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We give a theoretical validation of calculating fundamental frequencies of a molecule from classical molecular dynamics (MD)
when its anharmonicity is small enough to be treated by perturbation theory. We specifically give concrete answers to the
following questions: (1) What is a proper initial condition of a classical MD to calculate a fundamental frequency? (2) From
that condition, how accurately can we extract fundamental frequencies of a molecule? (3) What is the benefit to use ab initio
MD for frequency calculations? Our analytical approaches to those questions are classical and quantum normal form theories.
As numerical examples we perform two types of MD to calculate fundamental frequencies of H2O with MP2/aug-cc-pVTZ:
one is based on the quartic force field and the other one is direct ab initio MD, where the potential energies and the gradients
are calculated on the fly. From those calculations, we show comparisons of the frequencies from MD with the post vibrational
self-consistent field calculations, second- and fourth-order perturbation theories, and experiments. We also apply direct ab initio
MD to frequency calculations of C–H vibrational modes of tetracene and naphthalene. We conclude that MD can give the same
accuracy in fundamental frequency calculation as second-order perturbation theory but the computational cost is lower in large
molecules.

1 Introduction

1.1 Computational methodologies for vibrational analy-
sis

Methodologies to treat vibrational states and frequencies be-
yond the normal mode analysis have been actively investi-
gated for a few decades.1–14 The vibrational self-consistent
field (VSCF) and the advanced methods such as the correlation-
corrected VSCF (cc-VSCF), vibrational coupled cluster (VCC)
theory and the vibrational (or virtual) configuration interac-
tion (VCI) have been developed1–8 to obtain the numerical
solutions to the time-independent Schrödinger equation with
vibrational Hamiltonian. Applicability of VSCF has also been
extended to periodic systems taking into account the size con-
sistency of the method by Hirata and co-workers.11–13 The
multiconfiguration time-dependent Hartree method has been
developed as a wave-packet-propagation algorithm to solve
the time-dependent Schrödinger equation by Meyer and co-
workers.8,14

Thus, methodology to calculate vibrational eigenstates of
molecules or extended systems has been well established, al-
though the computational cost to calculate accurately the full-
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dimensional potential energy surface (PES) of a middle-sized
molecule is enormous. Even though the computational power
continues to increase, limitation of system size that can be
treated with full-dimensional PES is severe.8

An alternative way to approach large systems is to approx-
imate the PES by analytically tractable expression. A typi-
cal model PES for anharmonic analysis is the quartic force
field (QFF).1 The analytical expression of QFF is obtained
by performing Taylor expansion around the bottom of PES
with respect to the normal coordinates and including second-
, third-, and fourth-order derivatives of PES. As long as the
anharmonicity of the system is small, QFF is accurate for vi-
brational analysis and useful in terms of computational cost
for small or middle sized systems. However, if the system
is large, constructing a QFF requires enormous cost since the
number of required fourth derivatives of PES increases with
the order of n4

a , where na is the number of atoms. It is a se-
vere problem particularly for high level electronic structure
calculations such as coupled cluster (CC) where those high or-
der derivatives are expensive to calculate. Therefore, another
method to treat vibrational problems is necessary with lower
scaling of cost with respect to system size.

Hirata and co-workers developed a quantum Monte Carlo
as a new approach to vibrational problems that avoids evalua-
tion of higher-order derivatives of PES.13

Another efficient way to predict vibrational spectra we fo-
cus attention to is classical molecular dynamics (MD). The
main purpose in a series of our works15,16 is to show the ap-
plicability of MD to vibrational problems. The application of
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MD to vibrational spectroscopy and the problem we aim to
solve are addressed bellow.

1.2 Vibrational spectra from MD

MD has widely been used for the treatment of anharmonic vi-
brational systems.15–29 Fourier transformation (FT) of trajec-
tories calculated by MD gives vibrational spectra. MD can be
used for large systems or even condensed phases. The reason
of the low computational cost is that it samples only molecular
configurations along the classical trajectory.

There are two important facts to be noted here that allow us
to take advantage of MD as a method to calculate vibrational
spectra: (1) FT of dipole and polarizability autocorrelation
functions correspond to the infrared (IR) and Raman spectra,
respectively, the relations of which were shown by Gordon.30

(2) Another important fact is that, in the case of harmonic os-
cillators, a quantum correlation function can be accurately cal-
culated from a classical correlation function multiplied by a
proper quantum correction, which is so called as detailed bal-
ance. Consequently, a classical harmonic frequency is exactly
same as the quantum frequency of a harmonic oscillator. Here
we define a quantum frequency as the difference of vibrational
energies of two eigen states, which corresponds to a peak of
an experimental IR or Raman spectrum. A classical frequency
is measured as a peak position of a classical vibrational spec-
trum, i.e. FT of a classical trajectory. We give the detail in
next section.

