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The evolution up to 65 GPa of pressure of structural, elasticand vibrational properties of the katoite hydrogarnet, Ca3Al2(OH)12,
are investigated with anab initio simulation performed at the B3LYP level of theory, by using all-electron basis sets with the
CRYSTAL periodic program. The high-symmetryIa3d phase of katoite, stable at ambient conditions, is shown to be destabilized,
as pressure increases, by interactions involving hydrogenatoms and their neighbors which weaken the hydrogen bondingnetwork
of the structure. The corresponding thermodynamical instability is revealed by anomalous deviations from regularityof its elastic
constants and by numerous imaginary phonon frequencies, upto 50 GPa. Interestingly, as pressure is further increased above
50 GPa, theIa3d structure is shown to become stable again (all positive phonon frequencies and regular elastic constants).
However, present calculations suggest that, above about 15GPa and up to at least 65 GPa, a phase ofI43d symmetry (a non-
centrosymmetric subgroup ofIa3d) becomes more stable than theIa3d one, being characterized by strengthened hydrogen
bonds. At low-pressures (between about 5 GPa and 15 GPa), both phases show some instabilities (more so forI43d than for
Ia3d), thus suggesting either the existence of a third phase or a possible phase transition of second order.

1 Introduction

In the last decades, a lot of attention has been devoted to the
understanding of the incorporation of hydrogen into nominally
anhydrous minerals (NAM) because of the remarkable effect
it has on their technological and geophysical properties.1–7 In
particular, NAMs are of great geological interest in that they
may potentially introduce large amount of “water” in the Earth
mantle thus significantly modifying its elastic properties.8–10

In this respect, garnets are among the most interesting candi-
dates as possible hydrogen storage media for the Earth’s man-
tle, given their abundance and stability.11,12

The hydrogarnet substitution (SiO4 ↔ O4H4) in grossu-
lar has received special attention in that it represents an ef-
fective mechanism for including hydrogen into silicate gar-
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nets.11,13–21Hydrogrossular can be represented by the general
formula Ca3Al2(SiO4)3−x(OH)4x; when 0< x< 1.5 it is called
hibschite and when 1.5 < x < 3 it is called katoite.19 At low
temperature, there is complete solid solubility of the two end-
members (grossular and silicon-free katoite; see Figure 1 for a
graphical representation of the structure of the two systems).
Hydrogarnets are known to be stable over the whole Earth’s
mantle pressure range;9 natural hydrogarnets equilibrated at
180 km depth have been characterized.10 In what follows, ka-
toite will be used as a shortcut for silicon-free katoite. The
characterization of the structural and mechanical properties of
katoite under pressure is crucial for discussing its possible role
as a major “water” reservoir in the Earth’s mantle. This inves-
tigation has some implications of even broader general inter-
est as it implies the full characterization of the evolutionunder
pressure of hydrogen bonding in such a NAM that, as we are
going to recall in a moment, is rather controversial, indeed.

Two distinct compression mechanisms are possible for gar-
nets: bond shortening and bond bending.12,22 A pioneering
neutron powder diffraction study by Lager and Von Dreele in
1996 of katoite under pressure, up to 9 GPa, seemed to sug-
gest a compression mechanism based on a cooperative rota-
tion of corner-sharing tetrahedra and octahedra, similar to that
observed for andradite.15 Nonetheless, more recent measure-

1–11 | 1

Page 1 of 11 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



ments (an X-ray diffraction study up to 8 GPa by Lageret al.
in 2002 and a neutron powder diffraction study up to 10 GPa
by Lageret al. in 2005) showed that the compression is essen-
tially driven by bond shortening rather than bond bending.17,18

Three theoretical studies also confirmed this picture.11,16,20

A couple of major issues about the compressional behavior
of katoite still remain unclear and require further analysis to be
understood: i) the evolution of hydrogen bonding (i.e. of the
related O−H and O· · ·H distances) with pressure and ii) the
nature of a possible phase transition of katoite under pressure
which, till now, has only been suggested to occur, at about
5 GPa. In the next paragraphs we will summarize the main
findings about these two open points.

