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The Birmingham Cluster Genetic Algorithm is an application that performs global optimisations for homo- and bimetallic clusters

based on either first principlesmethods or empirical potentials. Here, we present a new parallel implementation of the code which

employs a pool strategy in order to eliminate sequential steps and significantly improve performance. The new approach meets

all requirements of an evolutionary algorithm and contains the main features of the previous implementation. The performance

of the pool genetic algorithm is tested using the Gupta potential for the global optimisation of the Au10Pd10 cluster, which

demonstrates the high efficiency of the method. The new implementation is also used for the global optimisation of the Au10 and

Au20 clusters directly at the density functional theory level.

1 Introduction

Modern nanoscience involves the study of promising

nanoscale materials, which exhibit a wide variety of inter-

esting physical and chemical properties. Nanoparticles com-

posed of atoms and molecules lie between the atomic and bulk

regimes with strongly size and composition dependent prop-

erties.1 It remains desirable to close the gap between well-

understood bulk properties and our knowledge of atomic be-

haviour in nanoscale research.

A detailed structural characterisation of this transition regime

is therefore of high interest in order to rationalise the excep-

tional characteristics of nanoscale materials. Generating geo-

metric structure candidates for a comparison with experimen-

tal observations is laborious for large systems and eventually

becomes infeasible. From a theoretical view it is useful to

carry out a global optimisation of the potential energy surface

(PES) as a function of all coordinates, while the level of theory

needed has to adequately represent the system being studied.

Since the electronic structure of large nanoparticles is ex-

pected to resemble the bulk phase, tailored model or empirical

potentials (EPs) such as Gupta,2 Sutton-Chen,3 and Murrell-

Mottram,4 fitted to properties of the solid phase, enable a rea-

sonable description of the PES. For smaller nanoparticles, i.e.

nanoclusters, a quantum chemical treatment becomes neces-
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sary for which the computational costs are greater than in the

case of using EPs. But unbiased global optimisation at this

higher level of theory therefore requires the development of

an efficient algorithm.

Nanoalloys (nanoparticles composed of more than one metal)

are of considerable interest for their catalytic, optical and mag-

netic properties.5 Their global optimisation is further com-

plicated by the presence of a large number of homotops -

inequivalent permutational isomers.6,8 For this reason, the

strategy was developed of optimising selected structures with

DFT after searching by means of atomistic models using

the second-moment approximation to the tight-binding model

(SMATB).7 Evolutionary algorithms such as the Lamarck-

ian Birmingham Cluster Genetic Algorithm (BCGA),9 which

combines local minimisation with a genetic algorithm (GA),

are useful tools for searching the conformational space for

the global minimum (GM) structure and lowest-energy local

minima, especially when combined with first principles meth-

ods in the density funtional theory (DFT) based BCGA ap-

proach.10 This procedure notably enables the theoretical in-

vestigation of elaborate mono- and bimetallic clusters using a

GA with results consistent with experiments.11–16 For details

on global optimisation algorithms, especially focused on ge-

netic algorithms and basin hopping techniques, the reader is

referred to the literature.17,18

The first use of GAs for global geometry optimisation of

molecular clusters was reported by Hartke,19 and Xiao and

Williams,20 using binary encoded geometries and bitwise act-

ing genetic operators on binary strings.21–23 Later a GA ap-

proach that operated on cartesian coordinates of the atoms was

introduced by Zeiri,24 which removed the requirement for en-

coding and decoding binary genes.9 This was followed by the
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development of GAs for cluster optimisation by Deaven and