Due to those two facts, MD can be assumed to predict
qualitatively comparable IR and Raman spectra with exper-
imentally obtained spectra. Anharmonicity of PES can be
treated as a perturbation to a harmonic oscillator if it is small
enough. In such a case MD tends to predict qualitatively cor-
rect anharmonic frequencies. However, there is no guarantee
that a classical anharmonic frequency is quantitatively same as
the corresponding quantum frequency in theory without con-
sideration of correspondence between quantum and classical
pictures of vibration. Even if a calculated classical frequency
agrees well with an experimentally obtained frequency, one
cannot deny a possibility that it is just a result of coinciden-
tal cancellation of two errors: one is inaccuracy of PES, the
other is due to the difference between classical and quantum
frequencies.

In recent studies, ab initio MD has been playing an im-
portant role for vibrational analysis and has successfully pre-
dicted qualitatively experimental spectra.20–29 However, it is
necessary to know how much we can trust such classical fre-
quencies in theory and what is the proper condition of MD to
carry out frequency calculations safely.

We pointed out the amount of energy we give in molecules
in MD simulation is an important factor to predict correct an-
harmonic frequencies.15,16 Helzberg described the relation be-

tween a classical frequency and a quantum frequency in his
textbook,31,32 and Marcus and co-workers used the same rela-
tion.33 The relation is that an energy difference between two
quantum vibrational states is approximately equal to the clas-
sical frequency of the oscillator, whose energy is the average
of those two states. We showed how accurately anharmonic
frequencies are predicted for di- and tri-atomic molecules with
this condition.15,16 In this article we clarify its theoretically
guaranteed accuracy and also show frequency calculations of
C–H vibrational modes of naphthalene and tetracene as exam-
ples of its application to larger molecules.

1.3 Normal form theory for vibrational problem

In order to combine a classical frequency with a quantum fre-
quency, it is required to express them using the same variables.
As far as we know, normal form theory (NFT),34–45 which
has been used in both classical and quantum mechanics, is the
most useful method for this purpose and to combine vibra-
tional spectroscopy with MD. In this study we apply NFT as a
bridge between those two fields.

A number of works investigating the correspondence be-
tween classical and quantum vibrational problems were done
based on the EBK quantization33,46–58 and NFT34–45 or canon-
ical transformation perturbation theory, since more than 40
years ago. Their focuses were directed toward fundamental
dynamical problems, such as high energy states where a prim-
itive technique of NFT or even the theory itself fails.

When we apply NFT to a vibrational problem, a main dif-
ficulty we face is the notorious problem of small denominator
or the divergence of high order perturbation terms which are
generated in the process of performing the techniques of NFT.
This is the evidence of the nonintegrability of classical dy-
namics. Another technical problem of canonical transforma-
tion was worked through in order to appropriately scrutinize
remnants of invariants buried in a chaotic system.59,60

1.4 Classical frequency with a proper condition

In this article, we answer to the following questions: (1) What
is a proper initial condition of MD that gives a quantitatively
comparable frequency to a quantum frequency? (2) How much
accuracy of the frequency can we expect from an MD calcula-
tion with that proper initial condition? (3) What is the benefit
to use ab initio MD for frequency calculation?

Firstly, in order to answer those three questions, we com-
pare the analytical expressions of classical and quantum fre-
quencies based on NFT. Secondly, we propose a proper initial
condition to obtain a frequency, and then compare the classi-
cal frequency from that condition with the quantum frequency.
As examples of numerical results, we show frequency calcu-
lations of water (H2O), tetracene (C18H12), and naphthalene
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(C10H8) from direct ab initio MD (direct-MD) based on the
proper condition. Direct-MD calculates the potential energies
and gradients on the fly. We show how much reliable frequen-
cies can be obtained from such calculations.

Note that our approach is completely different from path
integral MD or recent semi-classical theory such as SC-IVR
method by Wong et. al.,61 both of which take advantage of a
set of classical or semi-classical trajectories to incorporate the
delocalized nature of nuclear.

