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Toward Structure Prediction of Cyclic Peptides 

Hongtao Yua and Yu-Shan Lin*a 

Cyclic peptides are a promising class of molecules that can be used to target specific protein-

protein interactions. A computational method to accurately predict their structures would 

substantially advance the development of cyclic peptides as modulators of protein-protein 

interactions. Here, we develop a computational method that integrates bias-exchange 

metadynamics simulations, a Boltzmann reweighting scheme, dihedral principal component 

analysis and a modified density peak-based cluster analysis, to provide converged structural 

description for cyclic peptides. Using this method, we evaluate the performance of a number of 

popular protein force fields on a model cyclic peptide. All the tested force fields seem to over-

stabilize the α-helix and PPII/β regions in the Ramachandran plot, commonly populated by linear 

peptides and proteins. Our findings suggest that re-parameterization of a force field that well 

describes the full Ramachandran plot is necessary to accurately model cyclic peptides. 

 

Introduction 

Protein-protein interactions contribute to most aspects of 

biological processes, including signal transduction, membrane 

transport, and cell metabolism. Aberrant protein-protein 

interactions are involved in many human diseases.1 Modulating 

protein-protein interactions thus offers a rich vein for 

therapeutic intervention. Unlike protein-ligand binding sites, 

which generally exhibit well-defined binding pockets that can 

be targeted with small molecules, protein-protein interfaces are 

relatively flat and large.2-4 Cyclic peptides are a class of 

protein-protein interaction modulators with many promising 

pharmacokinetic characteristics. They are able to bind large 

protein surfaces with high affinity and specificity. In addition, 

they have enhanced metabolic stability and oral availability 

compared to their linear counterparts. Moreover, recent studies 

have demonstrated that the binding affinity and bioavailability 

of cyclic peptides can be further improved by, for example, N-

methylation and solvent shielding by branched side chains.5-8  

Thus, cyclic peptides are a promising compound class for 

therapeutic modulation of challenging protein-protein 

interactions.  

 Several cyclic peptides are FDA-approved or in clinical 

trials as immunosuppressants,9 artibiotics,10, 11 antifungals12 and 

potential antiviral13 and anticancer therapeutics.14 Despite these 

successful therapeutic applications of cyclic peptides, their 

potential remains underexplored – most potent cyclic peptides 

are simply natural products or their derivatives, rather than 

rationally designed.15 A key impediment to fully exploring 

cyclic peptides as a promising class of therapeutics is that it is 

currently difficult to accurately predict the three-dimensional 

conformation that any given cyclic peptide will adopt. 

Furthermore, owing to their macrocyclic character, small 

modifications to cyclic peptides often cause massive 

conformational alterations. These challenges have rendered the 

optimization of cyclic peptides for biological targets a purely 

empirical pursuit, requiring brute force synthesis of many 

variants in hopes of finding one with appropriate 

conformational and target-binding properties.7, 16 

 In the past years, several methods have been proposed to 

predict the three-dimensional structure of cyclic peptides using 

computer simulations.17-21 Most of these methods are based on 

the implicit solvent model. In aqueous solutions, hydrogen 

bonding with water plays a significant and often dominant role 

in determining peptide structures, which can be modelled in 

Molecular Dynamics (MD) simulations by using an explicit 

solvent model.22, 23 However, the usefulness of MD simulations 

largely depends on the reliability of the force field implemented 

and the sufficiency of the sampling in relevant conformational 

space. In a MD simulation, Newton’s equation of motion is 

numerically integrated to simulate the system’s dynamics and 

theoretically, a Boltzmann-weighted ensemble can be obtained 

after a sufficiently long MD run. Unfortunately, due to the 

small size of MD time steps and the roughness of free energy 

landscapes in bimolecular systems, conventional MD 

simulations can be kinetically trapped in local free energy 

minima that are separated from the global minimum by large 

energy barriers. In the case of small cyclic peptides, their 

circular geometry may result in large free energy barriers 

between local minima and require coherent dihedral changes of 

multiple residues to sample a new conformation, thus making 

complete structure sampling even more challenging. 
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 During the last decade, a number of advanced sampling 