As anticipated above, the description of the pressure de-
pendence of hydrogen bonding in katoite is quite contro-
versial. If experimental and theoretical studies all agreeon
the shortening of the O· · ·H length with pressure, thus sug-
gesting stronger hydrogen bonding interactions in the struc-
ture,11,15–18,20this is no more so for the O−H bond length.
In this case, indeed, the first neutron diffraction study (Lager
and Von Dreele, 1996) reported a significant shortening of that
bond under pressure (with a contraction rate of about 0.012
Å/GPa up to 9 GPa) that seemed to be contradictory with
the picture of strengthening hydrogen bonding,15 whereas two
theoretical studies, performed with a pure density-functional-
theory (DFT) approach with pseudopotentials, reported in the
year 2000 a slightly increasing bond length from ambient con-
ditions (0.96Å) up to 100 GPa (0.99̊A). 11,16 These findings
stimulated Lager and co-workers to re-analyze their neutron
diffraction data in 2002 by critically discussing the decreased
resolution of their previous study above 2-3 GPa and by tak-
ing into account thermal motion effects; they concluded that
the apparent shortening of the O−H bond could be explained
in terms of an increasing thermal amplitude of hydrogen mo-
tion under increasing pressure. According to a simple riding
model, they proposed a constant value of 0.94Å in the entire
pressure range explored.17 A new and more accurate neutron
diffraction study performed in 2005 up to 10 GPa, however,
confirmed the O−H bond length shortening even if with a re-
duced rate with respect to the older one.18 The authors still
discussed a possible explanation in terms of thermal motion
but admitted that the reason for an increasing mobility of hy-
drogen under pressure was not clear. A pressure-dependent
positional disorder was also suggested as an alternative expla-
nation.

In their X-ray diffraction study (2002), Lageret al. sug-
gested a possible phase transition of katoite from its high-
symmetryIa3d space group to itsI43d non-centrosymmetric
subgroup at about 5 GPa.17 They proposed that H· · ·H re-
pulsion due to the compression of the inter-tetrahedral H· · ·H
distance might destabilize the original structure and drive the
phase transition. The order parameter of such a transition

Fig. 1 (color online) Graphical representation of a portion of the
structure of (left panel) grossular Ca3Al2(SiO4)3 and (right panel)
katoite Ca3Al2(OH)12. Octahedral, AlO6, and tetrahedral, SiO4 for
grossular and (OH)4 for katoite, subunits are highlighted with light
blue and red dashed lines, respectively. Oxygens in red, silicons in
green, aluminums in yellow, hydrogens in blue. Calcium atoms are
not shown.

could be the shortening of the inter-tetrahedral H· · ·H distance
with respect to the intra-tetrahedral one. A further accurate
determination of the positions of the hydrogens was required
to corroborate the proposed model. In their neutron diffrac-
tion study of 2005, up to 10 GPa, however, they could not find
such a crossing between inter- and intra-tetrahedral H· · ·H dis-
tances, inter- remaining larger than intra- in the whole pressure
range.18 A couple of theoretical studies (Nobeset al.11 and
Pascaleet al.20) could describe such a crossing (occurring at
8 GPa and 15 GPa, respectively) but were not able to detect
any undoubtable sign of the occurrence of a phase transition.

In this study, we apply accurateab initio simulations to the
investigation of katoite under pressure, up to 65 GPa. The
evolution with pressure of a number of different properties,
such as structural, elastic and vibrational, is evaluated and
discussed synergically. From the combined analysis of these
properties, the behavior of the O−H bond length on compres-
sion is further characterized and strong evidences for the oc-
currence of a phase transition of katoite under pressure are
reported.

A global hybrid functional, namely B3LYP,23,24 is used
in combination with all-electron atom-centered basis sets,
which is known to accurately describe hydrogen bonding, as
efficiently implemented into the periodic CRYSTAL14 pro-
gram.25,26 The description of the hydrogens is of course cru-
cial for this system whose primitive cell contains 48 hydrogen
atoms out of a total of 116 ones. In this respect, the present
computational approach is expected to significantly improve
the description with respect to previous computational studies
where pure DFT functionals (much more affected by the self-
interaction error) were used in combination with pseudopoten-
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tials.11,16

The structure of the paper is as follows: in Section 2,
the main computational techniques and parameters used for
the calculations to be reported are illustrated, in particular
as regards the evaluation of the pressure-volume relation,
pressure-dependent elastic tensor, equation-of-state and vibra-
tion phonon frequencies; in Section 3, the evolution with pres-
sure of structural, elastic and vibrational properties of katoite
are investigated and its stability discussed; conclusionsare
drawn in Section 4.

2 Computational Methodology and Setup

The CRYSTAL14 program has been used for all the calcula-
tions reported in this study.25 The B3LYP one-electron Hamil-
tonian is used, which contains a hybrid Hartree-Fock/Density-
Functional exchange-correlation term. All-electron atom-
centered Gaussian-type-function (GTF) basis sets are adopted.
Oxygen, aluminum, calcium and hydrogen atoms are de-
scribed by a 8-411G(d), 8-611G(d), 8-6511G(d) and 31G(p)
contraction of primitive GTFs, respectively.

As implemented in the CRYSTAL program, infinite
Coulomb and exchange sums are truncated according to five
thresholds (here set to 7 7 7 7 16).26 A sub-lattice is defined
with a shrinking factor of 3 for sampling the reciprocal space,
which implies 4 points in the irreducible Brillouin zone when
katoite is in theIa3d or I43d space groups (they become 14
without any symmetry). Numerical integration techniques are
used for the evaluation of the DFT exchange-correlation con-
tribution (see theXLGRID keyword in the CRYSTAL User’s
Manual). The convergence of the self-consistent-field (SCF)
step of the calculation is governed by a threshold on energy of
10−10 hartree.