In the following section, we address classical and quantum
NFT and frequencies, and show the proper classical condition.
In the third section we show how to calculate frequencies from
MD. In the fourth section we show the results of frequency
calculations of H2O, C18H12, and C10H8. In the last section
we summarize our findings.

2 Theory

First, we describe classical and quantum NFT. Even though
NFT34–45 and even the computer programs56–58 to carry it out
have been fully developed by many researchers, it is still nec-
essary to describe it in a specific way that fits our purpose so as
to make this article self-explanatory. In the ESI† we also de-
scribe briefly the essential parts of classical NFT from the re-
view37 by Komatsuzaki and Berry, and the quantum NFT from
the review36 by Waalkens and co-workers, with some explana-
tions for our purpose. Secondly, aiming to explicitly express
the correspondence between classical and quantum frequen-
cies, we give the analytical forms of frequencies.

2.1 Classical normal form theory

Following the review by Komatsuzaki and Berry,37 the classi-
cal version of NFT or Lie canonical transformation perturba-
tion theory is addressed. Here we apply it to the minimum of
PES, while they applied it to the saddle point. We assume that
a system possesses the following two characteristics.

First, Hamiltonian is written by a series expansion with
respect to a perturbation parameter ε as follows.

H =
∞

∑
i=0

ε iHi , (1)

where H0 is the Hamiltonian of a combination of harmonic
oscillators given by

H0 =
1
2

N

∑
i=1

(p2
i +ω2

i q2
i ) . (2)

Here N is the number of vibrational degrees of freedom, ωi
is the harmonic frequency of mode i, qi is the mass weighted

normal coordinate of mode i, and pi is the conjugate momen-
tum to qi. Higher order terms in Eq. (1) are given by

H1 =
1
6

N

∑
i=1

N

∑
j=1

N

∑
k=1

ci jkqiq jqk , (3)

H2 =
1
24

N

∑
i=1

N

∑
j=1

N

∑
k=1

N

∑
l=1

di jklqiq jqkql , (4)

and so on. Here, ci jk, and di jkl are third and fourth deriva-
tives of PES with respect to normal coordinates. Eq. (1) cor-
responds to the Taylor expansion of the PES around its min-
imum. It is also possible to express Hamiltonian using an-
other set of dynamical variables, such as action-angle vari-
ables (J1, ...,JN ,Θ1, ...,ΘN), namely,

H =
∞

∑
i=0

ε iHi(J1, ...,JN ,Θ1, ...,ΘN) . (5)

The ith-action variable is given by

Ji =
1

2ωi
(p2

i +ω2
i q2

i ) . (6)

The angle Θi is the conjugate variable to Ji, i.e. they satisfy
Hamilton’s equation of motion. Hereafter a bold variable rep-
resents a vector, e.g.

JJJ = (J1, ...,JN) . (7)

Secondly, the vibrational modes are not in resonance in
the system, which ensures that there are N approximately con-
served values. Note that we are based on the fact that there
are never N strictly conserved values in anharmonic systems
because of nonintegrability of multidimensional systems and
resonances occur between different vibrational modes after a
certain length of time during vibrational motion.39,49–54 We
can assume, however, the existence of N approximately con-
served values in a short time, as have been shown before.49,50

If the energy of a system becomes larger, the number of con-
served variables decreases and this approximation becomes
more invalid. Since this problem can be an obstacle for its
application to large systems, we discuss it in subsections 2.2
and 4.2.

We can transform the original Hamiltonian H(JJJ,ΘΘΘ) into
normal form by a canonical transformation. The normal form
is defined as follows. When the Hamiltonian is in classical
normal form, it is independent from the angle variables ΘΘΘ.

In accordance with canonical transformation of H, pairs of
the dynamical variables, (ppp,qqq) and (JJJ,ΘΘΘ), are also transformed
into ( p̄pp,q̄qq) and (J̄JJ,Θ̄ΘΘ), respectively. The variables with bar are
meant to be in classical normal form. When the Hamiltonian
is in normal form, the approximately N conserved values are

J̄JJ = (J̄1, ..., J̄N) . (8)
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Although the Hamiltonian of a system given by Eq. (1)
is generally not in the normal form, one can obtain the new
Hamiltonian H̄ in the normal form by means of the canonical
transformation at each perturbation order. The transformed
new Hamiltonian is expressed as

H̄(J̄JJ) = H̄0(J̄JJ)+ ε2H̄2(J̄JJ)+ ε4H̄4(J̄JJ)+ ... . (9)

Here,

H̄0 =
N

∑
i=1

ωiJ̄i , (10)

H̄2 =
N

∑
i=1

N

∑
j=1

xi j J̄iJ̄ j , (11)

and

H̄4 =
N

∑
i=1

N

∑
j=1

N

∑
k=1

yi jkJ̄iJ̄ j J̄k , (12)

and so on, where xi j and yi jk are real numbers obtained through
the perturbation theory at second- and fourth-order, respec-
tively. The order of H̄2i with respect to JJJ is i+1.