techniques that aim to produce well-converged ensembles 

within a reasonable amount of simulation time have been 

developed.24-35 Among these, replica-exchange molecular 

dynamics (REMD),24, 36 also known as parallel tempering, is 

probably the most commonly used method. In standard REMD 

simulations, a series of non-interacting replicas of the system 

are simulated in parallel at different temperatures. Attempts are 

made at a regular time interval to swap the configurations of the 

neighbouring replicas based on the Metropolis acceptance 

criterion to enhance structure sampling. REMD thus exploits 

the more efficient conformational sampling in the higher-

temperature replicas to enhance the conformational sampling of 

the lower-temperature replicas. In order to achieve the expected 

performance of REMD, there must be sufficient overlap in the 

energy space of adjacent replicas so that sufficient exchanges 

can be accepted. The number of replicas required depends on 

the number of degrees of freedom of the simulated system.37 

Another popular enhanced sampling technique is bias-exchange 

metadynamics (BE-META). In a one-dimensional 

metadynamics (1D-META) simulation, the local free energy 

minima along a selected “reaction coordinate”, often referred to 

as a “collective variable” (CV), are gradually filled with 

Gaussian hills to sample the full free-energy profile until 

converged.38 In BE-META simulations,35, 39, 40 n 1D-META 

simulations are performed simultaneously, each biased on one 

of the n CVs. During BE-META simulations, exchanges are 

attempted regularly between these n replicas to enhance 

sampling. 

 Protein force fields are generally parameterized by fitting to 

quantum chemistry calculations and experimental data for 

model systems. Over the past several decades, a number of 

force fields including AMBER,41-46 OPLS-AA/L,47 and 

GROMOS,48-50 have been developed and widely used for 

simulations of bimolecular systems. The performance of these 

force fields has been extensively tested on linear peptide and 

protein systems, but their performance on highly constrained 

cyclic peptides remains to be determined. In this report, we first 

devise a method that integrates bias-exchange metadynamics 

simulations, a Boltzmann reweighting scheme, dihedral 

principal component analysis, and a modified density peak-

based cluster analysis to provide converged structural 

description for cyclic peptides. Using this method, we then 

evaluate the performance of a number of popular protein force 

fields on a model cyclic peptide. 

 

Methods 

 Model Peptide. A cyclic peptide cNPF1 (-YNPFEEGG-) 

was used as our benchmark peptide.51 cNPF1 was designed to 

bind the EH domain of EHD1. The structure of cNPF1 in 

aqueous solution was determined using nuclear magnetic 

resonance (NMR) spectroscopy.51 A tight ensemble of 

conformations were obtained from structure refinement using 

the NMR restraints,51 and a representative structure is shown in 

Fig. 1a. The NMR spectroscopy revealed that the Asn2-Pro3-

Phe4 motif of cNPF1 forms a type I β–turn configuration in 

aqueous solution (Fig. 1a). To perform MD simulations and 

monitor simulation convergence, two different initial structures 

were prepared from scratch using the Chimera molecular 

modelling package.52 The first structure was built from an α-

helix and the second from an extended conformation. The 

cyclic peptide was constructed by linking the N- and C-terminal 

residues of the linear peptide followed by an energy 

minimization. We will refer to these two initial structures as S1 

and S2 (Fig. 1b, c). Convergence is considered achieved when 

simulations starting from the two different structures provide 

similar results. 

 Molecular Dynamics Simulation. Starting from the two 

input structures S1 and S2 (Fig. 1b, c), MD simulations were 

performed using the GROMACS 4.6.1 suite.53 The initial 

structure (S1 or S2) was first immersed in a cubic box 

containing pre-equilibrated water molecules. The dimensions of 

the water box were chosen such that the minimum distance 

between any atoms of the peptide and the box walls is 1.0 nm.  