Ho,25 who performed gradient driven local minimisations for

newly generated cluster structures. Further, Doye and Wales

established how local minimisations effectively transform a

multidimensional PES into a staircase-like surface, where the

steps represent basins of attraction.26 This coarse-grained rep-

resentation of the PES reduces the conformational space and

therefore simplifies the PES that the GA has to search. The lo-

cal minimisations generally correspond to a Lamarckian evo-

lution, since individuals pass on a proportion of their charac-

teristics to their offspring. This procedure has been found to

improve the efficiency of global optimisations and is imple-

mented within the BCGA program, following the approach of

Zeiri using real-valued cartesian coordinates.9,24 Recent GA

implementations are the OGOLEM code for arbitrary mix-

tures of flexible molecules of Dieterich and Hartke,27 the hy-

brid ab-intio genetic algorithm (HAGA), for surface and gas-

phase structures,28,29 and the gradient embedded genetic algo-

rithm program (GEGA) for the global optimisation of mixed

clusters formed by molecules and atoms.30,31 Very recently

the surface BCGA (S-BCGA)32 and the first principles based

GA of Vilhelmsen and Hammer 33 for the global optimisation

of supported clusters have been reported. Also very recently

the perturbation theory re-assignment extended GA for mixed-

metallic clusters has proven to be very useful.34

The traditional generation based BCGA program is a sequen-

tial code where local optimisations of individuals are not in-

dependent from one-another. In fact, a limitation on treatable

cluster sizes or rather the level of computational sophistica-

tion arises due to the sequentially performed geometry opti-

misations acting as a bottleneck.35 Newly created individuals

of a given population are geometrically relaxed with respect

to their total energy. The best population members, with re-

spect to their fitness (determined by a fitness function which

depends on the total energy), are then selected for mating and

mutation in order to create novel structures and to form the

next generation. This cycle is then repeated until the energy

of the lowest-lying isomers changes by less than a specified

threshold within a certain number of generations. Thus, if

more than the optimum number of processors is used in a first

principles based global optimisation, the overall CPU time

plateaus and the cores are used inefficiently due to the im-

perfect parallelisation of the local optimisations. In order to

improve the efficiency of this approach, the goal must be to

enable the independent relaxation of several geometries at the

same time as schematically shown in Figure 1, where several

GA processes simultaneously optimise geometries managed

by a global database (pool). This, however, cannot be im-

plemented efficiently within the generation-based BCGA pro-

gram.

Since the DFT-BCGA code employed here makes use of a

plane-wave self-consistent field (PWscf) pseudopotential ap-

Fig. 1 Scheme of a global database (containing structural informa-

tion) organizing slaves which independently apply genetic operators

to the n individuals of the database. The population is held by a mas-

ter acting as a pool of constant size.

proach, a benchmark calculation of a geometry optimisation

for the predicted GM structure of Au20 (Td symmetry)36–38

has been performed in order to demonstrate the importance of

an improved GA parallelisation to counter the imperfect DFT

parallelisation. The total CPU time in these minimisations,

starting from a random atom displaced version of the already

optimised structure is shown in Figure 2. The Au20 cluster

was chosen for the benchmark calculations since, especially

for such a large system, local optimisations lead to a slow-

down in the global optimisation. The corresponding bench-

mark calculations indicate that the optimum number of pro-

cessors should be below 100 cores (the best price-performance

ratio should be for 36-64, as shown in the inset of Figure 2)

since a larger number of cores would not speed up the cal-

culations efficiently. The total CPU time can be reduced by

one order of magnitude going from 10 cores to 100 but does

not improve significantly when using up to 300 cores. Bench-

mark calculations for a local optimisation of the Au10 cluster

show the same tendency, with lower absolute CPU time, and

are therefore not shown here. This indicates the importance

of developing a parallelised GA code which uses several GA

subprocesses performing local minimisations on an efficient

and ideal number of processors (48 cores in this case) at the

same time, managed by a global database (see Figure 1).

In this work, we present a significantly improved GA imple-

mentation which incorporates the BCGA and eliminates serial

bottlenecks by replacing the generation based GA approach by

a flexible pool model,35 here denoted as pool-BCGA. Within

this pool strategy individual subprocesses share the entire

work leading to a parallelisation of the algorithm. This pro-

cedure allows several geometry optimisations to be run at the

same time. The gain in speed is obvious as local optimisations

are the bottlenecks in a global optimisation, especially when

2 1–10
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Fig. 2 Logarithmic benchmark plot of a local relaxation for the Td
isomer of Au20 starting from a random atom displaced version of the

already optimised structure at the PBE/PWscf level of theory. It is

shown, that the optimum number of processors is below 100 cores in

this case as using a larger number of cores would not scale efficiently.