According to the canonical perturbation transformation the-
ory, the conserved values J̄JJ are the action variables in normal
form given by

J̄i =
1

2ωi
(p̄2

i +ω2
i q̄2

i ) , (13)

for i = 1, ...,N where p̄i and q̄i are the new momenta and co-
ordinate of mode i associated with the new Hamiltonian H̄. It
is easily shown by solving Hamilton’s equation of motion that
they are given by

p̄i =−
√

2J̄iωi sin Θ̄i , (14)

and

q̄i =
√

2J̄i/ωi cos Θ̄i , (15)

where Θ̄i is given by

Θ̄i = ω̄it +βi . (16)

Here, βi is initial phase, which is not important in our dis-
cussion. Note that (J̄i,Θ̄i) is a pair of conjugate dynamical
variables of H̄ as well as (p̄i, q̄i). Following Hamilton’s equa-
tion of motion with respect to J̄i and Θ̄i, ω̄i are also expressed
as

˙̄Θi = ω̄i =
∂ H̄
∂ J̄i

. (17)

The first equality is from Eq. (16) and the second is from the
Hamilton’s equation of motion using Θ̄i and J̄i. The original
Hamiltonian given by Eq. (1) can be transformed by a canon-
ical transformation into the normal form H̄ given by Eq. (9).
Even though H and H̄ represent an anharmonic system, the
time dependences of p̄i and q̄i that follow H̄ are equivalent to
those of harmonic oscillators but the frequencies are ω̄i not ωi
as seen from Eqs. (14), (15), and (16). ω̄i is the anharmonic
frequency that are numerically obtained by FT of (qi, pi) or
(q̄i, q̄i) (Eq. (17)) as we describe in the following section.

2.2 Classical frequency

Here, based on classical NFT, we give the definition of classi-
cal frequencies ωωωcl and the analytical expression. This is the
preparation for the later section where we calculate a classi-
cal frequency from perturbation theory and from the trajec-
tory which is determined from the peak position of the power
spectrum of the momentum.

We can regard ppp and qqq as variables obtained by canonical
transformation of p̄pp and q̄qq, respectively. Following the tech-
nique described in section I of the ESI† and the review.37 p̄pp
and q̄qq are obtained from the canonical transformation, T̂ , of ppp
and qqq. The reverse transformation, T̂−1, of p̄pp and q̄qq gives ppp
and qqq.

Performing T̂−1 on p̄pp or q̄qq,

pi = T̂−1 p̄i = p̄i + ε(p̄ppq̄qq)(2)i + ε2(p̄ppq̄qq)(3)i + ε3(p̄ppq̄qq)(4)i + ... ,

(18)

for i = 1, ...,N. Here, (p̄ppq̄qq)(l)i (l ≥ 2) represents a polynomial
of p̄pp and q̄qq, the degree of which is l, e.g., if l = 2,

(p̄ppq̄qq)(2)i =
N

∑
j=1

N

∑
k=1

(C
(p̄ j p̄k)
i p̄ j p̄k +C

(q̄ j p̄k)
i q̄ j p̄k +C

(q̄ j q̄k)
i q̄ jq̄k) .

(19)

For qi, the similar expression to Eq. (18) is obtained:

qi = q̄i + ε(p̄ppq̄qq)(2)i + ε2(p̄ppq̄qq)(3)i + ε3(p̄ppq̄qq)(4)i + ... , (20)

but (p̄ppq̄qq)( j)
i of Eq. (20) is different from that of Eq. (18). Eqs.