Two sodium ions were then added to neutralize the overall 

charge of the system.  The solvated system was further energy 

optimized using the steepest descent algorithm to remove bad 

contacts. With the peptide heavy atoms restrained by a 

harmonic potential with a force constant of 1000 kJ/mol/nm, a 

50 ps NVT (isochoric-isothermal) simulation and a subsequent 

50 ps NPT (isobaric-isothermal) simulation were then 

implemented to equilibrate the solvent molecules and adjust the 

density. Before the production run, an additional 100 ps NVT 

simulation followed by a 100 ps NPT simulation without 

restraints was performed to equilibrate the whole system. 

 All production simulations were carried out in the NPT 

ensemble at a temperature of 300 K and a pressure of 1 bar. The 

temperature was maintained using the v-rescale thermostat54 
with a coupling time constant of 0.1 ps. To avoid the “hot 

solvent-cold solute” problem,55-57 the peptide and solvent 

molecules were coupled to separate thermostats. The pressure 

was regulated using an isotropic Parrinello-Rahman barostat58 

with a coupling time of 2.0 ps and a compressibility of 4.5 × 10-

5 bar-1. The dynamics of the system were evolved using the 

leap-frog algorithm59 with an integration time step of 2 fs. All 

bonds were constrained to their equilibrium values using the 

LINCS algorithm.60 The non-bonded interactions (Lennard-

Jones and electrostatic) were truncated at 1.0 nm. Long-range 

electrostatic interactions beyond the cut-off distance were 

calculated using the particle mesh Ewald (PME) method61 with 
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a Fourier spacing of 0.12 nm and an interpolation order of 4. A 

long-range analytic dispersion correction was also applied to 

both the energy and pressure to account for the truncation of 

Lennard-Jones interaction.62 The simulation trajectories were 

saved every 10 ps for subsequent analyses. 

 Replica-Exchange Molecular Dynamics Simulation. To 

improve the conformational sampling, we performed REMD 

simulations for cNPF1 using the equilibrated structure in the 

MD simulations. The numbers of replicas and temperatures 

implemented were determined by using the method proposed 

by Patriksson and van der Spoel.37 The exchange attempts were 

made every 5 ps. All the REMD simulations were done in the 

NPT ensemble with separate thermostats for the peptide and 

solvent molecules. The simulation trajectories were saved every 

1 ps for subsequent analyses. 

 Bias-Exchange Metadynamics Simulation. To enhance 

conformational sampling, we also performed BE-META 

simulations for cNPF1 using the PLUMED 2.0 plugin63 for 

GROMACS. Eighteen CVs were biased in our simulations: 

TYR-1 φ/ψ/χ1, ASN-2 φ/ψ/χ1, PRO-3 ψ, PHE-4 φ/ψ/χ1, GLU-5 

φ/ψ/χ1/χ2 and GLU-6 φ/ψ/χ1/χ2.The dihedral angles of GLY-7 

and GLY-8 were not included due to the small size and large 

flexibility of glycine. The φ angle of PRO-3 was not used as a 

CV either, as biasing this dihedral can result in artificial 

cis/trans isomerization of the ASN-2/PRO-3 peptide bond. 

Exchanges between replicas were attempted every 5 ps. 

Gaussian hills of height 0.1 kJ/mol and width 0.314 rad were 

added every 4 ps. The simulation trajectories were saved every 

1 ps for subsequent analyses. The free energy profile along 

each CV was recovered by summing the Gaussian hills added 

in the corresponding META simulation. 

 Structural Ensemble Analysis. Since biased potentials are 

added constantly during the course of BE-META simulations, 

the trajectories produced are in non-equilibrium and thus cannot 

be utilized directly for calculating the equilibrium properties of 

the simulated system.  Recently, Laio and co-workers proposed 

a new method for recovering the equilibrium ensemble 

distribution from the biased MD simulation.64 In their method, 

the simulation trajectories are first grouped into different 

clusters based on the pre-defined hypercubes; the population for 

each cluster is then determined through a complicated 

reweighting of the trajectory frames using the weighted 

histogram analysis method. In the present study, we considered 

an alternative approach of Boltzmann reweighting for acquiring 

an unbiased ensemble from a BE-META simulation. In our 

method, to obtain an equilibrium, unbiased ensemble from 

replica �  (we used trajectory of 200−300 ns, after the free 

energy profile converged), frame � in replica � is either kept or 

discarded according to the Boltzmann probability: 