The inset shows the derivative of the total CPU time versus the num-

ber of processors. The optimal number of processors for the global

optimisation is in the range 36-64.

using ab-initio methods in local relaxations. In principle, one

could also think about running parallel geometry optimisation

tasks in the generation based BCGA. But, several ongoing op-

timisations would have different time demands and therefore

each generation would have to wait for the slowest population

members leading to processor idle times.

The development of parallel GA implementations has pre-

viously been reported for both atomic and molecular clus-

ters, 27,33,35,40,41 Global geometry optimisation at the DFT42

or ab-initio43 level is generally found to be very expensive and

not suitable for larger clusters, for which global optimisation

would be appropriate. This leads to the commonly found two-

stage procedure of performing the global search at e.g. the

force-field or semi-empirical level, followed by a DFT or ab-

initio refinement of the best candidates.44 In the DFT-BCGA

code used in this work, the global optimisation is performed

at the relatively cheap pseudopotential PWscf level, which en-

ables larger systems to be treated at the DFT level, while the

best candidates can still be refined using a higher level of the-

ory. Though the implementation is easily also applicable with

higher level calculations.

The flexible concept replaces the generation based algorithm

by using a global database consisting of geometric and en-

ergetic information about a specified number of individuals.

Several independent subprocesses make use of this database

by applying mating and mutation operators to the pool mem-

bers and form new individuals. These new individuals com-

pete with current members of the pool and are immediately

added to the pool if they are lower in energy.

We first test the method for the global optimisation of the

Au10Pd10 cluster, using the Gupta potential, for an extensive

statistical analysis of the new implementation. The 20-atom

cluster is also interesting from a catalytic point of view,45 and

offers an ideal test system, especially due to the large num-

ber of homotops N NAu NPd ! NAu!NPd! 185000 for

a given geometry.8 The resulting knowledge from these in-

vestigations, in terms of mating and mutation, is further used

for the DFT based global optimisation of the Au10 cluster. It

represents a suitable test system for the DFT case in order to

compare the efficiency of both implementations, as it has been

well studied in the past.38,46,47 Finally, the parallisation of the

code is tested by carrying out the global optimisation of Au20
at the DFT level, a system previously well studied experimen-

tally36,37 while geometries have been found by genetic algo-

rithms38,48 and the basin-hopping approach39 based on DFT.

2 METHODOLOGY

2.1 Computational details

In the benchmark calculations, employing the Gupta empiri-

cal potential in geometry optimisation steps, many-body scal-

ing parameters are chosen according to values for Au-Pd nan-

oclusters with 34- / 38-atoms49 and 98-atoms13 from the lit-

erature.

In the DFT calculations, the Perdew-Berke-Ernzerhof (PBE)

xc functional,50 and ultrasoft pseudopotentials of the Rabe-

Rappe-Kaxiras-Joannopoulos type,51 with nonlinear core cor-

rections are employed. For the calculation of electronic ener-

gies, a kinetic energy cutoff of 40 Ry and an electronic self

consistency criterion of 10 5 eV are used. The efficiency of

electronic convergence for metallic states is improved using

the Methfessel-Paxton smearing scheme.52 Local relaxations

are performed with total energy and force convergence thresh-

old values of 10 3 eV and 10 2 eV/Å, respectively. All DFT

calculations are performed within the Quantum Espresso (QE)

package.53

2.2 Pool-BCGA

To make use of the flexible parallelisation possibilities asso-

ciated with a pool configuration, the application of mating

and mutation operators to given geometries and their local

optimisation and fitness assignment is managed by indepen-

dently working pool-BCGA subprocesses synchronizing with

a global database. As well as handling the atom coordinates

and total energy of all structures currently in the pool, the

global database is also needed to coordinate the individual

subprocesses during runtime. The general workflow of the
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pool strategy is depicted in Figure 3. The first step (“initial-

mode”) consists of constructing an initial pool of individu-

als by generating random structures within a spherical or cu-

bic simulation cell, which is set to be larger than the the di-

mensions of the random cluster. This continues until the de-

sired pool size is reached followed by the second step (“pool-

mode”). In the pool-mode, mating and mutation operators are

employed on clusters chosen according to either a roulette se-

lection condition, where a random selection is weighted by

the assigned fitness, or a tournament selection, and adopt the

Deaven-Ho crossover method using a cut and splice crossover

operator.25 Random rotations are performed on parent clus-

ters which are then cut horizontally about one (1-point) or two

(2-point) positions parallel to the xy plane. Complementary

fragments are then spliced together. For 1-point crossover, the

cutting plane can be chosen at random or weighted according

to the relative fitnesses of the two parents, while in the 2-point

case the cutting planes are chosen at random.

