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Abstract

A volunteer computing approach is presented for the purpose of screening a large number of

molecular structures with respect to their suitability as new battery electrolyte solvents. Collective

properties like melting, boiling and flash points are evaluated with COSMOtherm and quantitative

structure property relationship (QSPR) based methods, while electronic structure theory methods

are used for the computation of electrochemical stability window estimators. Two application ex-

amples are presented: First, the results of a previous large-scale screening test (PCCP 2014, 16,

7919) are re-evaluated with respect to the mentioned collective properties. As a second appli-

cation example, all reasonable nitrile solvents up to 12 heavy atoms are generated and used to

illustrate a suitable filter protocol for picking Pareto-optimal candidates.

1. Introduction

Current battery technology can not meet the demands arising from the electrification of the auto-

mobile, which is of essential importance to meet the world’s rising energy demand with renewable

energy technologies.1 Materials science has contributed substantially to the process of develop-

ing better, safer and greener batteries, but especially electrolyte systems are still far from being

perfect.2–4 Computational screening can contribute to help with this problem, but comparably little

work has been done in this area so far,5 as most theoretical work focuses exclusively on electrode

materials.6,7 Standard electrolyte formulations consist of a mixture of cyclic and linear carbon-
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ates, most often ethylene carbonate (EC) and dimethyl carbonate (DMC), with lithium salts like

hexafluorophosphate (LiPF6) and several additives.8 When searching for alternative materials,

properties which have to be taken into account include electrochemical stability windows, melting,

boiling and flash points, dielectric constants, viscosity, ionic and electronic conductivity, toxicity

and price.8 Especially the correct prediction of the electrochemical stability of the whole elec-

trolyte systems is a very complex problem, because of the interactions between the electrolyte

components with each other (e.g., reduced solvent molecules can abstract hydrogen atoms from

other species) and with the electrodes: usually a passivating film, the so-called solid-electrolyte-

interphase (SEI), is formed from decomposed electrolyte species during the first charging cycles.9

The formation of stable SEI films is of essential importance for the battery performance, but is hard

to characterize experimentally and can not yet be predicted with computational models.5 Here we

do not take electrolyte reactivity into account when screening for new materials, but instead focus

on the computing infrastructure necessary for really large-scale screenings, and on the approxi-

mate description of important collective properties (melting, boiling and flash points, viscosity, ion

solubility), as opposed to the ’non-collective’ property of (single-molecule/non-reactive) electro-

chemical stability, which we have investigated in more detail in a previous screening study.10 More

details on Lithium ion battery science and technology can be found in several reviews published

over the last years for instance by Goodenough,9,11–13 Aurbach,4,14 Scrosati,2,15 Winter,16,17 or

Tarascon.3 Excellent reviews on electrolyte materials were published by Xu,8,18 SEI properties

and formation were reviewed by Novak19 and again Xu.20,21 Reviews on computational studies

in this field were published by Balbuena,22 Curtiss,23 Leung24,25 and Korth.5 The most important

facts to consider for the work presented here are the following: To improve LIB technology sub-

stantially, the chemical potentials of the anode and cathode have to be pushed farther apart, i.e.

advanced electrode materials are needed. As soon as one goes into this direction, the electrolyte

is likely to become a bottleneck, as it has to remain functioning under the new conditions. The

development of advanced electrolyte systems is thus also a very important field for improving LIB

technology. Theory can contribute to this with helping to understand current systems, but also to

suggest new materials. While there is a good number of theoretical studies of the first type, com-

parably little is published on the virtual (pre-)screening of new electrolyte materials.5 One reason

is that approaches which look at single properties only are not well suited to treat the multidimen-
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sional problem of optimizing electrolyte systems. We therefore present an approach which goes

beyond the current state of the art by including estimates for collective properties and grid-type

computing ressources.