Equilibrium and strained configurations are optimized by
use of analytical energy gradients calculated with respectto
both atomic coordinates and unit-cell parameters or atomic
coordinates only, respectively.27–29 A quasi-Newtonian tech-
nique is used, combined with the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm for Hessian updating.30–33 Con-
vergence is checked on both gradient components and nu-
clear displacements; the corresponding tolerances on their root
mean square are chosen to be 10 times more severe than the
default values for simple optimizations: 0.00003 a.u. and
0.00012 a.u., respectively.

2.1 Pressure-constrained Structure Optimization

A fully analytical scheme, based on the stress tensor, is used
for optimizing the crystal volume under a given external pres-
sure.34 The stress tensorσ is a symmetric second-rank tensor
that can be computed in terms of analytical energy gradients

with respect to lattice parameters:

σi j =
1
V

∂E
∂εi j

=
1
V

3

∑
k=1

∂E
∂a′ki

ak j , (1)

with ε second-rank symmetric pure strain tensor andi, j,k =
x,y,z. In the expression above,ai j are elements of a 3×3 ma-
trix, A, where Cartesian components of the three lattice vec-
torsa1, a2 anda3 are inserted by rows andV is the cell volume.
When a distortion is applied to the cell, the lattice parameters
transform asa′i j = ∑3

k=1(δ jk + ε jk)aik, whereδ jk is the Kro-
necker delta. By adding an external hydrostatic “pre-stress”
σpre

i j = Pδi j to σi j and by inverting equation (1), one gets the
expression for the constrained gradients

∂H
∂ai j

=
∂E
∂ai j

+PV(A−1) ji . (2)

With the inclusion of a hydrostatic pressure, the function to
be minimized becomes the enthalpyH = E + PV.35 Let us
stress that, at variance with the EOS approach (to be briefly
described in Section 2.3), which is based on thermodynamical
considerations, the enthalpy considered in constant-pressure
optimizations does not correspond to the true function of state
but rather to an approximation of it, as the internal energy term
just corresponds to the mechanical electronic-nuclear energy
without any statistical-mechanical contribution.

2.2 Elastic Tensor Calculation

If any finite pre-stress is absent, second-order elastic constants
are simply defined as second energy density derivatives with
respect to pairs of infinitesimal Eulerian strains:

Ci jkl =
1
V0

(

∂ 2E
∂εi j ∂εkl

)

ε=0

. (3)

An automated scheme for the calculation of the elastic ten-
sor has been implemented in the CRYSTAL program,36,37 that
has been generalized also to low-dimensionality 1D and 2D
systems.38 Applications of this scheme cover a wide range of
materials.37,39–45

When a finite pre-stressσpre is applied in the form of a hy-
drostatic pressureP, within the frame of finite Eulerian strain,
the elastic stiffness constants become:46–50

Bi jkl = Ci jkl +
P
2
(2δi j δkl − δil δ jk − δikδ jl ) , (4)

provided thatV0 in equation (3) is replaced by the equilibrium
volumeV(P) at pressureP. A fully automated implementation
in the CRYSTAL program of the calculation of the stiffness ten-
sorB (and ofS= B−1, the compliance tensor) under pressure
has recently been presented.51,52 A two-index representation
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of the elastic stiffness tensor is obtained (Bi jkl → Bvu) by ex-
ploiting Voigt’s notation, according to whichv,u = 1, . . . ,6 (1
= xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy).53 This tensor,
in general, exhibits 21 independent elements that reduce to3
(i.e. B11, B12 andB44) for crystals with cubic symmetry, as
in the case of katoite. A number of elastic properties (such
as bulk modulus, shear modulus, Young modulus, Poisson’s
ratio, etc.) can be deduced from the elastic constants.53

For the elastic constant calculation, four strained configura-
tions are considered for each independent strain, with a dimen-
sionless strain amplitude of 0.001 (i.e. 0.1 %). Larger strain
amplitudes (about 1%, as generally adopted in these studies)
have been tested but result in a wrong description of the elas-
ticity of such a soft system where the numerical derivatives
really need to be evaluated in theε → 0 limit. Numerical in-
stabilities appear just for strain amplitudes below 0.02% for
this system.