(14), (15), (16), and (18) reveal that the power spectrum of pi
yields the peaks at the ω̄i and others at the linear combinations
of multiple frequencies n1ω̄1 + ...+ nNω̄N , where (n1, ...,nN)
is a set of integers. This is understood as follows. In Eq. (18),
time dependencies of p̄i and q̄i are given by Eqs. (14)–(16),
the frequency of which is ω̄i, and the term (p̄ppq̄qq)(l) is a periodic
function of n1ω̄1 + ...+nNω̄N with

N

∑
j=1

|n j|= l . (21)
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For instance, if l = 2, the first term in Eq. (19) is

C
( p̄ j p̄k)
2 p̄ j p̄k = 2C

( p̄ j p̄k)
2

√
J jJkω jωk sin Θ̄ j sin Θ̄k

= −C
(p̄ j p̄k)
2

√
J jJkω jωk

×
(
cos(Θ̄ j + Θ̄k)− cos(Θ̄ j − Θ̄k)

)
,

(22)

and thus the frequencies are ω̄ j + ω̄k and ω̄ j − ω̄k.
Among all of peaks in the power spectrum of pi (or qi),

the intensity of the peak at ω̄i must be dominant comparing
the combined frequencies, n1ω̄1 + ...+nNω̄N . It is because ω̄i
arises from zeroth-order perturbation p̄i (q̄i) in Eq. (18) (Eq.
(20)), whereas their combinations of integral multiples arise
from the perturbation terms ε l−1(p̄ppq̄qq)(l) (l ≥ 2). Therefore,
we define N principal classical frequencies (ωcl

1 , ...,ω
cl
N ) as

ωcl
i = ω̄i . (23)

We do not consider other frequencies n1ω̄1 + ...+nNω̄N with
small intensity.

Next, we represent ωcl
i as a function of the action vari-

ables in normal form J̄i for later comparison with a quantum
frequency ωqu

i . Using Eqs. (9), (10), (11), (12), (17), and (23),
we write the classical frequency of mode i, ωcl

i , as

ωcl
i =

∂ H̄
∂ J̄i

= ωi + ε2(2xiiJ̄i +2
N

∑
j ̸=i

xi j J̄ j)

+ε4

(
3yiiiJ̄2

i +3
N

∑
j ̸=i

(2yii j J̄iJ̄ j + yi j j J̄2
j )

+ 3
N

∑
j ̸=i

N

∑
k ̸=i∩k ̸= j

yi jkJ̄ j J̄k

)
+ ... , (24)

where ∑N
j ̸=i represents summation over j from 1 to N except

for the term with j = i, and ∑N
k ̸=i

∩
k ̸= j is the summation over

k but if k = i or k = j, the term is not included in the summa-
tion. The anharmonic constants xi j and yi jk depend on PES.
The anharmonic constants are invariant to swapping the mode
indices, i, j,k, etc.

Deriving Eq. (24) is the goal of this subsection. However,
before enclosing this subsection, let us address the situation
where some of J̄JJ are not constant, i.e. the second assumption
we made in the subsection 2.1 breaks down, which is caused
by resonances between some of harmonic frequencies:

N

∑
i=1

miωi ≈ 0 , (25)

where (m1, ...,mN) are integers. This is more likely to occur
particularly in larger systems (i.e. larger N). In such a case,

all classical frequencies ωωωcl also change in time because they
are functions of J̄JJ as seen from Eq. (24). We estimate how sig-
nificantly this occurs and whether it is meaningful to calculate
classical frequencies by monitoring fluctuation of ωωωcl along
the time evolution in subsection 4.2.

2.3 Quantum normal form theory

Here, we show the analytical expression of the quantum fre-
quency ωqu

i of an anharmonic oscillator, based on quantum
NFT. We then compare it with that of the classical frequency,
Eq. (24), given above.

The details of our procedure of the quantum NFT are given
in section II of ESI,† where we follow the review by Waalkens
and co-workers,36 with some minor modifications so that the
obtained result is easily comparable to the classical frequency.

First, let us define the operators of original Hamiltonian Ĥ
and the dynamical variables Ĵi, q̂i, p̂i (i = 1, ...,N):

Ĥ =
1
2

N

∑
i=1

(−h̄2 ∂ 2

∂q2
i
+ω2

i q2
i )+

1
6

N

∑
i=1

N

∑
j=1

N

∑
k=1

ci jkqiq jqk

+
1

24

N

∑
i=1

N

∑
j=1

N

∑
k=1

N

∑
l=1

di jklqiq jqkql + ... , (26)

q̂i = qi , (27)

p̂i =−ih̄
∂

∂qi
, (28)

Ĵi =
1

2ωi
(−h̄2 ∂ 2

∂q2
i
+ω2

i q2
i ) . (29)

Note that the PES of Ĥ is same as the classical system given
by Eqs. (2)–(4).