��� = ��	
����� 	���� 				�	≥ 	�																		kept
	< 	�								discarded 

where !��  is the value of CV � in frame �, Δ#�  is the free energy 

profile along CV � (with the minimum free energy value shifted 

to 0), �$  is the Boltzmann constant and % is the temperature. A 

random number	between 0 and 1, �, was generated and if ���  

≥ �, frame � in replica � was kept; otherwise, this frame was 

discarded. The trajectories generated after Boltzmann 

reweighting thus obey the canonical distribution and can then 

be employed for subsequent analyses.  

 To provide structural insights into the cyclic peptide, 

principal component analysis (PCA) in combination with 

cluster analysis was carried out using the REMD trajectories 

and/or the Boltzmann reweighted BE-META trajectories. PCA 

is a well-established approach for dimensionality reduction 

without significant information loss. When performing using 

Cartesian coordinates, PCA reduces the highly correlated 3N 

atomic coordinates to a few uncorrelated collective degrees of 

freedom that contribute most to the essential dynamics of the 

system.  The Cartesian PCA (cPCA) method is based on the 3N 

dimensional covariance matrix: 

&�' = 	 〈)*� −	〈*�〉- 	× )*' −	〈*'〉-〉 
where *� ,⋯ *12  are the atomic coordinates and 〈⋯ 〉  denotes 

the average over all sampled conformations. The modes of 

collective motion and their amplitudes are described by the 

eigenvectors (principal components, PCs) and eigenvalues of 

this covariance matrix. The PC associated with the largest 

eigenvalue accounts for the direction along which the system 

shows greatest variation. The PC with the second largest 

eigenvalue is orthogonal to the first one and describes the 

direction of second greatest variation. If the signal-to-noise is 

high in the data set, a large part of the system’s variation can be 

represented by only the first few PCs. In recent years, PCA 

have been applied successfully for analyzing the MD 

trajectories of biomolecular simulations.21, 65-73 A recent study 

by Stock et al. showed that PCA using internal coordinates such 

as dihedrals is free of the rotational fitting problem encountered 

in cPCA, and can provide well-resolved energy landscapes for, 

for example, villin headpiece HP35 and bovine pancreatic 

trypsin inhibitor.74 Considering that RMSD in Cartesian 

coordinates may not be a sensitive metric to separate 

conformations for a cyclic peptide owing to its circular nature, 

the dihedral angle PCA (dPCA) using the φ/ψ angles of all the 

eight residues in cNPF1 was employed in this study. 

 Cluster analysis is another unsupervised dimensionality 

reduction technique for finding patterns within data. It 

organizes objects in such a way that objects within the same 

cluster are more similar to each other than to those in other 

clusters.  To further analyze the structural ensemble of cNPF1, 

we conducted a cluster analysis in the two-dimensional (2D) 

principal subspace using a density peak-based clustering 

algorithm recently developed by Rodriguez and Laio (hereafter 

referred to as the RL algorithm).75 It should be pointed out that 

the original RL algorithm requires constructing a triangular 

matrix recording the distances between all data points in order 

to compute local density around each data point. Constructing 

such a large distance matrix may be computationally intensive 

when dealing with MD simulation trajectories, which usually 

contain a large number of data points. Here we adopted a 
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variant of the RL algorithm. Instead of clustering the raw PCA 

data points, we first divided the 2D principal subspace into 

small 2D grids, and computed the data point population within 

each grid. The local density of grid � is then estimated by 

�� =	34'��5�6
57

'∈9
 

where 4'  is the data point population with grid : , ;�'  is the 

distance between grids � and :,  and ;<  is a cutoff distance. The 

sum over : is over all the grids (including grid �). Using the 

grids and their local densities, centre grids were identified if 

their densities are higher than their neighbours and their 

distances to grids with higher densities are relatively large. 