2. Volunteer Computing

Computational screening offers the possibility to filter a large number of compounds for subse-

quent experimental work, but the ’chemical space’ of possibly suitable small organic molecules

is known to be vast.26 Sufficiently large computing resources are thus of vital importance for

systematic screening studies. The largest part of the world’s computing power is assumed to

be distributed over almost a billion personal computers. These provide a maximum computing

capacity of 8 to 21 PetaFLOPS,27 which is in a similar range to today’s supercomputers. ’Volun-

teer computing’ (VC) strives to make these resources available for scientific purposes. In contrast

to supercomputers, the computing power cannot be bought, but has to be earned, which also

makes it a cheaper alternative to supercomputers. Everybody who owns an Internet-connected

personal computer can donate computer time. Projects with a larger public appeal attract therefore

more volunteers. To encourage contribution to your project, time has to be spend on promoting the

project and communicating with the volunteers. To give them the opportunity to participate, the ap-

plication should be adapted to a wide range of computer types. The volunteers remain effectively

anonymous and are therefore not accountable to projects. They have to trust the project to treat

the provided access to their computers with the appropriate care. Results, which may be wrong

due to malfunctions or intentional obstruction, may be validated by performing each job on several

computers. The appropriation of middleware increased the appeal for researchers to set up VC

projects. Thereby the effort for the scientists as well as the required computational knowledge is

significantly reduced. One of the most popular providers of middleware systems is the Berkeley

Open Infrastructure for Network Computing (BOINC) project. Over the last decade the BOINC

platform has established itself as a standard tool for realizing VC projects.28 The BOINC platform

has several advantages, which allow a comparably easy setup of VC projects: The server backend

is based on standard web-server components and BOINC provides work-scheduling, data han-
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dling and accounting features, as well as a ’core-client’ software which needs to be installed on

the volunteer’s computer. Scientists thus can focus on adapting their computer programs to work

within the BOINC framework and administer their project. A project in the language of BOINC is a

data unit that uses BOINC for distributing its jobs. Each project is independent, has its own web

site and incorporates applications. An application includes the intended programs as well as a set

of workunits and results. A workunit is one computation that is going to be performed, also known

as a job. Each result is associated with a workunit and it describes the instance of a computation.

Each application can be compiled for different platforms. The application program can in principle

be written in any language, but one has to keep the details in mind. One may circumvent altering

source code by using the provided BOINC wrapper. To adapt the program directly, only some

minor source code modifications have to be incorporated. To account for the special requirements

the existing program has to be interfaced with BOINC. Interfacing software with BOINC is done via

implementing message passing interface (MPI) like calls, which account for the communication

between the scientific application and the core client, which in turn organizes the communication

with the project server(s). To illustrate how BOINC works, the life-cycle of one job is traced: First

a work generator creates a job and its input-files. BOINC then creates one or more instances of

the job. The core client requests work via a scheduler request from the server, when it has free

capacities. The scheduler scans the database for available jobs. The client gets an application

binary and input files, starts the application and sends the results back to the project server and re-

ports the job as completed. A validator checks the output files and potentially compares matching

outputs of the same job. After full completion the file deleter deletes input and output files. Vol-

unteers have complete control over how much work is done at what times, and can look up their

results on the project web pages. Furthermore, they collect so-called credit points proportional

to the work their computers did and are ranked in top lists according to their overall credit value.

More details on the BOINC platform can be found elsewhere,29 an overview of existing projects is

given on the BOINC web pages.28 In 2005 Korth and Grimme have released the first VC project

in Chemistry, Quantum Monte Carlo at home (QMC@home),30 more recently Aspuru-Guzik and

co-workers presented the Harvard Clean Energy Project.31 We present here the cleanmobility.now

project,32 which is a re-release of the QMC@HOME project, now with a focus on the search for

new electrolyte materials. The results are based on a modified version of ORCA,33 but to verify

4
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the outcome, computations were also performed on local computing resources at this stage. The

distribution of other software packages within our project is in preparation. With our VC project,

we would like to help finding safer and greener battery materials. This confronts us with several

scientific challenges, amongst others the estimation of collective properties, addressed in the next

section.