The purpose of the following procedure is to derive the
eigen value of vibrational Hamiltonian. In order to do that the
original operator of the vibrational Hamiltonian is transformed
to the new Hamiltonian operator in quantum normal form.

(Step 1) Transform the operators to the corresponding sym-
bols: Ĥ →Hs, Ĵi → Js

i , p̂i → ps
i , q̂i → qs

i . Symbols represented
with the superscript "s" are mathematically more tractable than
operators. See subsection 3.1.1 in the review.36 Like classical
variables, the symbols Hs, JJJs are the functions of (ppps,qqqs). In
this transformation the resulting functional forms of the sym-
bols Hs(ppps,qqqs), JJJs(ppps,qqqs) are same as the classical H(ppp,qqq)
and JJJ(ppp,qqq). In addition, since only their functional forms are
interested here, there is no need to distinguish (ppps,qqqs) from
(ppp,qqq). Therefore, we represent the symbols in the same way
as the classical variables H(ppp,qqq) and JJJ(ppp,qqq).
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(Step 2) Transform the symbols H(ppp,qqq) and JJJ(ppp,qqq) into
normal form. The direction of transformation is the same as
classical normal form: new Hamiltonian in quantum normal
form is represented using only JJJ. However, the actual mathe-
matical procedure is different from classical case. Because of
this, we represent the resulting Hamiltonian in quantum nor-
mal form as H ′ to distinguish it from classical H̄. Only its
functional form of H ′(JJJ) is interested here.

H ′(JJJ) =
N

∑
i=1

ωiJi + ε2(
N

∑
i=1

N

∑
j=1

xi jJiJ j +O(h̄2))

+ε4

(
N

∑
i=1

N

∑
j=1

N

∑
k=1

yi jkJiJ jJk

+
h̄2

24

N

∑
i=1

yiJi +O(h̄3)

)
+ ... , (30)

where O(h̄2) and O(h̄3) represent constants of the order of h̄2

and h̄3, which cancel in frequency expressions. Note that the
coefficients xi j and yi jk are the same as the classical case in
Eqs. (11) and (12), but yi is unique to quantum system. Those
unique terms to quantum mechanics arise due to the difference
between L̂m and M̂m (defined as Eq. (B20) and Eq. (S19) in the
ESI†) for the transformations of Hamiltonian.

(Step 3) Transform H ′ to the corresponding operator: H ′→
Ĥ ′.

Ĥ ′ =
N

∑
i=1

ωiĴi + ε2

(
N

∑
i=1

xii(Ĵ2
i +

h̄2

4
)

+
N

∑
i=1

N

∑
j ̸=i

xi j ĴiĴ j +O(h̄2)

)

+ε4

(
N

∑
i=1

yiii(Ĵ3
i +

5
4

h̄2Ĵi)

+3
N

∑
i=1

N

∑
j ̸=i

yii j(Ĵ2
i Ĵ j +

1
4

h̄2Ĵ j)

+
N

∑
i=1

N

∑
j ̸=i

N

∑
k ̸=i∩k ̸= j

yi jkĴiĴ j Ĵk +
1
24

h̄2
N

∑
i=1

yiĴi

+O(h̄3)

)
+... .

(31)

Transformation from Eq. (30) to Eq. (31) is performed by us-
ing

Op[Jm+1
i ] = ĴiOp[Jm

i ]+ (
h̄
2
)2m2Op[Jm−1

i ], (32)

Op[JiJ j] = ĴiĴ j (if i ̸= j), (33)

where Op[A] is operator of A (Op[A] = Â). See Eq. (3.98) in
literature.36 Consequently, the Hamiltonian operator in nor-
mal form is given by Eq. (31). The terms such as h̄2xii/4 in ε2

part and 5h̄2yiiiĴi/4 in ε4 part in Eq. (31) do not exist in Eq.
(30) or Eq. (9). They are unique to quantum systems.

2.4 Quantum frequency

Since the eigenvalue of Ĵk is h̄(vk +1/2), the eigenvalue of Ĥ ′

is obtained as follows.