In contrast to the default settings of the generation based GA,

where the number of offspring grows with an increasing mu-

tation rate, in a pool-GA calculation mutation and mating are

performed with a certain probability as the pool size is kept

fixed. This must be taken into account when setting the pa-

rameters in a typical pool-GA run. The offspring structures

compete with the structures present in the pool according to

their total energy after their local optimisation. Offspring with

a better fitness (lower total energy) replace higher lying pool

members. After checking for repeated optimised structures

using a moments of inertia selection routine, the pool is sorted

by ascending total energy. Finally, convergence is achieved

when the minimum energy in the pool changes by less than

a pre-defined energy difference (typically 10 3 eV) within a

specified total number of optimised geometries. This ensures

an elitist behaviour of the GA in combination with good diver-

sity in the pool. If the convergence is not reached, the subpro-

cesses start a new cycle, repeating the steps described above.

When executing the pool-GA, general runtime configuration

settings are read from input files before the GA initially syn-

chronises with the global database. The GA then enters the

pool convergence loop. If the convergence criterion is not

reached, the GA continues with a check for the current mode

(“initial-” or “pool-mode”). As mentioned above, initial-

mode means that new structures are created by randomly

choosing atom coordinates inside the simulation cell while

the pool-mode uses either mating or mutation operators in or-

der to form new individuals. The new structures are then lo-

cally optimised by either passing the atom coordinates to an

external ab-initio quantum chemistry program (e.g. QE53 or

NWChem54) or one of the empirical potentials (e.g. Gupta)

embedded in the code. This pool-based approach allows the

code to be easily restarted if it runs out of CPU time. The

user is left free to restart as many subprocesses as preferred,

Fig. 3 The genetic operators are applied by the subprocesses on the

members of this pool. The flowchart diagram shows how a single

pool subprocess works independently from other instances, while all

subprocesses communicate with the global database.

depending on the available computational resources. How-

ever, aborted local optimisations are not restarted. Instead,

new subprocesses are initiated, starting with new geometries

which are generated from the current pool configuration by the

evolutionary principles mentioned above.

3 RESULTS AND DISCUSSION

3.1 Assessment with the Gupta potential: Au10Pd10

Here the a single pool-GA subprocess and the previous gen-

eration based GA are applied to the global optimisation of the

Au10Pd10 cluster using the Gupta potential. This procedure

serves as a test of the implementation before the GA is ex-

tended to larger systems in the DFT-based version. Using a

less expensive calculation also allows the parameter space for

using the pool-GA to be classified and to show the equiva-

lence of both implementations. However, only the parame-

ters in which the two implementations differ substantially are

tested here. For a detailed description of the BCGA code in

general its functionality and settings, the reader is directed to

the literature.9

Figure 4 compares the pool-GA, for different pool sizes, to

a random structure search. The same mutation rate is used

in all calculations, with an atom exchange mutation rate of

0.5 because of homotops, beside the cluster replacement mu-

tation adding new random structures. By applying the atom

4 1–10
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Fig. 4 Comparison of averaged evolutionary progress plots for dif-

ferent population sizes for a single pool-GA subprocess. A constant

mutation rate of 0.2 with an atom exchange rate of 0.5 is employed.

Each solid line represents the evolution of the gobal energetically

lowest-lying structure versus the number of optimised structures av-

eraged over 1000 GA runs to demonstrate reproducibility. The imple-

mentation is also compared to a random structure search as internal

standard for probing the general efficiency and comparability.

