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Classical Molecular Dynamics simulations describing electrostatic interactions only by point charges can be
augmented by the inclusion of atomic polarisabilities modelling charge flexibility. Two widely used models,
Drude oscillators and induced point-dipoles, are compared in a systematic study using their respective im-
plementations in CHARMM and AMBER. The question of necessity and importance of polarisable hydrogen
atoms is raised and two implementations, in an implicit or explicit manner, are compared to the case of
non-polarisable hydrogen atoms. For all these polarisability models, the strength of the respective atomic
polarisabilities was incremented in steps of ten percent up to their full values. The influence of polarisability
on the structure and dynamics of the ionic liquid EMIMGBCFSSO?, which is chosen as a test case, is stud-
ied thoroughly. Using appropriate model functions, the respective dynamical and structural data are fitted.
Thus, a small set of parameters is deduced, which highlights the effect of polarisability. Generally, flexibility
of the charge distribution leads to enhanced fluidity and less pronounced structure. As this usually occurs
when adding a co-solvent to an ionic liquid, the inclusion of polarisability can be seen in much the same way

in that it acts like an inner solvent.

Keywords: ionic liquid, polarisability, molecular dynamics, Drude, point-dipole, simulation

I. INTRODUCTION

Computer simulations of soft matter have a long
tradition.! In order to cope with the complexity of the
problem, i.e. system size, simulation length and suffi-
cient sampling, interaction potentials have to be designed
which are both, realistic as well as economic.? For this
reason, the electrostatic part of interaction is tradition-
ally described by a set of permanent point charges.? This
prohibits, however, the reaction of a molecular charge
distribution to changes of its environment. Recent years
have seen a development of models to introduce flexible
charge distributions, thus augmenting traditional molec-
ular mechanics force fields. Three principal methods have
evolved in the literature.*

On the one hand, the strength of the charges may fluc-
tuate within a molecule - constrained to a fixed net charge
- while keeping the positions of the charges at atomic
sites. This quite intuitive approach is usually called the
Fluctuating Charge Model (FCM).5"2 Unfortunately, its
application is limited by the molecular geometry. For ex-
ample, one cannot create out-of-plane charges in a planar
molecule.

On the other hand, the permanent charges may be
augmented by auxiliary charges or dipoles, the position
or orientation of which is reactive to the environment.
This idea has been realized in two concrete models: In-
duced Point-Dipoles (IPD)!¥2% and Drude Oscillators
(DRU).21"27 In the first case, mathematical dipoles lo-
cated at atomic positions are calculated as a linear re-
sponse to the local electric field. In other words, the
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strength of the induced dipoles is governed by a linear
factor , i.e. the atomic polarisability. However, this im-
plies that the traditional treatment of electrostatics based
on point charges has to be extended to handle dipoles as
well.28:29 This initiated the idea of Drude oscillators: ad-
ditional pairs of opposite charges are attributed to each
atom. While one of these is united with the respective
atom, the other one is tethered by a flexible spring. Its
displacement is determined by the product of the atomic
polarisability times the local field. Thus, the Drude pair
creates an oscillating physical dipole.?!:27

In this work, we aim for a critical comparison of the
IPD and DRU models. As a test system we have cho-
sen the molecular Tonic Liquid (IL) 1-ethyl-3-methyl-
imidazolium (EMIM®) triflate (CF3S0§) (cf. Fig. 1).
In this class of soft matter every molecule carries a net
charge. This leads to extraordinarily strong local electric
fields, which in their turn create strong induced dipoles.
This makes this investigation of dual interest. On the
one hand, we are testing the IPD and DRU models up to
their methodic limits. On the other hand, we focus on a
system, where flexible electrostatics is essential.2%+30

Implementing either the IPD or the DRU model is an
extensive endeavor and implies a lot of additional algo-
rithmic development.?” The local electric field inducing
the IPD or displacing the Drude charge does not only de-
pend on the permanent charges, but also on the field in
situ created by the other IPDs or Drude charges. There-
fore, they have to be calculated in a self-consistent cy-
cle. The final result of this process corresponds to the
minimum of the polarisation energy. However, such a
procedure is quite time-consuming. An economic alter-
native route is the Lagrange formalism,?! which treats
the IPDs or the positions of the Drude charges as ad-
ditional degrees of freedom, for which appropriate equa-
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FIG. 1. Structures of the cation EMIM® and the anion
CF3S0% used in this work. This figure also shows the hy-
drogen polarisation models of the cation EMIM®. The circles
illustrate which atoms are polarisable in the respective po-
larisation model: no hydrogen (only red), implicit hydrogen
(purple), explicit hydrogen (red and orange).

tions of motion are solved. This requires fictitious masses
or moments of inertia to be attributed to the Drude par-
ticles or IPDs, respectively. The two sets of equations of
motion for the permanent and induced particles are for-
mally treated identically. Their thermostats, however,
operate at quite different temperatures. The purpose
of the thermostat governing the inducible part of the
system is to keep it near the minimum of the polari-
sation energy. Consequently, the temperature is usually
kept below 1 K.?! Despite this dual thermostating, in-
ductive electrostatics needs to be damped at close dis-
tances to avoid an uncontrollable increase of polarisation.
This is usually done within the framework of the Thole
algorithm.?! Because of algorithmic complexity, promi-
nent simulation packages usually focus on implementing
either the IPD or the Drude oscillator model. Therefore,
we used AMBER?? (for IPD) as well as CHARMM?3
(for DRU) in our comparative study. Therefore, one has
to pay attention to the differences inevitably arising be-
tween these two simulation packages.