Once the grids are properly clustered, the original PCA data 

points can then be assigned based on the cluster IDs of the grids 

to which they belong. 

 

Results and Discussion 

 Conventional MD Simulations of cNPF1. Starting from 

the two input structures S1 and S2 (Fig. 1b, c), 500 ns NPT MD 

simulations at 300 K/1 bar were performed for cNPF1 using the 

Amber99SB-ildn force field46 coupled with the TIP3P water 

model76 and the OPLS-AA/L force field47 coupled with the 

TIP4P water model76, 77. Owing to the intrinsic backbone 

rigidity of proline and flexibility of glycine, the region around 

PRO-3 is expected to be the most stable and the region around 

GLY-7 and GLY-8 the most flexible. In Fig. 2, we plot how the 

eight sets of φ/ψ angles of cNPF1 changed during the 500 ns 

simulations. During the simulations starting from input 

structure S1, the region of residues 6−8 (Glu6-Gly7-Gly8) was 

indeed the most flexible in both the Amber99SB-ildn and 

OPLS-AA/L simulation, while all the other dihedrals (residues 

1−5) were stuck in the initial conformation and their values 

rarely changed (Fig. 2a, c). During the simulations starting 

from input structure S2, the peptide conformation in the 

Amber99SB-ildn simulation relaxed in the first 200 ns and then 

locked into a rather stable conformation for the remaining 300 

ns (Fig. 2b). The simulation for S2 with the OPLS-AA/L force 

field showed a similar behaviour as the Amber99SB-ildn S2 

simulation: The peptide relaxed in the first 100 ns and then 

locked into a relatively stable conformation (Fig. 2d). By 

comparing the φ/ψ trajectories of S1 and S2 simulations in Fig. 

2, it is clear that constant-temperature MD simulations do not 

provide a converged description for cNPF1 within 500 ns 

simulation time, either with the Amber99SB-ildn or the OPLS-

AA/L force field. 

 Replica-Exchange MD Simulations of cNPF1. REMD is a 

widely used method for enhancing sampling in MD 

simulations. To improve conformational sampling, we 

performed REMD simulations for cNPF1 starting from 

structures S1 and S2 using both the Amber99SB-ildn (with 

TIP3P water) and OPLS-AA/L (with TIP4P water) force fields. 

In order to acquire sufficient overlaps in potential energy space 

between neighbouring replicas and consequently reasonable 

exchange acceptance ratios, 59 and 51 replicas were used for 

the Amber99SB-ildn and OPLS-AA/L simulations respectively. 

The potential energy distributions obtained from these two sets 

of simulations are presented in Fig. S1. Throughout the entire 
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temperature range, the exchange acceptance probabilities were 

45-55% and 32-42% for the Amber99SB-ildn and OPLS-AA/L 

simulations, respectively. Fig. 3 shows the trajectories of the 

eight sets of φ/ψ dihedrals of cNPF1 in the 300 K replicas of 

the REMD simulations. We observe more changes in the 

dihedrals when compared to the conventional MD simulations 

(Fig. 2), suggesting that structures sampling at 300 K were 

indeed enhanced by the REMD simulations. In the simulations 

using the OPLS-AA/L force field, the φ/ψ angles of the two sets 

of simulations starting from input structures S1 (Fig. 3c) and S2 

(Fig. 3d) reached convergence after approximately 50 ns. 

However, the simulations using the Amber99SB-ildn force field 

remained unconverged after 300 ns run (e.g., note the TYR-1 ψ 

angles in Fig. 3a, b, top row, blue). 

 To further verify the simulation convergence and provide 

structural insights for cNPF1 in the OPLS-AA/L REMD 

simulations, (Fig. 3c, d) we carried out dPCA and cluster 

analysis using the last 50 ns of the REMD simulation 

trajectories. The eigenvectors (PCs) of the covariance matrix 

were calculated using the combined trajectories of the S1 and 

S2 simulations, and these two simulations were then projected 

individually onto the first two largest PCs (PC1 and PC2). Fig. 