Fig. 5 Comparison of averaged evolutionary progress plots for the

generation based GA and the single pool-GA for a population size

of 10 using a mutation rate of 0.2 and an exchange rate of 0.5. The

GM structure of the Au10Pd10 cluster at the Gupta potential level is

embedded.

exchange mutation operator to the replacement mutation, the

GA becomes considerably more efficient.17,55 The solid lines

represent averaged evolutionary progress plots from 1000 GA

runs for each case. Evolutionary progress plots describe the

evolution of the globally lowest-lying structure with the num-

Fig. 6 Lognormal fits to probability densities of finding the GM in

1000 GA runs depending on the population size. The number of

optimisations needed to find the GM scales linearly with the size as

can be seen in the inset.

ber of generations or optimised structures, respectively. The

runs are averaged in order to test reproducibility and permit

a meaningful statistical statement. Increasing the population

size tends to reduce the efficiency of finding the GM. This is

due to the increasing number of individuals in the pool and

taking into consideration the same roulette selection scheme

and parameters used in all calculations, a higher probabil-

ity for selecting bad parents is to be expected when the pool

size is increased. The optimum population size should be

large enough to accommodate a high structural diversity, but

small enough to remain largely elitist. A comparison to the

generation-based GA, in the same way as mentioned above,

shows the same behaviour and is therefore not depicted here.

The random structure search, which in both cases acts as an in-

ternal standard, illustrates the high efficiency of both GA im-

plementations in general and shows that a single pool-GA sub-

process has a comparable efficiency to the generation-based

GA. The pool-GA and the generation based approach com-

pare well, as shown in Figure 5, where both implementations

are compared to a random minima search. Typically, the ran-

dom minima search is not able to find the GM. Figure 6 shows

lognormal fits to probability densities of finding the GM after

a certain number of optimised structures within the 1000 GA

runs for several pool sizes. An additional plot, embedded in

this figure, describes the linear scale up of the maximum num-

ber of optimisations needed versus the pool size.

The good comparability of both GA approaches makes the

pool-BCGA implementation a powerful tool for the prediction

of cluster structures since many subprocesses can be run at the

same time, while the convergence of the pool, using a sin-
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Fig. 7 Influence of the mutation rate on the averaged evolutionary

progress plots averaged over 1000 GA runs for of a) A single pool-

GA subprocess and b) The generation based GA for a constant size

of 10 compared to a random structure search as an internal standard.

Mutation reduces the efficiency of finding the GM.

gle subprocess, compares well to the generation based code.

This allows a much higher efficiency through communication

of several subprocesses via the global database.

In order to test how the mutation rate influences both a single

pool-GA subprocess and the generation based code, Figure 7

shows averaged evolutionary progress plots where both GAs

are compared for different mutation rates while using a popu-

lation size of 10. The general trend is that mutation reduces the

efficiency of finding the GM structure which means that mu-

tation on average produces higher lying structures. While the

pool-GA, shown in Figure 7 a) rapidly loses efficiency with

increasing mutation rate, the generational GA (Figure 7 b)) is

less influenced, which initially might appear as an unexpected

result. It becomes clearer, however, if one considers, that in

the pool implementation the population size is kept fixed. In

Fig. 8 Lognormal fits to probability densities of finding the GM in

1000 GA runs depending on the mutation rate. The number of opti-

misations needed to find the GM scales exponentially with the muta-

tion rate as can be seen in the inset. The probability density for higher

mutation rates or a random structure search cannot be well fitted due

to the very small efficiency of finding the GM.

the traditional BCGA the number of offspring is, by default,

0.8 times the generation size. The mutation rate is then mul-

tiplied by the sum of the generation size and the number of

offspring. For a population size of 10 and a mutation rate of

0.2, this means 8 offspring are generated from mating and 3.6

mutants on average since (10+8) 0.2=3.6. For the pool-GA,

therefore, the efficiency seems to be lowered with increasing

mutation rate due to the reduced mating rate which makes the

implementation less elitist. However, the structural diversity

in a given population can be increased by using a low muta-

tion rate and, therefore, it should not be completely neglected.

Again lognormal fits to probability densities of finding the GM

after a certain number of optimised structures within 1000 GA

runs, depending on the mutation rate, are shown in Figure 8.