A first difference results from the question, whether
hydrogen atoms can be made polarisable or not. This
affects only the cation of the IL EMIM®CF3S0% chosen
as our test system. While the IPD model in AMBER can
explicitly handle polarisable hydrogen atoms, this cannot
be done with the DRU model in CHARMM, as the hy-
drogen atoms and the Drude particles have comparable
masses. This problem poses the second question, whether
the hydrogen polarisability can be treated implicitly by
adding it to the adjacent carbon atom. In this way, one
can evade polarisable hydrogen atoms while still keeping
the molecular polarisability the same. This creates four
categories of polarisability distribution compared in this
work. In the first case, all atoms are non-polarisable.
Second, all non-hydrogen atoms are treated with their
intrinsic polarisability. Third, all atoms are polarisable.
And finally, the hydrogen polarisability is absorbed into
the respective neighboring carbon atom. In the follow-
ing, these four categories will be referred to as none, non-
hydrogen, explicit hydrogen and implicit hydrogen.

2

1-ethyl-3-methyl-imidazolium Triflate

Atom no H implicit H explicit H Atom «@
N1 0.97157 097157 0.97157 C1 1.28860
C2 1.28860 1.70243 1.28860 F1 0.44475
N3 0.97157 097157 0.97157 F2 0.44475
C4 1.28860 1.70243 1.28860 F3 0.44475
C5 1.28860 1.70243 1.28860 S1 2.47445
H1 - - 0.41383 O1 0.85197
H2 - - 0.41383 O2 0.85197
H3 - - 0.41383 O3 0.85197
C6 1.28860 2.53009  1.28860

H4 - - 0.41383

H5 - - 0.41383

H6 - - 0.41383

C7 1.28860 2.11626  1.28860

H7 - - 0.41383

HS8 - - 0.41383

C8 1.28860 2.53009  1.28860

H9 - - 0.41383

H10 - - 0.41383

H11 - - 0.41383

Sum 9.67474 14.22687 14.22687 7.65321

TABLE I. Atomic polarisabilities® for the cation in the vari-
ous polarisation models and the anion. The numbering of the
atoms of the cation is shown in Fig. 1. Values are given in
units of A%,

Il. METHODS
A. Simulation setup

This study is based on polarisable Molecular Dynamics
(MD) simulations of the IL EMIM®CF3S05. The pa-
rameters for the bonded and non-bonded interactions of
the force field were taken from Padua et al.335. The re-
spective atomic polarisabilities for the above-mentioned
four models are based upon Ref. 34 and are collected in
Tab. 1. As this study is focused on a systematic study of
different polarisability models, a possible recalibration of
Lennard-Jones parameters was not done in order to keep
parameter changes at a minimum.?® With these values
as a common input, we realized a suite of four polari-
sation models in AMBER 1132 and three in CHARMM
38a2%3 where the explicit hydrogen model cannot be im-
plemented. In addition to non-polarisable simulations, a
series of polarisable simulations for each model was per-
formed, thereby gradually changing the atomic polaris-
abilities in steps of ten percent up to their full value. Al-
together, this comprised 52 simulations of varying length
between 10 and 30 ns.

A non-polarisable system of 500 ion pairs in a cubic
box was generated with PACKMOL.37 After 20000 steps
of energy minimization, a NpT equilibration run was per-
formed at 300 K using the Berendsen barostat set to a
reference pressure of 1 bar with a coupling constant of
1 ps, yielding an optimized box size of 54.6 A. The fi-
nal configuration served as the starting point for all sub-
sequent NVT simulation runs. A uniform time step of
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0.5 fs was used in all simulations. All bonds contain-
ing hydrogen atoms were constrained using the SHAKE
algorithm?®®. The simulations were performed under peri-
odic boundary conditions. Consequently, all electrostatic
interactions were treated with the Particle Mesh Ewald
method3%4? using cubic splines of order 6 and a x of
0.41 A—'. A grid with a spacing of approximately 1 A
was used in both cases. Instead of an SCF procedure
to minimise the polariation energy, the Lagrange formal-
ism was used with a dual thermostat keeping the system
temperature near 300 K and the inducible part of the
system below 1 K. The fictitious mass of the IPDs and
the Drude particles were both set to 0.2 amu. A uniform
Drude particle charge of ¢° = 2 e was chosen. For the
thermostat settings, the respective program default set-
tings were used, i.e. Nosé-Hoover with 7=0.1 ps (300K)
and 7=5 fs (1 K) in CHARMM and Berendsen with both
7 set to 1 ps in AMBER.41%4

All analyses were carried out using a modified version
of MDAnalysis?®. Voronoi tessellations were calculated
using the Voro++ library.4

B. Differences between CHARMM and AMBER

Before presenting the results, a brief summary of the
differences between the IPD implementation in AMBER
and the DRU implementation in CHARMM is given.