2.3 Equation of State Determination

An alternative approach for computing the bulk modulus and
the P−V relation of a crystalline material is via so-called
Equations of State (EOS). “Cold” EOSs are energy-volume
(or pressure-volume) analytical relations which describethe
behavior of a solid under compression and expansion, atT = 0
K (that is the case of standardab initio simulations) and are
quite used in solid state physics and geophysics.54,55

Energy-volume data are numerically fitted to the analytical
E(V) functional form of the EOS. FromP = −∂E/∂V, the
P-V connection is established. The explicit dependence of the
bulk modulus on volume (or pressure fromP-V), is then given
by K(V) = V∂ 2E/∂V2. Within this approach, zero-point mo-
tion effects are generally neglected which are expected to re-
duce computed bulk moduli and increase computed equilib-
rium volumes.56

A number of universal EOS have been proposed so
far.54,57–62 All of them are phenomenological and can be-
have quite differently from each other as regards extrapola-
tion at high pressure. Comprehensive reviews and compar-
isons of different EOSs are available in the literature.63–67

Four EOSs are currently implemented in the CRYSTAL14 pro-
gram (the full EOS calculation is activated by a single key-
word):51 the original third-order Murnaghan’s,57 the third-
order Birch’s,58,59 the logarithmic Poirier-Tarantola’s,62 and
the exponential Vinet’s.60

2.4 Phonon Frequency Evaluation

Harmonic vibration frequencies at theΓ point (i.e. at the cen-
ter of the first Brillouin zone in reciprocal space) are obtained
from the diagonalization of the mass-weighted Hessian ma-
trix of the second energy derivatives with respect to atomic

displacementsu:68–71

WΓ
ai,b j =

H0
ai,b j√

MaMb
with H0

ai,b j =

(

∂ 2E

∂u0
ai∂u0

b j

)

, (5)

where atomsa andb (with atomic massesMa andMb) in the
reference cell,0, are displaced along thei-th and j-th Carte-
sian directions, respectively.

In CRYSTAL, first derivatives of the total energy per cell
(vai = ∂E/∂uai) with respect to atomic displacements from
the equilibrium configurationReq are computed analytically,
whereas second derivatives numerically, using a two-pointfor-
mula:

∂ 2E
∂uai∂ub j

≈
vai(R

eq,ub j = +u)−vai(R
eq,ub j = −u)

2u
,

whereu = 0.003Å, a value 10 - 50 times smaller than that
used in other solid state programs.72–74

3 Results and Discussion

3.1 Pressure-Volume Relation

Let us consider first the pressure-volume relation ofIa3d ka-
toite. At variance with previous theoretical studies11,16,20

where theP-V relation was determined by fitting energy-
volume data to the third-order Birch-Murnaghan equation-of-
state, in this study pressure-constrained structure optimiza-
tions are performed. The procedure presented by Doll34 and
briefly recalled in Section 2.1 has been followed which is free
of any possible interpolation/extrapolation issue. A total of
21 pressures have been considered, up to 60 GPa; for each
of them, theIa3d cubic structure of katoite has been opti-
mized by relaxing the lattice parameter and the atomic co-
ordinates. The correspondingP-V relation, as computed at
B3LYP level, is given in Figure 2, along with some experi-
mental determinations: Olijnyket al.14 performed an X-ray
diffraction experiment in 1991 up to 42 GPa (full circles),
Lager and Von Dreele15 a neutron diffraction study in 1996
up to 9 GPa (empty circles), Lageret al.17 an X-ray diffrac-
tion study in 2002 up to 8 GPa (empty squares) and Lageret
al.18 a neutron diffraction study in 2005 up to 10 GPa (full
squares).

Our computed data are found to agree better with the first
experimental determination by Olijnyket al., where a wide
pressure range was explored, than with more recent determi-
nations where smaller pressure ranges have been considered.
As a cross-check, we also computed theP-V relation with a
standard EOS approach by interpolating energy-volume data
in the whole range [0 GPa - 65 GPa], with the four expressions
mentioned in Section 2.3: the agreement with our analytical
stress tensor approach is remarkable in all cases, reflecting the
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Fig. 2 Pressure-volume relation of katoite. The theoretical result, as
obtained at B3LYP level with the analytical stress tensor approach
presented in Section 2.1, is reported as continuous line.
Experimental data are from Olijnyket al.14 (full circles), Lager and
Von Dreele15 (empty circles), Lageret al.17 (empty squares) and
Lageret al.18 (full squares).

accuracy of both implementations in the CRYSTAL program,
which are based on radically different approaches. We will
discuss the determination of the bulk modulus of katoite in
Section 3.3.

In 2004, Pascaleet al.20 discussed in theirab initio study
that no evidences of a pressure-induced phase transition inka-
toite can be found simply by starting from theIa3d phase and
performing geometry optimizations by removing symmetry, at
this level of theory. This is essentially due to the fact thatnu-
clear configurations corresponding to minima on the potential-
energy-hypersurface (PEH) in theIa3d symmetry still consti-
tute zero-gradient critical points of theP1 PEH thus prevent-
ing for further structural optimization. In order to overcome
this numerical problem and reach lower energy nuclear con-
figurations, one should run an optimization of theP1structure
starting from a non-optimized geometry. Due to the high com-
putational cost and arbitrariness in the selection of the starting
configuration of such an optimization, we decided, instead,
to perform phonon frequency calculations on the optimized
cubic structure. With this procedure, non-equilibrium config-
urations are explicitly explored as atoms are displaced from
their optimized positions. Lower energy nuclear configura-
tions could then be reached (see Section 3.3 for more details).