The plot embedded in this figure shows an exponential scale

up of the maximum number of optimisations needed versus

the mutation rate. The probability densities for mutation rates

larger than 0.8 could not be well fitted due to the very small

efficiency of finding the GM.

3.2 Assessment with plane wave DFT

3.2.1 Au10: Since the systematic global optimisation of

neutral Aun (n=2-20) cluster structures has been reported pre-

viously using GAs coupled with DFT, 38,48 we employ this

system in order to test the efficiency of the DFT based pool-

GA. First, global optimisation is performed for the Au10 clus-

ter using the sequential generation based DFT-BCGA program

with a mutation rate of 0.1 and a population size of 10.

6 1–10
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Fig. 9 Comparison of the total number of geometry optimisations

from the pool-GA, with up to five subprocesses each running on 48

cores, to the generation based approach as obtained in 12 hours. A

linear scale-up of the total number of optimisations is observed when

several parallel working subprocesses are used on an optimum num-

ber of cores. The top horizontal axis, showing the number of subpro-

cesses, only corresponds to the pool calculations.

The pool-GA is further used to perform a global optimisation

of the same cluster with a poolsize of 10 and a mutation rate of

0.1 in order to test whether both implementations find the GM

and the same local minima. Additionally, the total number

of optimised structures is compared for both cases in order to

explicitly prove the parallelisation efficiency for a given exam-

ple. The benchmark calculations illustrated in Figure 9 show

the total number of optimised structures for a limit of 12 hours

walltime for up to 5 pool subprocesses each ideally running on

48 processors, showing the best price-performance ratio in lo-

cal relaxations (see Figure 2). The generation based GA is

also compared running on up to 240 cores, which is the same

amount as in the calculations using 5 pool subprocesses. It is

clear that the sequential GA plateaus when using a large num-

ber of cores due to the imperfect DFT parallelisation, while a

linear scale-up in the pool-GA case is evident, when using an

optimum number of cores.

The resulting structures below 0.4 eV from the predicted GM,

as obtained at the pwSCF/PBE level of theory, are shown in

Figure 10. Both implementations are able to find identical

local minima when optimising a comparable number of struc-

tures. The evolutionary progress plot (Figure 11) shows an

example for the pool-GA case, where the GM is found after

the optimisation of about 50 structures. This number, how-

ever, varies from run to run due to the stochastic nature of the

Fig. 10 Structures of Au10 below 0.4 eV from the predicted GM

(10-a) as obtained from the DFT-based pool-GA global optimisation

approach. The nomenclature of the individual isomers is sorted by

increasing energy at the pwSCF/PBE level of theory.

GA, which originates from constructing the initial population

by producing random structures. In any case, it shows how

the current best (lowest energy) solution evolves towards the

planar GM isomer 10-a with D2h symmetry.

The potential lowest energy isomers below 0.4 eV, as obtained

at this level of theory, including the planar GM isomer 10-

a are in agreement with the previous findings of Götz et al.47

However, the trigonal prism with both triangular faces and two

rectangular faces capped, suggested by Choi et al.,56 has been

found to lie high in energy at this level of theory, as well as all

other isomers found in these previous studies. A new planar

isomer 10-g, which has been described for the Au10 cluster,
57

and a 3D structure 10-e were also found to lie below 0.4 eV.

Nevertheless, it should be mentioned that the relative ener-

gies obtained at this level of theory, using loose convergence

criteria, should always be treated with care. A reminimisa-

tion of the structures at a higher level of theory or the use of

tighter convergence conditions can unpredictably change the

energetic ordering, although 10-a is expected to remain the

GM.

The PES can be described by a sequence of local minima inter-

connected by transition states where monotonic sequences

form funnels.58 A given topology, once in a funnel, must

eventually overcome several energy barriers in order to reach

the GM or another specific local minimum as the PES is ex-

plored. This means that a given local optimisation within a

GA optimisation task could potentially relax into a so-called

metabasin with small geometrical deviation from the mini-

mum. Therefore energetic discrepancies should not only be

discussed as depending on the xc functional and pseudopo-

tentials used, but should also be attributed to the cases where

local optimisations end in metabasins near a local minimum

leading to an apparently wrong energy ordering.