In the DRU model, the induced dipole moment /ﬂnﬁd
assigned to atom [ of molecule i is given by the product
of the Drude charge ¢° times the displacement dlwg of
the two Drude particles. Speaking in terms of atomic

polarisabilities ag, umd is given by
s = agEp. (1)

The principle equivalence between the IPD and Drude
models can be shown by the way the local electric field

E’Z—,g acting on atom [ of molecule i is computed. In the
Drude model, we have

—

Eip=Epg (2)

78 — T 75— (Fjy +d;
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where the summation runs over all Drude pairs v of
molecule j located at 7 and 7 + dj . The field ex-
erted by the permanent charges is given by

1[3*22‘]]7'“&_”7 (3)

Ti,8 = Tjn 2

For small displacements d_;m one can use the truncated
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Inserting Eq. 4 into Eq. 2 one gets

- PR .
EYs+> > Tpy (Fip—7n) - i1, (6)
i

—*znd

with the induced dipole g% = q‘sd_;-ﬁ. Eq. 6 describes
the IPD model. As long as the Taylor expansion in Eq.
4 is valid, it is equivalent to the Drude model in Eq. 2.
Although the pair of Drude charges represents a physical
dipole, it corresponds to a mathematical one, i.e. the
IPD model, for small displacements. According to Eq.
1, higher atomic polarisabilities induce higher dipole mo-
ments in the IPD model or larger displacements in the
Drude model. This deteriorates the validity of Eq. 4
and inevitably leads to deviations between physical and
mathematical dipoles.

Simulations of polarisable systems may be prone to in-
stabilities, if the short-range interaction between induced
dipoles is not dampened. The Thole algorithm?3!' pro-
vides a framework to achieve this and is implemented in
most simulation packages, but the respective functional
form and the threshold for its range may differ. Tab.
IT of Ref. 47 lists the most frequently used forms of
Thole functions ¢(r). The default settings of AMBER
and CHARMM, which are ¢1(r) or ¢3(r), respectively,
were used for the simulations presented here. AMBER
would offer the possibility to use the same functional form
¢3(r), but CHARMM and AMBER would still differ with
respect to the threshold of the range of the Thole func-
tions. Because of this, the default settings of CHARMM
and AMBER were kept.

As the Lagrange formalism requires a dual thermostat,
as discussed above, and CHARMM and AMBER differ
considerably in this regard, this may also be a source
of differences. The elaborate Nosé-Hoover thermostat
was used in CHARMM, which reliably kept both tem-
perature baths close to the desired mean values. The
Berendsen thermostat used in AMBER was not so ac-
curate in this regard. At the highest levels of atomic
polarisability, there was some heat exchange between the
two baths with some flow of kinetic energy towards the
induced dipoles, raising the temperature to a few K. This
had a slight influence on the dynamics of the respective
systems. Other parameters than the default settings did
not improve this either. Therefore, we kept the default
setting for all systems to maintain consistency.
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FIG. 2. This figure shows a comparison of the single-particle
dynamics for different polarisation models in CHARMM
(DRU) and AMBER (IPD). The left column shows the single-
particle mean square displacement, the right columns shows
the normalised permanent dipole autocorrelation function.
The upper row shows cation dynamics, the lower row anion
dynamics. The inset in the lower right graph is a magnifica-
tion to highlight the pattern of polarisation models.

Ill. RESULTS AND DISCUSSION

The following selection of results represents a mix-
ture of traditionally given quantities in simulations of
soft matter as well as other properties that were found
to be quite indicative of the influence of polarisability.
Thereby, the data are viewed from a threefold perspec-
tive: the systematic variation of polarisability in steps
of ten percent, the difference between the IPD and DRU
models and the question of the necessity of hydrogen po-
larisability.