Fig. 3 Selected interatomic distances inIa3d katoite, connected to
the hydrogen bonding pattern of the structure, as a functionof
pressure, as computed in the present study (continuous lines). See
text and Figure 1 for the definition of the distances. In the upper
panel, experimental determinations by Lageret al.18 are also
reported for comparison.

3.2 Structural Characterization

As regards their structural modifications under pressure, alu-
minosilicate garnets are generally characterized by a certain
degree of bond bending via corner-sharing polyhedral rota-
tion.12,22 Despite early evidences for a similar mechanism
also for katoite,15 it is now well-established from both exper-
imental and theoretical studies that a bond shortening mecha-
nism is occurring during compression in katoite.11,16–18,20For
this reason, we restrict our attention on the description ofthe
evolution under pressure of bond lengths and interatomic dis-
tances rather than of bond angles (that have been carefully de-
scribed in a previous study20 where the same computational
approach has been used).

In Figure 3 we report, as a function of pressure up to 65
GPa, several interatomic distances which are of interest in
the description of hydrogen bonding in katoite. In the lower
panel, the O−H bond length (dO−H) is reported. In the upper
panel, two H· · ·H distances are shown: the intra-tetrahedral
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one, H2· · ·H3 in Figure 1, (dintra
H···H ), and the inter-tetrahedral

one, H1· · ·H2 in Figure 1, (dinter
H···H). Three O· · ·H distances

are also reported: one inter-tetrahedral, O1· · ·H1 in Figure
1, (dinter

O···H ), and two intra-tetrahedral, O3· · ·H2 in Figure 1,
(dintra

O···H ), and O2· · ·H2 in Figure 1, (dintra′
O···H ). In the upper panel,

experimental structural determinations from neutron diffrac-
tion measurements are also reported for comparison.18

As anticipated in the introduction, several experimental
and theoretical studies agree on the shortening of the O· · ·H
lengths with pressure (see upper panel of Figure 3).11,15–18,20

On the contrary, experimental and previous theoretical stud-
ies largely disagree on the description of the evolution under
pressure of thedO−H bond length. On the one hand, neutron
diffraction experiments seem to suggest a strong shortening of
the O−H bond as pressure increases up to about 10 GPa;15,18

on the other hand, a couple of theoretical studies by Nobeset
al.11,16 reported an almost constant, slightly increasing,dO−H

up to 100 GPa.
In this study we find something significantly different from

both previous suggestions and, as we will discuss in what fol-
lows, consistent with other structural and thermodynamical
evidences of a phase transition under pressure. From inspec-
tion of the lower panel of Figure 3, indeed, it can be seen how
hybrid ab initio simulations predict thedO−H bond length of
theIa3d phase to shorten almost linearly from 0.961Å at am-
bient pressure to 0.958̊A at about 18 GPa. In this pressure
range,dO−H decreases but with a slower rate with respect to
the overall cell compression thus suggesting the development
of hydrogen bonds. Above 18 GPa, the O−H bond length
increases regularly, according to a picture where hydrogen
bonds have become strong enough to prevail over the struc-
tural compression imposed by pressure.

A possible phase transition under pressure of katoite, at
about 5 GPa, has been suggested by Lager and co-workers in
their X-ray diffraction study in 2002. The authors suggested a
mechanism of the transition according to which the increasing
inter-tetrahedral H· · ·H repulsion with pressure would desta-
bilize the structure. In this respect, a crossing ofdinter

H···H and
dintra

H···H could be expected as pressure increases.17 In their neu-
tron diffraction study in 2005, however, Lager and co-workers
were unable to find such a crossing up to 10 GPa (see their
data as reported in the upper panel of Figure 3; full circles
and squares).18 As regards the H· · ·H distances (upper panel
of Figure 3), we find that at zero pressure the inter-tetrahedral
distance is longer than the intra-tetrahedral one. With increas-
ing pressure,dinter

H···H shortens more quickly thandintra
H···H until it

becomes smaller at about 18 GPa. After this first crossing,
dinter

H···H becomes practically constant (even slightly increasing)
while dintra

H···H keeps shortening. As a consequence, a second
crossing occurs at about 34 GPa.