4a, b show the conformational density profiles projected onto 

PC1 and PC2. Both the S1 and S2 simulations reveal multiple 

low-population conformational states with one prominent state 

located around PC1=1.5 and PC2=0 (Fig. 4a, b). In order to 

quantitatively characterize the conformational ensemble, we 

first divided the 2D principal subspace into 200 × 200 grids, 

and then performed cluster analysis based on the grids as 

described in the Methods section. To enhance the performance 

and efficiency of the cluster analysis, the cluster analysis was 

only performed on the grids with data populations larger than 

0.1 (Fig. S2c, d).  As shown in Fig. 4c, d, the conformational 

states are well resolved by the clustering algorithm. The 

population for each state was determined by summarizing the 

data populations of the grids the state contains.  Using the last 

50 ns of the REMD simulations, the populations of the most 

populated state are estimated to be 50.4% and 49.7% in the S1 

and S2 simulations, respectively. Discarding the grids with data 
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populations lower than 0.1 only results in an underestimation of 

this population by approximately 1.5% (Fig. S2g, h). In Fig. S3, 

we plot the φ/ψ distributions of the 8 residues in cNPF1 for 

each state. The φ/ψ distributions fall in different regions for 

different states, indicating that the dPCA coupled with cluster 

analysis has successfully separated the multiple conformations 

of cNPF1 in the OPLS-AA/L REMD simulations. 

 Bias-Exchange Metadynamics Simulations of cNPF1. 

Given the expensive computational demands of REMD 

simulations and the poor convergence of the REMD 

simulations using the Amber99SB-ildn force field even after a 

relatively long REMD run, we sought an alternative enhanced 

sampling technique, i.e., the BE-META method. We performed 

300 ns BE-META simulations for cNPF1 using the 

aforementioned two sets of force fields and 18 CVs (φ/ψ/χ 

dihedrals, see the Methods section). In Fig. S4a, b we plot the 

free energy profiles along the 18 dihedrals calculated from our 

BE-META simulations using the two input structures S1 

(green) and S2 (blue). We observe relatively similar results 

between the two sets of simulations for both the Amber99SB-

ildn and OPLS-AA/L force fields.  

It is straightforward to perform dPCA and subsequent 

clustering of the principal subspace on a conventional MD or 

REMD simulation trajectory. For a peptide that is not 

intrinsically disordered, there are generally only one or several 

low free energy regions in its conformational space. The lower 

the free energy is, the more time the peptide spends in this low 

free energy region during the course of MD or REMD 

simulation. This naturally results in a data set with high signal 

(low free energy conformations) to noise (high free energy 

conformations) ratio. The dPCA and subsequent cluster 

analysis can therefore yield few clusters with high populations. 

However, performing a dPCA and cluster analysis based on 

BE-META simulation trajectories can be tricky. While the 

conformations sampled in an MD or REMD trajectory may 

naturally cluster around a few low free energy regions, the 

conformations sampled in BE-META trajectories no longer 

have this feature because sampling along each CV is enhanced 

in each BE-META trajectory. For example, in Fig. S5a, we plot 

the φ/ψ distribution for each residue sampled in each BE-

META trajectory of the OPLS-AA/L S1 simulation. Enhanced 

sampling along each CV results in an even distribution along 

the corresponding CV. Such a spread in the conformational 

space reduces the ratio of low-free energy conformations to 

high-free energy conformations and consequently hinders the 

performance of dPCA and cluster analysis. To mitigate this 

problem, we applied a Boltzmann reweighting scheme to each 

of the original BE-META trajectories based on the free energy 
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profile along each CV. Since the resulting trajectories have 

thereby been properly weighed, they now represent an 

equilibrium structural ensemble (Fig. S5b), and compare well 

to the φ/ψ distributions from the 300K replica of the REMD 

simulation (Fig. S5c). Fig. S6 further compares the distribution 

along each dihedral angle from the 300K replica of the REMD 

simulation (Fig. S6, black lines), from the raw BE-META 

trajectories (Fig. S6, blue lines), and from the Boltzmann 

reweighted BE-META trajectories (Fig. S6, red lines). The 

agreement between the distributions from the REMD and 

reweighted BE-META trajectories suggests that the trajectories 

generated with the Boltzmann reweighting method obey the 

canonical distribution.  