A. Dynamics

As a first example, the mean square displacement
(MSD) of the center-of-mass and the reorientation corre-
lation function of the molecular dipole moment are given
as typical representatives of single-particle translational
and rotational motion. As done throughout this work,
the numerical data were fitted to appropriate models of
molecular motion to allow for better quantification of the
influence of polarisability. In the case of single-particle
translation, the model function

([Ri(t) — Ri(0)]*) = 6Dy/(t+10)2 — 2 (7)

4
DRU, nonpol == DRU, impl H
= IPD, nonpol = IPD, impl H
= DRU, no H IPD, expl H
= IPD,no H
700 10
600 8
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~ 300 4
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8 500 8
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FIG. 3. A comparison of pair and cage dynamics for dif-
ferent polarisability models implemented with the DRU and
IPD models. The left column shows the mean square pair
displacement {[R;;(t) — Ri;(0)]?), the right column shows the
cage relaxation function {n(0)n(¢)} of the first solvation shell
with the initial value being the average coordination number
(CN). The upper row shows the functions for cations with re-
spect to other cations, the middle row for anions with respect
to other anions and the lower row for cations with respect to
anions or vice versa.

previously used in Ref. 48 is applied. Throughout this
work, the {...) bracket notation is a shorthand for the

ensamble average. Here, R, (t) are the molecular center-
of-mass coordinates at time t, D is the diffusion coef-
ficient and 7y accounts for the non-linear behaviour at
short times. 7y is a measure of the time required for
the displacement to become linear. To describe single-
particle rotation, the permanent dipole moment ji; of
each molecule ¢ was used. Since the species have a net
charge, the molecular dipole moment depends on the ori-
gin of the chosen reference system. In accordance with
earlier works,*® each dipole moment is referenced to the
respective molecular center of mass. Average values of
the permanent dipole moment of EMIM® and CF3S0¥
are 0.69 D and 6.37 D, respectively. The correspond-
ing normalised time correlation function was fitted to a
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CHARMM AMBER

no H impl H no H impl H expl H
scale D9 Té%g Ne D® ng Ne D® Tg?,g e Do Tﬁ,g Ng D® T,ﬁg Ne
0.0 2.16 625 71.3 2.24 643 66.9
0.1 2.26 600 68.2 2.40 609 61.6 2.62 568 56.1 2.55 577 57.8 2.57 569 57.7
0.2 2.49 585 59.9 2.52 547 60.7 2.43 566 63.0 2.56 558 58.7 2.76 522 54.1
0.3 2.76 516 54.4 2.77 510 54.4 2.63 575 55.5 2.80 527 52.7 3.13 464 47.6
0.4 2.93 534 49.0 3.00 503 48.7 2.82 544 51.5 3.03 502 48.1 3.58 431 40.4
0.5 2.97 510 49.1 3.51 448 40.8 3.01 499 48.5 3.22 466 45.4 4.00 412 34.9
0.6 3.21 493 44.5 3.46 443 41.8 3.18 492 45.2 3.56 434 40.5 4.26 380 33.1
0.7 3.44 472 40.9 3.88 410 36.6 3.49 478 39.9 4.19 393 33.3 4.82 353 28.5
0.8 3.39 434 43.5 4.15 369 34.9 4.39 379 31.7 5.76 304 23.5 5.97 283 23.1
0.9 3.63 418 40.1 4.23 345 35.2 4.34 394 31.6 5.62 299 24.6 6.03 288 22.6
1.0 4.08 412 33.9 5.49 314 24.9 4.24 423 31.6 6.36 297 20.5 6.29 284 21.3

TABLE II. The pseudo-viscosity ng calculated from D® and Tﬁg of the cation EMIM® using Eq.

1071 m? 571, Té%,g in units of ps and ng in units of mPa s.

Kohlrausch-William-Watts (KWW) function of the form

) - Ai0) o —(t/my?
(Hi(0)%) '

This type of stretched exponential function characterises
the diversity of dynamical processes by a single parame-
ter 8. Furthermore, an average 7 can be obtained by the

analytical expression
1
|- )

where I' is the gamma function. The respective fit pa-
rameters are collected in Tabs. S1 and S2 in the Sup-
plementary Material. Graphs of the results from the
non-polarisable simulations and those performed at full
strength of the respective polarisability models are shown
in Fig. 2. As a general rule, dynamics is accelerated with
increasing polarisability and a clear pattern can be found.
First, AMBER and CHARMM yield equivalent results
for the non-polarisable force field, both, in translation
and rotation. Second, comparing the DRU and IPD po-
larisation models for the case of non-polarisable hydrogen
atoms in terms of their implementation in CHARMM and
AMBER, one still finds almost equivalent results. Third,
upon implicit inclusion of hydrogen polarisability, i.e. ab-
sorbing it into the respective neighboring carbon atom,
the results of CHARMM and AMBER start to deviate.
As can be seen from Tab. I, the implicit hydrogen model
leads to very high polarisabilities of the carbon atoms,
in some cases even exceeding that of sulfur. Considering
Egs. 1 - 6, it is shown that the DRU and IPD mod-
els must deviate beyond some threshold of polarisability.
This seems to be the case here. Within AMBER, how-
ever, it does not matter whether hydrogen polarisability
is modelled implicitly or explicitly, as both give equiva-
lent results. Anyway, inclusion of hydrogen polarisability
considerably raises the total sum of atomic polarisabili-
ties, simply because of their large number (cf. Tab. I).
As a consequence, dynamics is accelerated accordingly.