So far, the concomitance, at 18 GPa, of the change in be-
havior of thedO−H bond length and the crossing ofdinter

H···H and

Fig. 4 Evolution with pressure of (upper panel)
symmetry-independent elastic stiffness constants and bulk modulus
and (lower panel) soft phonon wave-numbers of katoite constrained
in the Ia3d space group. In the upper panel, the continuous line
represent the bulk modulus obtained from the third-order
Murnaghan EOS. Vertical dashed lines define pressure ranges
discussed in the text.

dintra
H···H , supports the model according to which interactions of

hydrogen atoms with their neighbors may play a significant
role in the structural adaptation of katoite under pressure. We
shall now discuss the elastic and vibrational behavior of ka-
toite under pressure. As we will see in the next section, its
elastic and phonon characterization underpins the existence of
a phase transition.

3.3 Looking for the Phase Transition

In Section 3.1, we have discussed how, starting from theIa3d
phase of katoite, the existence of a pressure-induced phase
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transition could not be predicted simply by performing stan-
dard geometry optimizations in which symmetry has been
switched off. More sophisticated computational techniques
are then necessary in order to investigate other physical prop-
erties somehow more sensitive to the phase transition. In what
follows we will discuss how elastic constants and phonon fre-
quencies can effectively come to the rescue in this respect.

Following the procedure described in Section 2.2, the elas-
tic stiffness tensorB of Ia3d katoite has been fully character-
ized at 18 different pressures from 0 up to 65 GPa. The three
symmetry-independent elastic stiffness constants,B11 (empty
circles),B12 (empty triangles) andB44 (empty squares), are
reported in the upper panel of Figure 4. The corresponding
bulk modulus,K = (B11+ 2B12)/3, is reported at each pres-
sure (full circles) and compared with that obtained by fitting
energy-volume data to the third-order Murnaghan EOS (thick
solid line). From inspection of the figure (i.e. from the anal-
ysis of the elastic response of katoite when constrained in the
Ia3d space group), the explored pressure range can be sub-
divided into five regions (marked with vertical dashed lines):
i) from 0 to 6 GPa, the three elastic constants vary regularly
with pressure, the elastic bulk modulus is also regular and co-
incides with the one obtained from the EOS; ii) from 6 to 16
GPa, theB11 andB44 constants display small irregularities and
the elastic bulk modulus only slightly deviates from its EOS
counterpart; iii) from 16 to 25 GPa, we notice the dramatic
softening of theB11 constant, the strengthening of theB12 con-
stant and the corresponding strong deviations from regularity
of the elastic bulk modulus, pointing to some unusual struc-
tural behavior that could be due to the imposed symmetry; iv)
from 25 to 40 GPa, theIa3d structure still shows deviations
from regularity of the three elastic constants and of the bulk
modulus, though to a lower extent with respect to the previous
range; v) above 40 GPa, the three elastic constants show a nice
regularity, the elastic bulk modulus becomes regular againand
almost coincides with the EOS one. So far, we notice that the
unusual elastic behavior of theIa3d structure occurs in a pres-
sure range wheredinter

H···H was shown to become shorter than
dintra

H···H (see Figure 3). This pressure range also includes the
minimum in thedO−H bond length.

Let us now analyze the evolution with pressure of phonon
frequencies of theIa3d phase of katoite, which have been
computed at nine different compressions between 0 and al-
most 70 GPa. At each compression, the 348 phonon fre-
quencies of katoite are computed, following the procedure
described in Section 2.4, whose symmetry properties can be
described in terms of the following partition of the reducible
representation built on the basis of the Cartesian coordinates
of the atoms in the cell:

Γtotal = 6A1g⊕7A2g⊕13Eg⊕21F1g⊕20F2g⊕7A1u⊕
8A2u⊕15Eu⊕24F1u⊕23F2u . (6)

Table 1 Isotopic shifts∆ν of the nine unstable vibration modes of
Ia3d katoite atP = 18 GPa when44Ca is substituted for40Ca,29Al
for 27Al, 18O for 16O and D for H. The imaginary frequencies of the
9 non-substituted modes are also reported along with the
corresponding irreducible representation (irrep).

irrep # ν (cm−1) ∆ν (cm−1)
44Ca 29Al 18O D

Bg 1 i199.7 0.6 0.0 0.7 52.7
F1u 2-4 i174.2 0.1 0.5 1.5 41.8
Bu 5 i167.4 0.0 0.0 1.4 37.4
F2u 6-8 i163.6 0.5 0.9 1.5 39.7
F1g 9-11 i145.0 0.2 0.0 1.9 35.1
Eg 12-13 i117.9 0.1 0.0 1.1 28.5
Eu 14-15 i113.6 0.1 0.7 1.2 26.2
F1u 16-18 i81.6 0.4 0.2 2.0 13.1
F2g 19-21 i33.8 0.0 0.0 0.4 8.5

The continuity of the vibration frequencies on volume has
been determined by computing scalar products of the corre-
sponding normal modes. Nine normal modes give imaginary
frequencies at least for one of the considered pressures, thus
indicating that theIa3d phase is not a proper minimum of the
lattice potential energy surface; the corresponding wave num-
bers are shown in the lower panel of Figure 4 as a function of
pressure. From their analysis, one can see how theIa3d phase,
stable at very low pressures, becomes more and more unstable
as pressure increases up to about 18 GPa where the maximum
number of imaginary frequencies is found (i.e. all nine modes
give imaginary frequencies at that pressure). As pressure is
further increased, most of the unstable normal modes come
rapidly back to positive phonon frequencies: above 25 GPa
only two of them are still imaginary. Also these two modes
are progressively coming back to the stability domain which
they eventually rich above 55 GPa of pressure. This picture
sheds light on the analysis of the elastic response discussed
above.

