based 

ones, and inorganic anions, like halides, sulfates, or borates. The combination of 

different cations and anions, together with the many lateral chains which can be used to 

functionalize them, enables the creation of millions of custom-made ILs, greatly 

widening the range of possible applications (10,11). 

 The fact that ILs are room temperature liquid salts implies that unique 

properties, which other common salts lack, are contained within them. Additionally, 

some physicochemical properties, like refractive index or density, highly depend on 

surrounding conditions (temperature, pressure, and others) (12) and on the purity level 

of the ILs (13). When impurities such as water or halides are present in ILs, the values 

of these properties are heavily altered. This circumstance allows defining different 

physicochemical property values for binary or ternary mixtures involving ILs and other 

compounds (5,14). 

 In order to evaluate and create models of the properties of IL mixtures, 

mathematical methods can be employed such as multiple linear regressions (MLRs). A 

different possibility is to use more flexible and refreshable artificial neural networks 

(ANNs), which are algorithms that discover non-linear relations in large databases to 

empirically estimate results (15,16). These estimations rely on a non-linear interpolation 

of the results inside the range of the analyzed data, which must have an acceptable 

Page 2 of 14Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 

statis

reliab

 

the d

fracti

propa

 

2. M

 

math

subse

 

- Dat

 

the M

stical qualit

ble, and app

In this w

density and 

ions of the

anol, and w

Materials a

Informat

hematical m

ections. 

tabase Used

All of th

MLR model

ty and suffi

plicable in t

work, model

refractive in

e IL 1-buty

water (Figur

Figure 1. M
2-propanol;
3-b) 1-buty

and Method

tion about

models utiliz

d for the Ma

he data whic

ls, was gath

cient amoun

the whole st

ls based on

ndex of a se

yl-3-methyli

re 1) at a fix

Molecules pres
; 2) water; 3-a

yl-3-methylimi

ds 

 the data

zed, as we

athematical

ch was emp

hered from t

3 

nt so the de

tudied range

n MLRs and

eries of tern

imidazolium

xed tempera

 

sent in the stu
a) tetrafluorob

midazolium (ca

abase emp

ell as their

l Models 

ployed to cr

the work of

esigned mo

e (17). 

d ANNs hav

nary mixture

m tetrafluor

ature of 298

udied ternary m
borate (anion 
ation of the IL

ployed and

design, can

reate the AN

f Navarro e

dels end up

ve been cre

es containin

roborate ([b

.15 K (5). 

 
mixture. 1) 
of the IL); 
). 

d descripti

n be seen i

NN-based m

t al, 2012 (

p being accu

eated to est

ng different 

bmim][BF4

ions about

in the follo

model, as w

(5). The dat

urate, 

imate 

mass 

]), 2-

t the 

owing 

well as 

tabase 

Page 3 of 14 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



4 
 

contains information about ternary mixtures of [bmim][BF4], 2-propanol, and water at a 

fixed temperature of 298.15 K. All of the compounds used by Navarro et al, 2012 to 

prepare these mixtures possessed purities greater than 99% (5). The data analyzed and 

mathematically processed were the mass fractions of the compounds of 72 different 

dissolutions. These compositions were employed to estimate the density and refractive 

index values of the ternary mixtures. The database utilized can be found in the 

Supplementary Information (SI) section (Table S1). 

 The 72 data points, which correspond with the dissolutions analyzed, were 

randomly divided into three groups: training (70% of data), verification (20%), and 

simulation (10%) datasets. To design the MLR models, the training and verification 

datasets were combined to develop the models, while the simulation dataset was used to 

test them. On the other hand, for the ANN model the training set was used to optimize 

the weights, the verification one to avoid over-fitting effects, and the simulation one to 

test the final model (vide infra). This enables the comparison of both models (MLR 

versus ANN), as the same data points have been used to test the models. Each data point 

is labelled in table S1 with its corresponding dataset. 

 

- Linear Models 

Initially, in order to estimate the density and refractive index of the ternary 

mixtures of [bmim][BF4], 2-propanol, and water, MLR models have been looked into. 

This type of modeling is the most common as it is very straightforward and the 

algorithms behind their design are relatively simple (18). The mass fraction of 2-

propanol (w1) and the mass fraction of water (w2) were used as independent variables. 