 We have demonstrated  that the OPLS-AA/L REMD 

simulations converge after 50 ns and both the S1 and S2 

simulations reveal multiple conformational states with one 

dominant state (Fig. 4a-d). These REMD simulations could 

serve as a “gold standard” to evaluate the effectiveness of the 

Boltzmann reweighting scheme. In order to compare with the 

REMD simulation results, we reweighted the last 100 ns of the 

OPLS-AA/L BE-META trajectories of the S1 and S2 

simulations, and projected them onto the two PCs calculated 

from the REMD simulations. In Fig. 4e, f, the conformational 

density profiles of cNPF1 calculated from these processed BE-

META trajectories are presented. We observe that the density 

profiles obtained from the reweighted BE-META trajectories 

are comparable to the REMD results. By dividing the 2D 

principal subspace into 200 × 200 grids and performing cluster 

analysis on the grids with data populations larger than 0.1, the 

populations for the dominant state are estimated to be 

40.5±3.8% and 46.2±3.7% for the S1 and S2 simulations, 

respectively (error estimated by the standard deviation from the 

18 BE-META trajectories) (Fig. 4g, h).  

 Performance of Different Force Fields on Modelling 

cNPF1. To evaluate the performance of different force fields on 

modelling cyclic peptides, we performed BE-META 

simulations for cNPF1 using five widely used biomolecular 

force fields (Amber9642+TIP3P76, Amber99SB-ildn46+TIP3P, 

Amber0344+TIP3P, OPLS-AA/L47+TIP4P76, 77, and 

GROMOS53a649+SPC78) as well as a recently developed force 

field parameterized using the protein coil library 

(RSFF179+TIP4P/Ew80). For each force field, two sets of 

simulations were performed, starting from the two input 

structures S1 and S2 (Fig. 1b, c). All simulations were 300 ns 

in length. To investigate the behaviour of the different force 

fields and simulation convergence, we performed dPCA on the 

last 100 ns of the twelve weighted BE-META trajectories (6 

force fields × two input structures S1 and S2) simultaneously. 

Using the PC1 and PC2 thus obtained, 2D conformational 

density profile was constructed and cluster analysis performed 

for each simulation (Fig. 5). 

  As observed in Fig. 5, dPCA and cluster analysis results 

reveal multiple conformations for all the 6 force fields tested. 

Based on the similarity of the dPCA and cluster analysis 

results, we arranged the results from the 6 force fields in the 

order of GROMOS53a6, Amber96, Amber99SB-ildn, RSFF1, 

Amber03 and OPLS-AA/L from left to right in Fig. 5. We 

observe that the conformations sampled in the GROMOS53a6 

simulations populate mostly the top right quadrant in the 2D 

principal space, and the conformations sampled gradually shift 

to the bottom right and middle left quadrants in a clock-wise 

fashion as one migrates to Amber96, Amber99SB-ildn, RSFF1, 

Amber03 and OPLS-AA/L force field (moving from left to 

right in Fig. 5).  In Fig. 6, we show 100 conformations 

randomly selected from a number of most commonly populated 

states (states 1−5 as labelled in Fig. 5c). We first note that 

states 1−2 seem to form a narrower, more elongated cyclic 

configuration, while states 3−5 are wider, rounder and more 

similar to the NMR structure. State 4 has the smallest backbone 

RMSD to NMR (1.08 ± 0.16 Å) although noticeable deviation 

is observed around residues 5−8 (Fig. 6d); the number of 

violations to the experimental NOE restraints51 is 28 ± 4, with 

16 ± 4 of the violations being > 0.3 Å and 8 ± 3 of them > 1.0 Å. 