However, this should not be interpreted as a problem. Genetic
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Fig. 11 Evolution of the globally lowest-lying isomer for Au10 with

the number of optimised structures within a pool-GA run, relative to

the energy E0 of the GM isomer 10-a. Each step represents a new

global minimum depicted here within the pool-GA run.

algorithms used in this manner can be thought of as a coarse

grain filter. The idea is to reduce a large configuration space

to a manageable size. The reduced configurational space then

opens up the possibility of a more detailed description of only

a few isomers at a higher level of theoretical complexity, often

required for the description of binary clusters in combination

with experiments.

3.2.2 Au20: The ability of the pool-GA to scale linearly

with the number of processors is shown in figure 9. This al-

lows the global optimisation of cluster structures, directly at

the pwSCF/PBE level, on clusters larger than previously pos-

sible with the sequential GA in a tolerable time. The Pool-GA

is used to perform a global optimisation on the Au20 cluster.

Calculations were performed with a poolsize of 10 and a mu-

tation rate of 0.1. The tetrahedral structure (Td) of Au20 is well

known and has been shown previously by both theory,38,39,48

and experiment.36,37

The structures of the putative pool-GA GM and minima ly-

ing below 0.5 eV are shown in figure 12. The pool-GA suc-

cessfully finds the tetrahedral structure, 20-a, as the GM. The

tetrahedron is first found after the optimisation of only 56

structures. There is a large gap between the GM and the next

lowest-lying structure, a distorted geometry with C1 symme-

try. Structures similar to 20-b are seen in minima 20-e and

20-g, while structures 20-c, 20-f and 20-h are C1 geometries

based on more subtle distortions of the tetrahedron.

Fig. 12 Structures of Au20 below 0.5 eV from the predicted GM 20-a

as obtained from the generation based DFT-BCGA global optimisa-

tion approach. The nomenclature of the individual isomers is guided

by the energy order at the pwSCF/PBE level of theory.

4 Conclusions

We have demonstrated the efficiency of the new pool-based

parallel implementation of the successful BCGA. The new im-

plementation leads to a greater efficiency for the global opti-

misation of monoatomic or binary clusters. The change in

implementation makes the approach efficient for an arbitrary

numbers of parallel processes, as shown by the benchmark

calculations. In addition, the pool-BCGA can also adapt to

the given utilisation of the mainframe, as it supports differ-

ent numbers of processors in order to achieve maximum effi-

ciency. Since processor speed is generally starting to plateau,

it will be more and more appropriate to develop better paral-

lel algorithms suitable for future computer architectures. The

pool-BCGA is a good example of how this can be done effi-

ciently. Additionally, the use of distributed computing archi-

tectures (e.g. BOINC) would be now enabled where server

could potentially manage the pool while optimisations can be

run on an arbitrary number of clients. Since the amount of data

transferred between server and clients is small, bandwidth re-

quirements would be minimal.

By replacing the sequential working generation concept, se-

rial bottlenecks are eliminated. A typical pool calculation

can be started as a job array of several pool-GA subprocesses

enabling the treatment of larger cluster sizes than previously

studied or even opens up the possibility of using a higher level

of theory. Alternatively, one can think about using wavefunc-

tion based methods in geometry relaxations for the global op-

timisation of small cluster systems as implemented in program

packages such as CFOUR, 59 or NWChem v6.3,54 which en-

able geometry optimisations based on coupled cluster meth-

ods. Such a pool implementation would emerge as the method

of choice, especially in this sophisticated task of performing
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global optimisation using multi-electron wavefunctions to ac-

count for electron correlation with higher accuracy.

Also the very recently developed S-BCGA could be improved

by using the flexible pool concept, which would allow to treat

more complicated supported clusters, such as larger clusters

and nanoalloys, and permit calculations at a higher level of

theory.

A comparison of the results obtained by the generation- and

pool-based BCGA show that the pool-GA is finally able to find

all isomers predicted by the generation based implementation

while both GAs give results in good agreement with existing

global optimisation calculations reported in the literature.
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Nanoscale, 2012, 4, 1109–1115.

11 S. Heiles, R. L. Johnston and R. Schäfer, J. Phys. Chem.
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