3. Methods for estimating collective properties

We aim at an integrated computational approach for the large-scale screening of molecular bat-

tery materials. As a first step, we evaluated computational methods for the prediction of (single-

molecule/non-reactive) electrochemical stability window rankings.10 The so-called ’electrochem-

ical stability window’ (ESW) of a compound can be computed from its oxidation and reduction

potentials (though it needs to be shifted by the computed potential of the reference electrode to

match the experimentally measured value):

Vox = −∆Gox
nF

Vred = −∆Gred
nF

One thus needs the Gibbs free energies of oxidation and reduction:

∆Gox = ∆G(X) − ∆G(X+) ∆Gred = ∆G(X−) − ∆G(X)

Individual free energies are usually taken from density functional theory (DFT) computations with

zero-point and thermal enthalpic, entropic, as well as (implicit) solvation effects taken into account:

∆G = ∆H − T∆S = ∆E + ∆EZV PE + ∆HT − T∆S + ∆Gsolvation

As an estimate for the oxidation and reduction potentials one can look at the electronic energy

differences (electron affinity (EA) and ioniziation potential (IP))

∆Gox ≈ IP = ∆Eox = E(X) − E(X+) ∆Gred ≈ EA = ∆Ered = E(X−) − E(X)

5
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which can in turn be estimated from the lowest unoccupied and highest occupied molecular orbital

(LUMO/HOMO) energies:

IP ≈ −EHOMO EA ≈ −ELUMO

In our previous study we have evaluated several computational approaches and approximations

for their impact on ranking compounds with respect to their EWS. We suggested a combination

of semiempirical quantum mechanical (SQM) and wave function theory (WFT) methods for an

efficient two-step screening procedure. All screening results presented below do include the elec-

trochemical stability as a factor, partly based on SQM and WFT data as previously suggested (the

database benchmark) and partly based on SQM data only (the nitrile set), as we have found that

SQM estimates are usually good enough for ranking compounds within our extended screening

procedure outlined below. In the following we turn our attention to the approximate treatment of

collective properties with lower level methods, as no higher-level methods are available for the

fast prediction of these properties. At this point we still do not take solid-electrolyte-interface (SEI)

formation into account, but schemes for using estimators for complex properties including SEI

formation are in preparation. The results presented here are thus based on simplified model sys-

tems and approximate computational methods and should be taken with the appropriate care (as

simpler problems were shown to sometimes require much more advanced methods).34 Our main

focus is the definition of a screening strategy, not the benchmarking of lower level methods against

each other, though we are able to present some data for the comparison of COSMOtherm with

’pure’ QSPR type models. We furthermore do not consider ionic liquids here, for which some

details of the current screening setup are not optimal, though our scheme can easily be adjusted

to work also for ionic liquids. Several collective properties are relevant for improving electrolyte

systems. Here we investigate the possibilities of the COSMOtherm model35 for predicting boiling

and flash points, viscosities (as estimators for ion conductivity), solubilities and free energies of

solvation for several ionic species (as an estimator for solubility again) and of a pure quantitative

structure property relationship (QSPR) model by Lang for computing melting points.36

COSMOtherm predictions are based on empirical models which make use of data from elec-

tronic structure theory calculations to allow for the description also of hitherto experimentally

unknown species (unlike standard chemical engineering models, which usually require some

compound-specific, experimentally determined parameters). For COSMOtherm we compare the

6
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performance of density functional theory (DFT) based estimates with semi-empirical (SQM) ones

with respect to the ranking of candidate compounds. Semi-empirical PM6-DH+37–40 calculations

were done with MOPAC2012,41 making use of the COSMO35 solvation model to generate the input

for COSMOtherm. BP8642,43 DFT calculations have been performed with TURBOMOLE 6.4,44,45

using D2 dispersion corrections,46 the RI approximation for two-electron integrals,47,48 and again

COSMO to generate the input for COSMOtherm. BP86 DFT calculations (again with D2 and RI)

and local pair natural orbital (LPNO) coupled electron pair approximation (CEPA1)49 (CEPA in the

following) calculations were done with a modified version of ORCA 2.8.50 TZVP, TZVPP and QZVP

AO basis sets51 were employed for TURBOMOLE and ORCA calculations.