  To further analyze the most populated configurations 

sampled in these simulations, in Fig. 7 we plot the φ/ψ 

distributions of the 8 residues in cNPF1 for each state. It seems 

that the first two PCs separate configurations mainly based on 

the φ/ψ of residues 5−8. All the 5 states share similar 

Ramachandran plots for residues 1−4 but have different 

Ramachandran plots for residues 5−8 (Fig. 7). Since the first 

several PCs correspond to the directions of largest variation, the 

separation of configurations of residues 5−8 by PC1 and PC2 

implies that they are the most flexible residues in cNPF1. In 

Fig. 6, we observe that states 1−2 form a narrower, more 

elongated cyclic configuration, while states 3−5 are wider and 

rounder. This phenomenon seems to result from the different 

φ/ψ distribution of GLU-5 (Fig. 7, column 5). We observe that 

the φ/ψ distribution of GLU-5 for states 1−2 falls in the α-helix 

region (φ=-60°, ψ=-45°), while that for states 3−5 falls in the 

PPII/β region (φ=-75°, ψ=150°; φ=-135°, ψ=135°). The φ/ψ 

values of GLU-5 in the NMR structure (φ=-126°, ψ=26°, red 

dot in Fig. 7), nonetheless, are located in a high-free energy, 

rarely populated region in a typical Ramachandran plot, and are 

not captured by either states 1−2 or states 3−5. This observation 

suggests that the force fields tested may over-stabilize the α-

helix and PPII/β regions, which are commonly populated by 

linear peptides. The poor performance of current peptide force 

fields at describing highly constrained cyclic peptides could be 

remedied by performing quantum calculations on a case-by-

case basis.81, 82 However, re-parameterization of a force field 

 

 

Page 7 of 10 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE PCCP 

8 | Phys. Chem. Chem. Phys., 2014, 00, 1-9 This journal is © The Royal Society of Chemistry 2014 

that correctly describes the full Ramachandran plot would be of 

great interest and broad applicability. This may be achieved for 

example, by using the protein coil library (as adopted by the 

developers of the recent RSFF1 force field79), by including 

additional fitting points in the Ramachandran space from 

quantum chemistry calculations during force field development, 

or by including cyclic peptides as benchmarks during force 

field development.  

 

Conclusions 

Cyclic peptides are promising modulators of protein-protein 

interactions. The value of cyclic peptides as potential drugs 

would increase exponentially if we could accurately predict 

their conformations de novo. To achieve structure prediction of 

cyclic peptides, one must be able to sample cyclic peptide 

conformations efficiently. In the case of small cyclic peptides, 

structure sampling can be very challenging owing to their 

highly constrained conformations. In this paper we employed 

bias-exchange metadynamics simulations to enhance 

conformational sampling of a model cyclic peptide. Then, using 

a Boltzmann reweighting scheme we obtained an equilibrium 

structural ensemble. To characterize the structural ensemble of 

the cyclic peptide, we performed dihedral principal component 

analysis followed by density-peak based cluster analysis on the 

equilibrium structural ensemble. 

 To evaluate the performance of current peptide force fields 

on cyclic peptides, we simulated and characterized the 

structural ensemble for the model cyclic peptide using six 

popular peptide force fields (Amber96, Amber99SB-ildn, 

Amber03, GROMOS53a6, OPLS-AA/L, and RSFF1). Multiple 

conformations with significant populations were identified in 

all six force fields tested, in contrast to the experimental 

observation of a single highly populated structure by NMR 

spectroscopy. None of the conformations identified using the 

six force fields accurately recapitulates the NMR structure. 

Owing to the structural constraint, one or several residues in a 

small cyclic peptide like our model cyclic peptide likely 

populates a high free energy, rarely sampled region in a typical 

Ramachandran plot for linear peptides. All the six force fields 

tested seem to over-stabilize the α-helix and PPII/β regions, 

commonly populated by linear peptides. Our findings suggest 

that re-parameterization of a force field that correctly describes 

the full Ramachandran plot is necessary to accurately model 

cyclic peptides. 
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