These were employed to design two independent MLR models to estimate density (ρ; 

g/cm3) and refractive index (nD) (Equation 1). In a further step, the product of both 

masses (w1*w2) was also introduced for other MLR models (Equation 2). These 

models will be represented by expressions such as the following (19): 

2211 w*a  w*a  b =y         (1) 

2132211 w*w*a + w*a w*a  b =y       (2) 
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Where y represents the dependent variable (nD or ρ) to be estimated and b, a1, a2, 

and a3 are the parameters of the MLR model. 

These mathematical and statistical calculations have been carried out through the 

software Statgraphics Centurion XVI. 

 

- Artificial Neural Networks 

 In a second phase, an ANN-based model has been designed with the same goal 

as the linear models. ANNs are algorithms which rely on determining non-linear 

relationships present in databases (20). The type of ANN used has been a supervised 

multilayer perceptron (MLP) (21). It is supervised because it requires target data, in this 

case, density and refractive index values, to be able to be properly trained and optimized 

(22). 

 MLPs are the most regularly employed type of ANN (15). They are manageable 

mathematical tools which present a series of input nodes as well as calculation centers 

or neurons in a layer topology. The three layers in a MLP are input, hidden, and output 

layers. The input layer is formed by nodes, and these are employed to introduce the 

independent variables which are used to estimate the results (13). The hidden and output 

layers contain neurons, which are the calculation centers that allow the non-linear 

interpolation which leads to the estimation of dependent variables, which are designated 

by the output neurons (23). 

Each unit (node or neuron) in every layer of a MLP is connected with all of the 

units in surrounding layers. These connections are controlled by weighted coefficients 

or weights, and their optimization is the goal of a MLP. Their role is necessary because 

not every connection in a MLP has the same relative importance, and, therefore, their 

proper optimization is vital. In the end, once the weights have been optimized during 

the training phase, and as long as there are non-linear relations among the data utilized, 

the accurate estimation of the desired variables should be possible (21). 

 

- Training the Multilayer Perceptron 
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The equivalent action of training a MLP is optimizing all of the weights which 

exist within it. To do so, two consecutive mathematical calculations take place in each 

one of the hidden and output neurons defined. The first one is carried out by an 

activation function (Equation 3), which is in charge of processing the data that enters a 

neuron. 





1j

jjkk ywx         (3) 

In the equation above, wjk symbolizes the weight which represents the 

connection between layers j and k, yj is the signal that is inputted into a neuron, and xk is 

the solution of the activation function (21). 

The second calculation is done by a transfer function. Its goal is to limit the 

range of the resulting values given by a neuron. One of the most common transfer 

functions is the sigmoid function (Equation 4), which provides results between 0 and 1. 











  kxk
e

y
1

1
        (4) 

In this function, xk and yk are the activation and transfer function solutions 

respectively (21). 

The supervised learning or training process begins when a training dataset is 

analyzed by the MLP. The weights are then modified so that the values of the outputted 

results become more similar to the target values. This is attained through Equations 3 

and 4. After these calculations, the network uses a verification dataset to ensure the 

generalization capability of the ANN. This verification dataset is not involved in the 

weight modification and, therefore, the error between the estimated and real values will 

end up increasing because the weights are being optimized to lower the error from the 

training dataset instead. Additionally, possible over-fitting effects for a specific database 

are better avoided when using a verification dataset during the learning process (24). 

In addition to this, a third dataset can be used to test the applicability of the 

optimized ANN. This will be referred to as the simulation dataset, which is not involved 

in the training process in any matter whatsoever. Once the MLP is optimized, the 
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simulation dataset is utilized to test it, and its accuracy is then evaluated to compare real 

and estimated results. 

 

- Selection and Optimization of Artificial Neural Network Operating Conditions 

In this subsection, together with the SI section, the input node, output variable, 

and training function selection, as well as the hidden neuron number (HNN) and ANN 

parameter optimization can be found. 

 

· Input Node and Output Neuron Selection 

Two input nodes have been defined for the designed MLP: mass fraction of 2-

propanol (w1) and mass fraction of water (w2). Through the use of these inputs, the 

ANN is trained to estimate density (ρ; g/cm3) and refractive index (nD) values of the 

mixtures, and, therefore, two output neurons have been defined, one for each of the 

physicochemical properties studied. The inputted and target data for the supervised 

ANN can be found in the SI (Table S1). 