More about the COSMOtherm model can be found for instance in a recent review by Klamt,35

but some details with direct relevance for the following need to be mentioned: In COSMOtherm,

the pure compound liquid viscosity at room temperature is computed with a QSPR-type model:

ln(ηi) = cAAi + CM2M2
i + cNRing

NRing
i + cTSTSi + c0

It is based on the compound surface area Ai, the second σ-moment Mi, the number of ring atoms

NRing and the pure entropy times temperature TSi, as well as five parameters, which were derived

from a set of 175 neutral organic compounds.

For boiling points at a given pressure, COSMOtherm varies the temperature of the system until

the difference of the predicted vapor pressure and the given pressure is below 10−4 mbar. The

vapor pressure itself is computed via the chemical potential for compound i in system S from the

integration of the σ-potential over the surface of the compound

µSi = µC,Si +

∫
pi(σ)µs(σ)dσ

(with µC,Si as a combinatorial contribution) and an estimate for the pure compound’s chemical

potential in the gas phase

µGasi = EiGas − EiCOSMO − ωRingN
i
ring + ηgas

(with E as quantum chemical total energies, a ring correction term and two parameters ω and η)

7
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according to:

pSi /1bar = exp[(µGasi − µSi )/RT ]

Flash points are computed from the temperature dependent variation of the varpor pressure

until the flash point pressure (FPP) is found,52 which in turn is computed from the molecular

surface area A according to:

ln(FPP ) = 22.7 − 3 ∗ ln(A)

The prediction of melting points was not possible with COSMOtherm when we initially finished

our study, though this feature has recently been added. We do not present COSMOtherm melting

point predictions here, but instead use a QSPR model by A. Lang.

The model of Lang uses readily available molecular descriptors (with the number of hydrogen-

bond donors and polar surface area as most important ones here) for the purely empirical es-

timation of melting points. Melting points are especially hard to predict, as rather minor differ-

ences between molecular structures can result in large melting point differences due to packing

effects. More details on QSPR methods and available software packages can be found in recent

reviews.53,54

To get an idea of how well COSMOtherm performs in comparison to ’pure’ QSPR models

we did some additional QSPR calculations with the T.E.S.T software package.55 Although bench-

marking such methods is not the focus of our work, this seemed interesting to us, as QSPR models

were for instance used to estimate viscosities for the purpose of developing new ionic liquids.56

For our QSPR predictions, we relied on the consensus model (the average over all implemented

models) implemented in the T.E.S.T software package. The details of all included approaches can

be found in the T.E.S.T. user guide. Within these methods, the properties investigated here are

predicted using overall 797 molecular descriptors and relying on experimental data sets for several

thousand compounds.

Table 1 shows predicted and measured8 results for typical electrolyte solvents. Perusing this

table, one finds that mean average deviations (MADs, about 0.2cP and 18/23/23 degree for vis-

cosities and melting/flash/boiling points) are in the order of about 10 to 15 percent of the relevant

property windows (here 0.33 to 2.53 cP and -137 to 26/-17 to 160/41 to 270 degree). The correct

ranking of compounds can be investigated by looking at correlation coefficients, such as Pearson R

8
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values for linear correlation and Kendall τ values for non-linear (rank) correlation. Both correlation

measures are very high especially for the COSMOtherm-based estimates (with R values of 0.95

to 0.98 and τ values 0.73-0.78), which implies that the ranking of compounds with respect to these

properties is even better then the prediction of the actual values. This is a very promising result

for integrated computational and experimental screening procedures, in which the computational

part acts only as a filter for subsequent experimental high-throughput work.

Table 2 shows a comparison of the performance of the consensus QSPR method implemented

in T.E.S.T. with COSMOtherm. Mean absolute deviations (MAD) are higher for the consensus

model especially in the case of viscosities. R and τ values are lower for the consensus model,

especially the R values for flash and boiling points. To be fair it should be mentioned that the

consensus melting point prediction model performed much worse than the one by Lang which we

use for our screenings, with an MAD of 37 K (30 K on the fit set) for the former one, opposed to 18

K for the latter one. This clearly illustrates that better QSPR models than the ones implemented

in T.E.S.T. are available, which has a strong focus on toxicity prediction, not investigated here.