E(v1, ...,vN)

= h̄
N

∑
i=1

ωi(vi +
1
2
)

+ε2h̄2

(
N

∑
i=1

xii(vi +
1
2
)2 +

N

∑
i=1

N

∑
j ̸=i

xi j(vi +
1
2
)(v j +

1
2
)

)

+ε4h̄3

(
N

∑
i=1

yiii((vi +
1
2
)3 +

5
4
(vi +

1
2
))

+3
N

∑
i=1

N

∑
j ̸=i

yii j((vi +
1
2
)2 +

1
4
)(v j +

1
2
)

+
N

∑
i=1

N

∑
j ̸=i

N

∑
k ̸=i∩k ̸= j

yi jk(vi +
1
2
)(v j +

1
2
)(vk +

1
2
)

+
1
24

N

∑
i=1

yi(vi +
1
2
)

)
+ ... . (34)

Eq. (34) is the well-known formula as the Dunham expansion
in the language of vibrational spectroscopy. Consequently,
the quantum mechanical frequency or transition energy from
(v1, ...,vi, ...,vN) to (v1, ...,vi +1, ...,vN) is given as follows.

ωqu
i ≡ 1

h̄
(E(v1, ...,vi +1, ...,vN)−E(v1, ...,vi, ...,vN))

= ωi + ε2h̄

(
2xii(vi +1)+2

N

∑
j ̸=i

xi j(v j +
1
2
)

)

+ε4h̄2
(

yiii(3(vi +1)2 +
3
2
)

+3
N

∑
i ̸= j

(2yii j(vi +1)(v j +
1
2
)+ y j ji(v j +

1
2
)2 +

1
4

y j ji)

+ 3
N

∑
j ̸=i

N

∑
k ̸= j∩k ̸=i

yi jk(v j +
1
2
)(vk +

1
2
)+

1
24

yi

)
+... . (35)

When ωqu
i is truncated at certain perturbation order n+1, we

define it as ωqu(n)
i .
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2.5 Condition of classical trajectory for predicting quan-
tum frequency

Since the classical and quantum frequencies are analytically
derived, the classical condition can be determined by com-
paring them with each other. By comparing the second-order
terms (ε2) in Eq. (24) with those in Eq. (35), we can see they
are the same with each other if all elements of J̄JJ are set as

J̄i = h̄(vi +1) , (36)

and

J̄ j = h̄(v j +
1
2
) , (37)

where i is the particular mode for the energy transition and j
represents all of the other modes. Here we define ωcl

i [vvvi] as the
ith classical frequency with the condition given by Eqs. (36)
and (37). Inserting Eqs. (36) and (37) into Eq. (24),

ωcl
i [vvvi] ≡ ωi + ε2

(
2xiih̄(vi +1)+2

N

∑
j ̸=i

xi jh̄(v j +
1
2
)

)

+ε4
(

3yiiih̄2(vi +1)2

+3
N

∑
j ̸=i

(2yii jh̄2(vi +1)(v j +
1
2
)+ yi j jh̄2(v j +

1
2
)2)

+3
N

∑
j ̸=i

N

∑
k ̸=i∩k ̸=i

yi jk(v j +
1
2
)(vk +

1
2
)

)
+ ... .

(38)

When ωcl
i [vvvi] is truncated at certain perturbation order n+ 1,

we define it as ωcl(n)
i [vvvi].

Comparing Eq. (38) with Eq. (35), we see that ωqu(2)
i is

equal to ωcl(2)
i [vvvi]. As non-perturbative approach, numerical

comparison is made in the following sections. Such approaches
are considered as infinite-order perturbation theory if the meth-
ods are accurate. The following conditions are equivalent to
Eqs. (36) and (37). (See Eq. (13).)

1
2

p̄i(0)2 = h̄ωi(vi +1) , (39)

1
2

p̄ j(0)2 = h̄ω j(v j +
1
2
) , (40)

1
2

q̄i(0)2 = 0 , (41)

1
2

q̄ j(0)2 = 0 . (42)

Here, t in p̄pp(t) specifies the time t of MD, i.e. q̄qq(0) and p̄pp(0)
are the initial coordinates and momenta, respectively. ωcl

i [vvvi]
is obtained from FT of the trajectory (ppp,qqq) or (p̄pp, q̄qq) with the
initial condition expressed by Eqs. (39) – (42).