(8)

T
Tavg = B

(9)

12. D® is given in units of

The pattern described above can be found as well in the
cases of pair dynamics and cage dynamics (see Fig. 3).
Pair dynamics*® is characterised by the mean square dis-
placement of the center-of-mass distance of two molecules
i and j

Again, the functional form given in Eq. 7 was used for
fitting. The resulting parameters are collected in Tabs.
S3 and S4 in the Supplementary Material. The data show
clearly that the pair diffusion coefficient D% is the sum of
the respective self diffusion coefficients D% = D? 4+ D7,
In other words, the cross-term appearing in Eq. 10 is
negligible.®8 It is important to note, that this additiv-
ity holds for all polarisation models across all scales (cf.
Tabs. S3 and S4 in the Supplementary Material). Com-
bined with earlier findings,*® the disappearance of cross-
terms in the pair dynamics of binary ionic liquids seems
to be a general rule. This is of importance for model
theories of pair dynamics based on this assumption, e.g.
model theories of the Nuclear Overhauser Effect in NMR
spectroscopy. 4859

By cage dynamics, the relaxation of the solvation shell
of a reference molecule is meant. In this case, the solva-
tion shell is defined as the first Voronoi shell,*6:51 com-
prising all molecules with Delaunay distance one. A bi-
nary observable n(t) is defined, depending on whether
a molecule is at time ¢ a member of a given Voronoi
cage or not. The respective time correlation function
(n(0)n(t)) is shown in Fig. 3. The initial value of this
residence function is the average coordination number
(C'N), i.e. the average number of particles located within
the first solvation shell. After subtracting the steady-
state asymptotic value ag, the integral is the mean resi-
dence time 7¢qge. The fit function®?

(n(0)n(t) = ay e/™ +((CN) —ar) e~ /™" +aq (11)



Physical Chemistry Chemical Physics

was used. Except for the ©& residence function, a; could
be set to zero. The respective fit parameters are listed in
Tabs. S5 and S6 in the Supplementary Material.

As shown above, the polarisability pattern appears in
various aspects of dynamics: single-particle translation
and rotation, pair displacement and cage residence func-
tion. This raises the question whether these properties
may be traced back to a common quantity. For this pur-
pose we used the hydrodynamical relationship®?

po_ T 1
s fpeyes,

(12)

to convert the diffusion coefficient D® and the average re-
orientational time ng of the cation EMIM® to a pseudo-
viscosity 7g, which is not to be understood as the col-
lective viscosity of the system. Here, 1 serves as a scal-
ing factor for dynamical parameters involving the cations
such as 1/D%, 78 1/D%® 1/D%®° 789 and 757, As
such, ng behaves much like the actual collective viscos-
ity 1, which can be applied as a global scaling factor for
dynamical properties in homogeneous systems.?? Rescal-
ing the aforementioned dynamical parameters with 7,
one finds almost uniform values across all polarisability
scales. In other words, the influence of polarisability on
dynamical parameters can be mapped to the underly-
ing variations of the 7g, i.e. 1/D% = ¢ ng etc. The
applicability of Eq. 12 rests upon the constancy of the
product D® -ng inferred from hydrodynamics, which is
fairly valid for EMIM®, but not for CF3S0§. Because
of this, dynamical parameters involving only the anions
scale less well, e.g. T?a?e, as will be discussed later. The
resulting values for 7g are collected in Tab. IT and graph-
ically illustrated in Fig. 4. Thereby, not the scaling fac-
tor 0.0...1.0, but the total sum of the respective atomic
polarisabilities of a single ion pair was used to compare
polarisation models on a common scale. Inspired by the
findings of Seddon et al.®3, that experimental viscosities
follow an exponential law independent of the polarity of
the added co-solvent, this law was adapted to the influ-
ence of polarisability on 74. The respective fit functions
of the various polarisation models are also shown in Fig.
4. Indeed, all polarisation models, be they DRU or IPD,
follow this experimentally inspired law and thus support
the concept that polarisability acts as an inner solvent or
co-solvent. Moreover, the DRU and IPD models lead to
quite similar fit parameters, showing that they produce
the same effects on dynamical observables.

As viscosity scaling stems from hydrodynamic diffusion
tensors®?, its applicability is limited to time scales, where
a system is diffusive in character. The model function
given in Eq. 7 already indicates the typical non-diffusive
behaviour exhibited by ionic liquids in the short-time
regime. In order to gain a deeper insight, we have com-
puted the van Hove self-correlation function®*55 G(r, t).
This function shows the probability distribtion of the dis-
tance a given particle can travel within a certain time
interval. The thick lines in Fig. 5 show this function for