Other available QSPR software packages do unfortunately not supply models for all properties of

interest and none seems to be suited for our high-throughput infrastructure.54

4. Example applications

A) Database benchmark re-evaluation

In a recent study, we screened 100000 molecules from public databases for their redox stabil-

ity.10 Structures were automatically retrieved in SMILES format and converted with OpenBabel57

into force field optimized input structures for DFT calculations. Highest occupied molecular or-

bital/lowest unoccupied molecular orbital (HOMO/LUMO) gaps, dipole moments and elemental

composition were used as filters for identifying 83 (out of 100000) candidate compounds, which

were used for a systematic benchmarking of quantum chemical methods. When investigating the

’hits’ of this screening study in more detail later on, many turned out to have unfavorable collective

properties, like high melting points, which nicely illustrates the need for a multi-level approach like

it is presented here. As a first example application we thus re-evaluate the results from this earlier

9
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study with our improved approach. Using the previous CEPA ionization potential (IP) and elec-

tron affinity (EA) values as estimators for electrochemical stability, and after computing viscosities,

melting/flash/boiling points, Li+/Mg2+/Al3+/LiPF6- solubilities and free energies of solvation for all

compounds, we applied the following filtering scheme to identify the most promising candidates.

The COSMOtherm model is not well suited to describe the properties of small, highly charged

ions and thus these results are likely only meaningful for the ranking of rather similar compounds.

Furthermore, computed solubilities are just indicated as high for all compounds with a reasonable

solubility by COSMOtherm, so that we turned to free energies of solvation for the ions as a rough

estimator of ion solubility, again to be used only to rank rather similar compounds (which is actu-

ally not the case in this example application, but in the next one, see section B). Free energies of

solvation are highly correlated for the small ions, so that using one value (we take the one for Li+)

is sufficient for ranking purposes. Compounds with an IP below, an EA above, and free energies

of solvation (which are negative) above the average were discarded, as well as compounds with

melting/flash/boiling points above 273K/below 323K/below 373K. Calculations at all levels were

successful for 8772 candidates out of the subset of about 10000 small organic molecules from

the whole database of 100000 structures. We take problems with any of the calculations as an

indicator for a complicated electronic nature of the compound and thus discard it. Filtering left

us with 72 structures and we then restricted our list to the 53 Pareto-optimal ones, i.e. the can-

didates which are not equal to or beaten by another candidate with respect to all properties, as

non-Pareto optimal candidates would offer no advantages over the remaining stock. To account

for the inaccuracy of our approximate models we binned the computed values in 5 percent inter-

vals before checking for Pareto optimal cases. Further results for these compounds are presented

elsewhere, here we concentrate on the evaluation of the COSMOtherm model (but all data will be

made publicly available on our project web page, see Supporting Information section).

Table 3 shows the correlation between the different properties computed. Not unexpectedly,

one finds a very good correlation between IP and HOMO values and much lower values for the

correlation between EA and LUMO values. Melting points are correlated with flash and boiling

points, which in turn are almost perfectly correlated with each other. Free energies of solvation for

different small cations are also highly correlated, but not correlated to the corresponding values

for the large anionic PF−
6 ions. These findings will be discusses in more details below, together

10
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with the corresponding data for the second application case.

B) Nitrile solvents

Y. Abu-Lebdeh and I. Davidson,58,59 Isken et al.60 as well as Balducci and co-workers61 have

recently proposed adiponitrile (ADN) as a new electrolyte solvent (for different types of application),

which begs the question of whether there are other nitrile solvents that might offer advantages

over currently used ones. To investigate this, we used the Molgen algorithm62 to construct all

’reasonable’ (poly-)nitrile solvents up to 12 heavy atoms. For ’reasonable’ structures we hereby

assume no C/C double- or triple-bonds apart from those in aromatic systems and no rings other

than 5 to 7 membered ones, as compounds with such structural elements would very likely be

rather reactive and unstable. The outcome is converted again with OpenBabel into force field

optimized structures as starting points for BP86/TZVP and PM6-DH+ optimizations as input for

COSMOtherm. This setup gave 4947 structures, calculations at all levels were successful for 4897

candidates, and the above filtering scheme left us with 20 structures, out of which 17 are Pareto-

optimal. Most interestingly adiponitrile, the compound suggested by several groups, is on our final

list and was thus successfully picked out of almost 5000 possible candidates (as well as several

other small di-nitriles previously suggested). Compounds supposedly better than adiponitrile are

now investigated experimentally in his group, so that we can again focus on the evaluation of the

computational models here (but all data will be made publicly available on our project web page,

see Supporting Information section).