If the hypothesis of an increasing repulsion between hydro-
gen atoms and their neighbors that destabilizes theIa3d struc-
ture as a function of pressure is true, then these nine unsta-
ble modes (for a total of 21 imaginary frequencies) should be
found to be dominated by the motions of the hydrogens. In
order to characterize such modes, we have performed an iso-
topic shift analysis atP = 18 GPa (where they all give imag-
inary frequencies). Once the Hessian matrix has been com-
puted, isotopic frequency shifts can be easily evaluated, at al-
most zero computational cost, by changing the atomic masses
in equation (5). Four different isotopic substitutions have been
explored:44Ca for40Ca,29Al for 27Al, 18O for 16O and D for
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Table 2Selected elastic stiffness constants of katoite, computedas a
function of pressure in theP1 triclinic space group. The
corresponding elastic bulk modulusK is also reported and compared
with that obtained for theIa3d phase from the Murnaghan EOS,
KEOS. All data are in GPa.

P B11 B22 B33 B12 B13 B23 K KEOS

2 127 128 131 46 47 46 74 75
6 155 155 155 59 59 59 91 90

16 204 204 204 89 89 89 127 125
18 236 237 239 90 92 94 139 132
20 223 219 215 100 99 99 140 139
27 261 261 261 120 120 120 166 162
40 306 306 306 161 161 161 209 208
60 418 418 418 218 218 218 284 278

H. The computed shifts∆ν are reported in Table 1 showing
that Ca, Al and O atoms are scarcely involved in the collective
atomic motions of these nine modes. On the contrary, they are
significantly affected by the substitution of deuterium forhy-
drogen, with difference as large as 26 %, thus confirming that
hydrogen atoms play a major role in such a structural instabil-
ity.

3.4 An Insight into the New Phase

From the analysis of the evolution with pressure of elastic con-
stants and phonon frequencies of theIa3d phase of katoite,
clear evidences of a pressure-induced phase transition have
been discussed in the previous section. In order to charac-
terize the new phase, we perform an analysis of the symmetry
features of the elastic stiffness tensorB, introduced in Section
2.2. To do so, we computeB at several pressures, by com-
pletely removing the symmetry of katoite (i.e. by imposing
the P1 space group). Depending on the particular symmetry
of the lattice, indeed, the elastic tensor exhibits specificsym-
metry features. For a cubic lattice, three independent elastic
constants are found (B11 = B22 = B33, B12 = B13 = B23 and
B44 = B55 = B66), the others being null by symmetry. For
a triclinic crystal, all elements are independent and none of
them is constrained to be zero by symmetry.

Selected elastic constants of katoite, as computed as a func-
tion of pressure in the triclinicP1space group, are reported in
Table 2. The corresponding bulk modulusK is also reported
and compared with that obtained for theIa3d phase from the
Murnaghan EOS,KEOS. Many elastic constants are not re-
ported in the table; note that all the constants that would be
zero by symmetry in cubic lattices are found to be numeri-
cally zero in the triclinic calculation. From inspection ofthe

table, it can be seen how, within the numerical noise of the
calculations, the computed elastic constants essentiallyshow a
cubic character in the whole pressure range:B11 ≈ B22 ≈ B33

andB12 ≈ B13 ≈ B23. This is particularly interesting in the
16 < P < 27 range because can be considered as a strong
evidence of the cubic character of the new phase. The bulk
modulusK computed from the elastic constants is always very
close toKEOS while this was not the case for the elastic bulk
modulus of theIa3d phase (see again Figure 4 in that pressure
range).

Overall, from the analysis of the shape of the com-
puted elastic tensor without any explicit symmetry-constraint,
the cubic character of the new phase can be inferred.
These findings seem to corroborate the proposedI43d non-
centrosymmetric subgroup ofIa3d for the new phase, as sug-
gested by Lageret al. in 2002.17 As a final verification, we
explicitly explore the behavior of thisI43d phase under com-
pression; the last part of this section will be devoted to the
presentation of the corresponding structural, elastic andvibra-
tional properties which essentially confirm its stability above
15 GPa.