6

X DRU, no H V DRU, impl H A IPD, expl H
® IPD,noH B IPD, impl H

80 T T T .

/ mPa s

e 30
<

aionpair / AS

FIG. 4. ng is shown as a function of the sum of the respective
atomic polarisabilities of an ion pair for the various polarisa-
tion models with the corresponding experimentally inspired
fit function of the form ng =2 a e~ */*. The fit parameters for
the different models are: DRU, no H (a=70.0, b=24.5); DRU,
impl H (a=70.3, b=24.0); IPD, no H (a=67.6, b=22.7); IPD,
impl H (a=69.1, b=20.7); IPD, expl H (a=66.8, b=18.0).

all polarisation models at time t = 1 ns. With increasing
total polarisability of the model, the distribution of acces-
sible distance widens and the maximum of the distribtion
shifts to higher distances, thus reflecting the increasing
fluidity of the system. For a purely diffusive behaviour,
one would expect G4(r,t) to follow a Gaussian form®*

3
GY(r,t) = <%<|M<t>|2>> e 73/ RUATIO) (1)

The corresponding curves are shown as dashed lines in
Fig. 5. As a measure of the deviation of the actual data
from Gaussian behaviour, one usually computes the non-
Gaussian parameter:54:56

. T
a(t) = éw -1 (14)

5 (|Ar(E)7)?

The larger a(t) becomes, the more pronounced is the non-
Gaussian behaviour of the system. As can be seen from
the insets in Fig. 5, a(t) reaches a maximum at very short
times and then decays monotonically. For more com-
plex polarisability models, this maximum clearly shifts
to shorter times and also the decay is enhanced. In other
words, the system comes closer to Gaussian behaviour
and is thus more diffusive in character. Again, it is im-
portant to note, that the implicit and the explicit hydro-
gen models behave almost identically.

While the dynamics of the cation EMIM® could be
mapped to 71g, an analogous procedure for the anion
did not work well. To further elucidate this, the non-
Gaussian diffusive behaviour of the anions has to be stud-
ied. Tt can be quantified by two parameters, 75" of Eq.
7 and the time tnqq, where a(t) (cf. Eq. 14) reaches its

Page 6 of 11
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FIG. 5. The van Hove self-correlation function G(r,t)>*®° is shown as the thick lines for the different polarisation models in
CHARMM and AMBER for a time interval of 1 ns. The respective expected Gaussian forms G2(r, ) (cf. Eq. 13) are shown
as dashed lines of the same color. The insets show the functional form of the corresponding non-Gaussian parameter a(t) (cf.

Eq. 14).

maximum. Both parameters are a measure for the time
interval needed to enter the Gaussian diffusive regime.
Indeed, they are pretty close in absolute value, bearing
in mind that both are difficult to determine. This raises
the question, how the Gaussian and non-Gaussian diffu-
sive regimes are correlated. In fact, Fig. 6 shows strong
correlation between 1/D® and Toe. In other words, the
slower translational motion is, the longer it takes to reach
the Gaussian diffusive regime. The fact that even 7'0e
OT tynqz is proportional to 1/D® across all polarisability
scales highlights the central role of the diffusion coefli-
cient for the dynamics of the anions. Indeed, also TC?U?
can be rescaled following 1/D® (see Fig. 6). Therefore,
while viscosity scaling across polarisability scales is not
possible for anion dynamics due to the different rates of

change of D® and 7, (cf. Tabs. S1 and S2 in the

avg
Supplementary Material), scaling by D® is a working
substitute.

B. Structure

From cage dynamics we have learned that the initial
value of the residence function (n(0)n(f)), representing

the average coordination number {(C'N), is rather insen-
sitive to polarisability. However, coordination numbers
are integrals of solvation shell-resolved pair correlation
functions g°%°(r) between molecular centers-of-mass R;;.
Consequently, a possible dependence of ¢°°°(r) on polar-
isability may compensate upon integration. Therefore,
g"%(r) for the combinations ®&®, ©© and @O is studied
at full radial resolution

N

S0 R (15)

=1

1
000/, —
g (r) p 4mr2dr

This function measures the deviation of the local particle
density within a spherical shell of thickness dr from the
uniform particle density p and thus is an indicator of
molecular packing. The mutual orientation of molecules
at a distance It;; is characterised by

g1y = I Z <M5(7‘ — |R¢j|)>, (16)

p dmr2dr 2\ [ji] - ||

where fi; and ji; are the respective permanent molecular
dipole moments. ¢g'1%(r) is an extension of ¢°°°(r) in that
it weights the local density by the cosine of the angle
between the two dipole vectors.*?
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FIG. 6. Scatter plots showing the correlation of 1/D® to
75 (upper panel) and 755 (lower panel) for all polarisation
models in CHARMM and AMBER.