Table 4 again shows the correlation between the different properties, now for DFT as well as

SQM based estimates. First of all, values for SQM are very similar to those for DFT, implying that

it is possible to obtain DFT-level ranking results with the much faster SQM method, see also the

discussion of table 5 below. For this set, viscosities are highly correlated with both flash and boiling

points, which are in turn again perfectly correlated with each other. Also free energies of solvation

for different small cations are again highly correlated, but still not correlated to the corresponding

values for the large anionic PF6− ions. Viscosities, flash and boiling points are inversely correlated

with free energies of solvation for PF−
6 . This implies that for a given compound class high thermal

stability and good ion solubility often go hand in hand, but usually come at the price of higher

11
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viscosities, i.e. very likely lower ion conductivities. The results for the much more diverse database

set presented above did on the other hand not show a high correlation between viscosities and

boiling and flash points. This indicates that different compound classes show different relations

between viscosities and thermal stability. The best way of addressing the challenge of balancing

thermal stability with ion conductivity thus seems to be a diversity oriented approach, which goes

beyond the usual compound classes (carbonates, nitriles, etc.).

The used COSMOtherm models are parametrized to work on top of B86/TZVP DFT calcula-

tions, but they are also possible on top of SQM computations, which are about 2 to 3 magnitudes

faster. It is thus of high interest to investigate the effect from using SQM instead of DFT informa-

tion on the ranking results in more detail. Table 5 shows correlation and error measures – mean

deviations (MDs), mean absolute deviations (MADs), root mean square deviations (RMSDs) and

error spans (MIMAs) all in kcal/mol – for the comparison of properties computed at DFT level with

those computed at SQM level. Perusing this table, one first of all finds very high correlation val-

ues for all computed properties. MD and MAD values of similar magnitude indicate that systematic

shifts are found for all properties, which are mostly within the accuracy found for the COSMOtherm

approach in comparison to experimental values (table 1). High error span (MIMA) values never-

theless suggest to re-screen preselections of compounds from SQM level computations at DFT

level again to exclude outliers, or to directly use a two-level approach also as a consistency check.

Correlation measures close to the ones found for comparison of COSMOtherm with experiment

(table 1) allow to draw the conclusion that also the theoretically less appealing SQM computations

can be very valuable for large-scale screening approaches based on the COSMOtherm model.

Finally, table 6 shows a comparison of the consensus QSPR method implemented in T.E.S.T.

with COSMOtherm for the nitriles set. Mean absolute deviation (MAD), Pearson R and Kendall τ

values between ’pure’ QSPR and COSMOtherm values are given. Perusing this data one finds

that the consensus QSPR model gives substantially different results than the COSMOtherm ap-

proach. In the light of our evaluation of the consensus model for the systems in table 1 (see

above) and the inavailability of accurate QSPR alternatives that are suited for our high-throughput

approach, COSMOtherm seems to be a better choice for our task.
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5. Conclusions

We presented a volunteer computing approach for screening molecular electrolyte components,

evaluated lower-level methods for computing collective properties and described a protocol for

analyzing the results in combination with higher-level estimators for electrochemical stability win-

dows. A comparison to experimental references showed the high value of COSMOtherm and

QSPR models for estimating collective properties of electrolyte components and especially for

ranking compounds with respect to these properties. Furthermore, much faster available SQM-

based COSMOtherm estimates are likely almost as valuable as DFT-based ones for this purpose.