In Figure 5, the same structural, elastic and vibrational
properties that we previously presented in Figures 3 and 4
for the Ia3d phase, are reported for theI43d phase of katoite
as a function of pressure. Let us, first, discuss its thermo-
dynamical stability by analyzing the evolution under pressure
of its elastic and phonon properties. In the lowest panel of
the figure, for each of the six considered pressures, the small-
est vibration frequencies are reported.75 We can clearly ob-
serve that: i) atP = 0, the I43d phase is stable; ii) at vari-
ance with the high-symmetryIa3d phase, above 15 GPa all
the vibration frequencies are positive thus confirming the sta-
bility of the I43d phase (in particular in the 16 GPa< P <
25 GPa range where theIa3d phase showed the maximum in-
stability); iii) unexpectedly, in the 0 GPa< P < 15 GPa pres-
sure range, three imaginary frequencies (up toi122 cm−1) are
found which suggest a residual instability of theI43d phase
in the low-pressure regime. The analysis of its elastic re-
sponse confirms this picture: above 15 GPa of pressure, the
three symmetry-independent elastic stiffness constants (B11,
B12 andB44) vary regularly with pressure, providing a linear
elastic bulk modulus rather close to the EOS determination.
At low pressures, these elastic constants show significant de-
viations,B11 andB44 softening andB12 strengthening.

In the two upper panels of Figure 5, the main interatomic
distances related to the description of hydrogen bonding inka-
toite are reported. It is clearly seen that, above 15 GPa, oneof
the two symmetry-independentdO−H bond lengths regularly
increases with pressure, suggesting a systematic strengthen-
ing of the hydrogen bonds in the structure; the other one is
almost independent of pressure. In the low-pressure regime,
these O−H bonds show clear deviations from regularity which
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Fig. 5 Structural, elastic and vibrational properties of theI43d
phase of katoite as a function of pressure. See captions to Figures 3
and 4 for details. In the lowest panel, the smallest vibration
frequencies are reported for each considered pressure.

can be related to the simultaneous variation of the H· · ·H dis-
tances. Within this model (selected composition andI43d
symmetry), we could propose that destabilizing interactions
arise from the short H· · ·H inter-tetrahedral distance. In the
I43d phase,dinter

H···H never becomes shorter thandintra
H···H but

shows a significant shortening at about 6 GPa (upper panel
of the figure). TheI43d phase of katoite is then found to be
thermodynamically more stable than theIa3d one above ap-

Fig. 6 (color online) Pressure dependence of the total energy per
primitive cell of Ia3d (black line) andI43d (red line) katoite.

proximately 15 GPa (as Figure 6 confirms). At low-pressures
(below approximately 5 GPa), the high-symmetryIa3d phase
is the most stable while in the intermediate 5 GPa< P < 15
GPa pressure range both of them are found to be unstable
(I43d more so thanIa3d). In that pressure range, our calcula-
tions seem to suggest either the existence of a third different
phase or the possible coexistence of both phases, accordingto
a second-order transition.

4 Conclusions

The behavior of the katoite hydrogarnet, Ca3Al2(OH)12, under
pressures up to 65 GPa, has been investigated theoreticallyby
means ofab initio simulations, performed at the B3LYP level
of theory, using all-electron Gaussian-type orbital basissets
and the CRYSTAL program. Many of the controversial aspects
related to the evolution of hydrogen bonding with pressure and
a possible pressure-induced phase transition have been ratio-
nalized.

The response to external pressure of its structural, elastic
and vibrational phonon properties is fully characterized by
combining together many complex algorithms which demand
high performance computational resources for a system con-
taining 116 atoms per primitive cell.76 The presented results
show a different degree of sensitivity to pressure-inducedther-
modynamic instability of different computed quantities which
can prove extremely useful for further characterizations of
phase transitions of hydrogarnets: phonon frequencies≥ elas-
tic constants> structural features≫ equation-of-state.

The high-symmetryIa3d phase of katoite, stable at ambi-
ent conditions and up to about 5 GPa, is found to be destabi-
lized under increasing pressure and hydrogen atoms are found
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to play a major role in this structural instability. The max-
imum instability is observed in the 16 GPa< P < 25 GPa
range where many phonon frequencies are imaginary and elas-
tic moduli show large irregularities. Remarkably, as pressure
is further increased above 50 GPa, theIa3d structure is shown
to become stable again (all positive phonon frequencies and
regular elastic constants).

Above approximately 15 GPa, a phase ofI43d symmetry (a
non-centrosymmetric subgroup ofIa3d) is shown to become
more stable than theIa3d one and to be elastically stable up
to at least 60 GPa. In the 5 GPa< P< 15 GPa pressure range,
presentab initio calculations report clear thermodynamical in-
stabilities of both phases, more so forI43d than forIa3d, thus
suggesting two possible scenarios: i) the existence of a third
phase or ii) a second order transition between the two phases.
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Phys.: Cond. Matter26, 205401 (2014).
43 J. Baima, A. Erba, R. Orlando, M. Rérat, and R. Dovesi, J.
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