 

· Training Function 

 The training function that has been used for the learning process of the ANN has 

been the Bayesian regulation function (trainBR). The reason behind this choice is that 

this training function improves the typical ANN generalization because it updates the 

weights of the network by analyzing the errors and the sum of the squares of the 

network weights which allows finding the most important parameters of the ANN and 

optimizes them. What this implies is that over-fitting ANNs are avoided, and the 

discovery of the optimum network topology is simplified (24,25). 

 

· Hidden Neuron Number and Artificial Neural Network Parameter Optimization 
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 The HNN optimization is relevant because it ensures that the MLP has reached 

its full learning potential without over-fitting to the training dataset. More information, 

as well as the optimization process can be found in the SI section (Table S2). 

On the other hand, a meticulous experimental design based on the “Box-Wilson 

Central Composite Design 23 + star points” has been developed for the following 

network parameters in order to optimize their values: the Marquardt adjustment 

parameter (Lc), the decrease factor for Lc (Lcd), and the increase factor for Lc (Lci) 

(25). The Lc parameter acts as the learning coefficient in the classic back-propagation 

algorithms (26). Its value is respectively increased or decreased by Lci and Lcd 

parameters until these changes result in a reduced performance value (25). When this 

happens, the parameters have acquired their optimal value. A clear explanation about 

this experimental design, and the results obtained, are shown in the SI (Tables S3 and 

S4). All ANN-related calculations have been done using the software Matlab version 

7.0.1.24704 (R14) (25). 

 

3. Results and Discussion 

 The goal of the MLR and the ANN-based models is to estimate density and 

refractive index of ternary mixtures of the IL [bmim][BF4], 2-propanol, and water 

(Figure 1). The results and comparison of both calculation processes are shown in the 

next subsections. 

 To evaluate and compare the statistical performances of the models (MLRs and 

MLP), the R2 correlation coefficient and the mean prediction error (MPE; Equation 5) 

of the estimated versus real values of the simulation dataset have been calculated (15). 

100·
1

1






N

k k

kk

r

yr

N
MPE        (5) 

In this equation, N represents the number of data points in the simulation dataset, 

rk is the real already known target value, and yk stands for the result provided by the 

linear or non-linear model. 
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- Linear Model Development and Performance 

 Two different MLR models were designed for each dependent variable 

estimated. The first ones used two independent variables: the mass fraction of 2-

propanol (w1) and the mass fraction of water (w2). The second set of models 

additionally employed the product of both masses (w1*w2). 

 The final resulting MLR models can be seen in equations 6-9 (Eq. 6: two mass 

fractions to estimate nD; Eq. 7: two mass fractions to estimate ρ; Eq. 8: two mass 

fractions and their product to estimate nD; Eq. 9: two mass fractions and their product to 

estimate to estimate ρ), while their statistical performance in terms of R2 and MPE can 

be found in table 1, using the simulation dataset (Table S1) to test them. 

21D w*0.0804 - w*0.0373 - 1.4181 = n      (6) 

21 w*0.168 - w*0.411 - 1.175 =        (7) 

2121D w*w*0.0670 + w*0.0914 - w*0.0465 - 1.4197 = n    (8) 

2121 w*w*0.081 + w*0.181 - w*0.422 - 1.177 =     (9) 

Table 1. Statistical performance of the MLR models in terms of MPE and R2 for the estimation of 
the studied properties. Results obtained after testing the models with the simulation dataset (Table 
S1). 

Variables Dependent Variable MPE (%) R2 

w1 & w2 
1nD 0.085 0.993 
2ρ 0.659 0.993 

w1, w2, & w1*w2 
3nD 0.049 0.999 
4ρ 0.685 0.994 

1Equation 6 
2Equation 7 
3Equation 8 
4Equation 9 

These statistical results reveal that MLRs are suited to fulfil these estimations as 

accurate results have been obtained. Furthermore, the use of the product of both 

variables allows lowering the MPE for the estimation of refractive index to nearly half, 

while maintaining stable the performance for density. 