Two application examples illustrate the opportunities of our integrated multi-level approach. Com-

paring the first study on a very diverse set of compounds with the second one on nitriles, we find

that a diversity-oriented approach offers more opportunities for balancing thermal stability with ion

conductivity. From the systematic study on all reasonable nitrile solvents of up to 12 heavy atoms

adiponitrile is found as one of 17 Pareto-optimal candidates, in accordance with recent sugges-

tions from experimental work (as well as several other small di-nitriles previously investigated).
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Table 2: Comparison of the performance of the consensus QSPR method implemented in T.E.S.T.
with COSMOtherm: Mean absolute deviation (MAD), Pearson R and Kendall τ values for the
correlation between properties computed for the systems in table 1.

QSPR COSMOtherm
property MAD R τ MAD R τ
viscosity 1.15 0.83 0.68 0.22 0.95 0.78

flash point 26.82 0.77 0.63 22.86 0.95 0.72
boiling point 37.08 0.63 0.65 22.64 0.98 0.76

Table 3: Pearson R and Kendall τ values for the correlation between computed properties of the
database set, only values with R>0.5 are given.

R τ
IP/HOMO -0.84 -0.67
EA/LUMO -0.57 -0.29
melting/flash point 0.65 0.49
melting/boiling point 0.63 0.48
boiling/flash point 0.99 0.92
∆Gsolv(Li+)/∆Gsolv(Mg2+) 0.97 0.83
∆Gsolv(Li+)/∆Gsolv(Al3+) 0.98 0.87
∆Gsolv(Mg2+)/∆Gsolv(Al3+) 1.00 0.96

Table 4: Pearson R and Kendall τ values for the correlation between computed properties of the
nitriles set, only values with R>0.5 are given.

DFT SQM
R τ R τ

viscosity/flash point 0.58 0.83 0.59 0.81
viscosity/boiling point 0.52 0.78 0.54 0.78
melting/boiling point 0.55 0.41 0.51 0.36
flash/boiling point 0.99 0.92 0.99 0.92
viscosity/∆Gsolv(PF−

6 ) -0.47 -0.49 -0.50 -0.44
flash point/∆Gsolv(PF−

6 ) -0.74 -0.44 -0.70 -0.41
boiling point/∆Gsolv(PF−

6 ) -0.70 -0.42 -0.66 -0.39
∆Gsolv(Li+)/∆Gsolv(Mg2+) 0.93 0.76 0.95 0.79
∆Gsolv(Li+)/∆Gsolv(Al3+) 0.95 0.81 0.97 0.83
∆Gsolv(Mg2+)/∆Gsolv(Al2+) 1.00 0.94 1.00 0.95
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Table 5: Comparison of the performance of SQM and DFT as starting point for COSMOtherm:
Pearson R and Kendall τ values, as well as deviation measures (mean deviation MD, mean abso-
lute deviation MAD, root mean square deviation RMSD and error span MIMA) for the nitriles set,
showing the correlation and deviation between property estimates based on SQM calculations and
the corresponding property estimates based on DFT calculations.

R τ MD MAD RMSD MIMA
HOMO 0.96 0.86 3.70 3.70 3.71 4.36
LUMO 0.93 0.60 -1.72 1.72 1.76 3.33
viscosity 0.95 0.89 0.40 0.50 1.76 79.34
boiling point 0.95 0.82 25.35 26.69 31.53 548.91
flash point 0.95 0.83 14.07 14.85 17.81 322.57
∆Gsolv(Li+) 0.74 0.56 3.64 3.66 3.72 24.61
∆Gsolv(Mg2+) 0.72 0.50 9.15 9.19 9.31 64.21
∆Gsolv(Al3+) 0.73 0.50 13.25 13.30 13.49 92.31
∆Gsolv(PF−

6 ) 0.97 0.84 -0.30 0.34 0.41 6.33

Table 6: Comparison of the performance of the consensus QSPR method implemented in T.E.S.T.
with COSMOtherm: Mean absolute deviation (MAD), Pearson R and Kendall τ values for the
nitriles set, showing the correlation and deviation between property estimates from T.E.S.T and
the corresponding property estimates from COSMOtherm.

property MAD R τ
viscosity 2.51 0.37 0.41

flash point 15.26 0.76 0.62
boiling point 72.56 0.71 0.59
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