The respective graphs of g°°%(r) and ¢g'!°(r) are given
in Fig. 7. For the purpose of discussion, three regions
may be discerned: the immediate short range below 5
1&, the region around the highest peak from 5 to 10 A
and the long range order beyond 10 A. With increasing
polarisability, a shoulder emerges in the immediate short
range for like species, @ and ©&, while at the same
time, the highest peak is reduced in height. This corre-
sponds to the concept of polarisability acting as an inner
solvent by screening the repulsive electrostatic forces be-
tween like-charged molecules. For unlike charges @O,
g°°%(r) below 10 A is largely unaffected by polarisability
changes. Without polarisable hydrogen atoms, the DRU
and IPD models largely agree. Including hydrogen po-
larisability explicitly or implicitly further pronounces the
effects described above with even stronger effects in the
explicit case. However, for implicit hydrogen polarisabil-
ity, CHARMM and AMBER deviate.

In the asymptotic region beyond 10 A, the set of
g%%9(r) functions exhibit an increasingly regular pattern
of structural oscillations. The individual onset of this
behaviour goes along with the vanishing of the orienta-
tional correlation function ¢g''°(r). For unlike charges,
orientational structure disappears at shorter distances

8
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FIG. 7. The left column of the upper panel shows the func-
tional form of the radial distribution function ¢°°°(r), the
right column of the upper panel shows the orientational corre-
lation function ¢*'°(r). Both are given for the center-of-mass
distances of each, cations around cations, anions around an-
ions or cations around anions or vice versa. The lower panel
shows the charge ordering function Q(r). All functions are
shown for the non-polarisable case and at full strength of all
polarisation models, each in CHARMM and AMBER.

than for like charges, although it should be noted that
g&g shows almost no correlation. Since a fortuitous 90
degree conformation - nullifying the cosine - has been
ruled out by further analysis (data not shown), this ef-
fect comes from a lack of orientational steering between
the cations caused by their comparatively small dipole
moment. If the onset of the regular oscillation pattern
in packing correlates with the vanishing of orientational
correlation, then this behaviour can be interpreted as

the transition from that of anisotropic molecular ions to
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CHARMM
no H impl H no H
scale A 1/ X ¢ A 1/o X ¢ A
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AMBER

impl H expl H

1/o0 X ¢ A 1/o X ¢ A 1/ X ¢

0.0 30.0 0.087 6.43 25.1 29.8 0.086 6.42 25.1

0.1 30.2 0.089 6.44 25.1 30.1 0.089 6.45 25.1 30.0 0.088 6.45 25.1 30.3 0.090 6.44 25.1 30.3 0.090 6.44 25.1
0.2 30.5 0.091 6.46 25.1 30.6 0.092 6.46 25.1 30.4 0.091 6.45 25.1 30.6 0.093 6.47 25.1 30.8 0.093 6.46 25.1

RO 00000o
ClbwNo; kW

30.6 0.093 6.47 25.1 31.0 0.096 6.48 25.1 30.8 0.094 6.47 25.1 31.1 0.098 6.49 25.1 31.1 0.097 6.48 25.1
30.9 0.096 6.47 25.1 31.0 0.098 6.49 25.1 31.3 0.098 6.49 25.1 31.2 0.102 6.51 25.0 31.3 0.100 6.49 25.1
30.9 0.096 6.49 25.1 31.6 0.102 6.51 25.1 31.4 0.101 6.50 25.1 31.9 0.108 6.55 25.1 32.1 0.105 6.53 25.1
31.0 0.099 6.50 25.1 31.6 0.104 6.53 25.1 31.9 0.105 6.52 25.1 32.2 0.112 6.57 25.0 32.8 0.112 6.55 25.1
31.6 0.103 6.51 25.1 32.2 0.109 6.55 25.1 32.3 0.109 6.54 25.1 32.3 0.117 6.60 25.0 33.2 0.117 6.57 25.1
32.0 0.107 6.53 25.1 32.2 0.111 6.56 25.1 32.3 0.112 6.56 25.1 32.6 0.123 6.63 25.0 33.6 0.124 6.61 25.1
32.3 0.110 6.54 25.1 32.4 0.114 6.54 25.0 33.2 0.118 6.59 25.1 33.2 0.130 6.66 25.0 34.6 0.132 6.65 25.1
32.4 0.112 6.56 25.1 32.7 0.120 6.61 25.1 33.5 0.123 6.62 25.1 33.8 0.138 6.68 25.0 35.4 0.140 6.70 25.1

TABLE II1. Parameters of the fit to the charge ordering function Q(r) using the fit function Qs (r) (cf. Egs. 17 and 18) for

all polarisation models in CHARMM and AMBER.
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FIG. 8. The charge ordering function fit parameters 1/o and
A (cf. Eq. 18) shown as a function of the total sum of the
respective atomic polarisabilities for all polarisability models
in CHARMM and AMBER.

pseudo-spherical ions. In the latter case, the oscillations
of like and unlike ions are synchronised with a coincidence
of respective maxima and minima. The charge ordering
function

Q(r) = g3m(r) + 928 — 2932 (17)

by design rationalizes this oscillation pattern and is a
measure of the surplus or deficit of like charged ions at
distance r. Q(r) can be fitted to the function®”