 

- Artificial Neural Network Topology and Parameter Optimization 
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Training function TrainBR 

Optimization 
Lc 0.40 

Lcd 1.00 
Lci 100 

 

- Estimation of Density and Refractive Index through Artificial Neural Networks 

 Once the desired training and transfer functions have been defined, the 

optimization of the necessary ANN parameters calculated, and the topology established, 

the MLP-based model is ready to offer an estimation of the two physicochemical 

properties studied (ρ and nD) of the ternary mixtures formed by the IL [bmim][BF4], 2-

propanol, and water (Figure 1). 

 The estimations obtained are result of testing the designed MLP with the 

simulation dataset (Table S1), which has never been involved in the training or 

verification process of the ANN. Therefore, employing this dataset to validate the model 

allows the evaluation of the generalization capability and applicability of the 

mathematical tool. The statistical performance of the MLP can be seen in table 3, where 

the MPE for the nD (nD MPE) and for the ρ (ρ MPE), as well as their corresponding R2 

values (nD R2and ρ R2, respectively), are shown. 

Table 3. Statistical performance of the MLP in terms of MPE and R2 for the estimation of the studied 
properties. Results obtained after testing the ANN model with the simulation dataset (Table S1). 

nD MPE (%) nD R2 ρ MPE (%) ρ R2 

0.050 0.998 0.227 0.999 

 As can be seen, the MPEs obtained (0.050% for nD and 0.227% for ρ) and the 

high R2 values (0.998 for nD and 0.999 for ρ) indicate that, in this case, a very precise 

estimation of both physicochemical properties is achievable by non-linear interpolation 

with ANNs. 

 

- Linear Versus Non-Linear Model Comparison 

 In this subsection, the statistical performance of the MLR models and of the 

MLP will be compared. As can be found in tables 1 and 3, the results provided by the 

linear and non-linear models are shown respectively. Firstly, when comparing the MLR 
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that uses the same amount of variables as the MLP (w1 and w2), it can be seen that the 

estimation MPEs provided by the MLR almost double for refractive index (0.085% vs. 

0.050%) and nearly triple for density (0.659% vs. 0.227%), giving a clear advantage to 

the non-linear model. On the other hand, the comparison of the MLR model that uses 

w1, w2, and w1*w2 with the MLP shows that the estimation of the refractive index is 

practically as accurate for both as MPEs are very similar (0.049% vs. 0.050%), while 

the error for density is essentially tripled by the linear alternative (0.685% vs. 0.227%). 

In both comparisons, the non-linear MLP seems to be a better modeling selection as 

MPEs are lower. In addition, the ANN model offers the ability to refresh and update its 

weights with new samples which strict linear models do not. This flexibility that MLPs 

possess implies a great advantage that MLRs lack. Nonetheless, MLRs compensate this 

deficiency by being very simple and straightforward to design, requiring lower dataset 

preparation time and computational power. 

 To sum up, it is possible to accurately estimate density and refractive index 

values of ternary mixtures of [bmim][BF4], 2-propanol, and water, at a fixed 

temperature, using MLRs and ANNs by only knowing the mass fractions of the 

analyzed dissolutions. For the case of ANNs, as they are updatable and flexible 

algorithms, it is more than likely that these results can be extrapolated to many other 

mixtures, virtually resulting in an easy and widely applicable tool to study and precisely 

estimate physicochemical properties thus allowing the evaluation of determined 

chemical operations. Additionally, the estimation errors obtained by the MLP are 

sufficiently low to permit an indirect assessment of the purity level of the compounds in 

the mixture. 

 

4. Conclusion 

 A flexible and updatable mathematical tool based on ANNs has been designed to 

estimate density and refractive index values of ternary mixtures formed by the IL 

[bmim][BF4], 2-propanol, and water at a fixed temperature of 298.15 K. The only 

required information of the dissolutions was the composition (mass fraction) of its 

components. This tool was compared to a set of MLR models, and it was shown that the 

non-linear approach was better suited for this estimation. The results obtained from the 

MLP model created, after testing it with a dataset that was never employed to design the 
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network (not used in training or verification phases), offered extremely accurate results 

in terms of property estimation (nD MPE = 0.050% and ρ MPE = 0.227%), which, in the 

end, allows the evaluation of various chemical processes and an indirect control of the 

purity of the involved compounds. Moreover, this mathematical approach could 

probably be employed for numerous other binary and ternary mixtures, as long as 

sufficient data with a high enough quality is available. 
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