A . 27y
Qria(r) = —e™"/7sin <— + ¢> ' (18)
r A
As this function only describes the oscillating pattern just
discussed, the fit can only be used beyond some thresh-
old, in our case 5 A. The respective fit parameters are

collected in Tab. III. The functions Q(r) shown for se-
lected systems in the lower panel of Fig. 7 illustrate
the effect of polarisability. Quite intriguingly, the two
hydrogen models, implcit and explicit, give a highly sim-
ilar form of Q(r). This shows, that for longer distances,
the individual location of the hydrogen polarisabilities
is less relevant than for shorter distances, but their in-
clusion is important nonetheless. As a general feature,
increase of polarisability dampens the oscillations of the
function. This can be quantified by the fit parameter
1/0, which increases monotonically. When again plotted
as a function of the total sum of the polarisabilities of
an ion pair, only two separate curves are observed (cf.
the upper panel of Fig. 8). All hydrogen polarisabil-
ity models - none, implicit or explicit - lie on the same
curve, the only difference being between CHARMM and
AMBER, i.e. between the DRU and IPD models. The
overall trend for both models is quite the same, but it
is less pronounced in CHARMM. Still, damping alone is
not a sufficient description of the observed changes: when
integrating over successive radial shells fooo Q(r)dmridr,
the final cumulative value has to be independent of the
polarisation model. This balance is conserved by the in-
crease of the wavelength of the oscillations, described by
the fit parameter A (cf. the lower panel of Fig. 8), which
shows the same pattern for the DRU and IPD models as
1/o. A higher X shifts the peaks of Q(r) slightly out-
wards, where they are weighted with a higher r2. In
this way, the higher dampening is compensated. Thus,
with increasing polarisability and the ensuing screening
of electrostatic interaction, the long range charge order-
ing is less pronounced. In this sense, inductive effects
make an ionic liquid behave more like a neutral molecu-
lar liquid.

IV. CONCLUSION

In this paper, the influence of polarisability on the
structure and dynamics of liquid systems is studied, using
the ionic liquid EMIM®CF3S07 as a test case. Three as-
pects have been highlighted: a systematic variation of the
strength of polarisability, a comparison of the Drude os-
cillator model (DRU) and the induced point-dipole model
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(IPD) as implemented in CHARMM and AMBER, re-
spectively as well as the special influence of hydrogen
polarisability.

Concerning the variation of the polarisability, the to-
tal sum of polarisabilities of an ion pair turned out to
be the common scale for the various polarisability mod-
els. The general influence of polarisability is to make
the liquid more fluid and less structured. The effect on
dynamics can be rationalized by introducing a common
scaling factor 7g,, derived from hydrodynamical relation-
ships involving the cationic diffusion coefficient D® and
reorientational time 7 g- As the variation of many dy-
namical observables with increasing polarisability can be
mapped to corresponding changes in 7g, it may serve as a
central quantity representing dynamics. The systematic
loss of structure was quantified using the charge ordering
function Q(r) as a measure of alternating charge layers.
Its behaviour upon raising the polarisability can be char-
acterised by a pair of parameters, the damping factor 1/o
and the wavelength \. From these parameters one can
read, that the alternating charge layers increase in width.
This partial penetration reduces maxima and minima of
Q(r). Thus, an increase in polarisability creates screen-
ing of electrostatic interaction and leads to a loss of long-
range order. However, inclusion of polarisability does not
change the short-range structural features of the liquid
in a qualitative manner. In fact, these features are only
less pronounced due to the aforementioned electrostatic
screening. Both the damping of the structure as well
as the increase in dynamics may be attributed to this
screening. As the molecular packing becomes looser and
the particles gain more freedom to move, dynamics is ac-
celerated significantly, but the accessible configurations
remain quite the same.

When comparing the different hydrogen polarisability
models - non-polarisable, explicitly polarisable or implic-
itly polarisable hydrogen atoms - the importance of their
inclusion becomes obvious. The way of inclusion - ex-
plicitly or implicitly - is not so important. This opens up
the possibility to include hydrogen polarisability in the
DRU model, where explicitly polarisable hydrogen atoms
are methodically unfeasible. As the inclusion of hydro-
gens raises the total sum of polarisabilities, the effects
on structure and dynamics described above are further
increased according to this common scale.

With respect to the method of implementing polaris-
ability - the DRU model in CHARMM or the IPD model
in AMBER - it could be shown, that both models are
equivalent at least in a qualitative sense. Trends in all ob-
servables are highly similar, although the results begin to
deviate at the highest polarisability levels. This is most
obvious, when comparing the implicit hydrogen model,
where the highest atomic polarisabilities are achieved,
between CHARMM and AMBER. Generally, the IPD
model in AMBER seems to have a slightly higher impact
on the observables described here.

In addition to the principle equivalence of the Drude
oscillator and the induced point-dipole models, the inclu-

10

sion of polarisability in general may be seen as adding an
inner solvent or co-solvent, in that via screening electro-
static interactions, dynamics is accelerated and structure
is loosened.
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