ωcl
i [vvvi] is guaranteed to have the same accuracy as ωqu

i
in the second-order perturbation theory. In MD calculations,
however, the condition (Eqs. (36) and (37) or Eqs. (39) – (42) )
cannot be set up strictly, because the canonical transformation
(p̄pp(0), q̄qq(0))↔ (ppp(0),qqq(0)), which is necessary in actual MD
calculations (see next section), are performed perturbatively
and the perturbation is needed to be truncated at a certain or-
der. For this reason, we define another classical frequency:
ωcl(n)[m]

i [vvvi], where the order m specifies the perturbation or-
der for the initial condition to be determined and n is the same
as in ωcl(n)

i [vvvi]. In MD, frequencies are numerically obtained
(i.e. n = ∞) but the truncation is required in initial condition
(i.e. m is finite). ωcl(∞)[m]

i [vvvi] is the one that can be obtained
from MD.

The accuracy of ωcl(n)[m]
i [vvvi] can be estimated as follows.

If the canonical transformation (p̄pp(0), q̄qq(0))↔ (ppp(0),qqq(0)) is
performed at mth-order, we can only determine the initial con-
dition by

1
2

p̄(m)
i (0)2 = h̄ωi(vi +1) , (43)

1
2

p̄(m)
j (0)2 = h̄ω j(v j +

1
2
) , (44)

1
2

q̄(m)
i (0)2 = 0 , (45)

1
2

q̄(m)
j (0)2 = 0 , (46)

where p̄pp(m)(0), q̄qq(m)(0) are in normal forms but within mth-
order perturbation theory, i.e.

p̄(m)
i (0) = p̄i(0)+OError(εm+1) , (47)

q̄(m)
i (0) = q̄i(0)+OError(εm+1) , (48)

where OError indicates the order of error. From Eqs. (13), (47)
and (48),

J̄i
(m) ≡ 1

2ωi

(
p̄i

(m)2 +ω2
i q̄i

(m)2
)

(49)

= J̄i +OError(εm+1) , (50)

for i = 1, ...,N. Accordingly, the accuracy of the frequency
from such an approximated condition can be estimated as

ωcl(n)[m]
i [vvvi] = ωcl(n)

i [vvvi]+OError(εm+3) , (51)

as can be seen by inserting Eq. (50) into Eq. (24). Note that
in MD the frequency is not truncated, which means we can
assume it as the case of n = ∞.

3 Calculations

We show frequency calculations of H2O, C18H12, and C10H8.
The main purpose of H2O calculation is to show accuracy of
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ωcl(n)
i [vvvi] comparing with ωqu

i precisely at several perturbation
orders n: zeroth-, second-, and fourth-orders. Zeroth-order
frequency is the harmonic frequency. Second- and fourth-
order frequencies can be calculated following Eq. (35) and
Eq. (38), once the anharmonic coefficients x and y are cal-
culated by a canonical transformation. While analytical ex-
pressions are available for them, the infinite order frequencies
may be obtained by non-perturbative method. We assume that
the quantum frequencies that are numerically obtained by cc-
VSCF and VCI have the accuracy of infinite order perturbation
theory. We also perform MD calculations and see the accuracy
of ωcl(∞)[m]

i [vvvi] with m = 0,4. In addition, we check the effect
of difference between QFF and direct PES on frequency by
using those two types of PES in MD, cc-VSCF and VCI. For
PES, MP2/aug-cc-pVTZ level of theory is used for electronic
structure calculations. We show the overview of the whole
procedure in Fig. 1.

Fig. 1 Overview of the whole frequency calculations of H2O. We
calculate vibrational frequencies based on second-order and
fourth-order perturbation theories (left) using QFF, and
non-perturbative approaches (right) with MD and post-VSCF using
QFF or direct PES (darker-shaded area), and also classically and
quantum mechanically. See text for details. The symbols (open
square, open circle and filled triangle) designated to methods are the
same as in Fig. A in the ESI,† and the numbers in parentheses are
also used in the same way as those used in Fig. A and Table 1.

Calculations of C18H12 and C10H8 are meant to be tests of
MD as a practical vibrational analysis for larger systems. It
is expected in general that an accurate calculation of a clas-
sical frequency with the proposed condition (Eqs. (39)–(42)
or Eqs. (43)–(46)) is difficult because of the following rea-
son. The number of resonances between modes increases with

the system size. The more significantly resonances occur, the
assumption that approximately N conserved values exist be-
comes more invalid. If the resonance occurs, the spectrum be-
comes blur and the peaks shift along time evolution gradually.
In such a case it is difficult to assign a frequency in the spec-
trum, and the classical condition we set up breaks down. We
can know how significantly such resonances occur by check-
ing time evolution of power spectra.

We calculate direct PES with HF/STO-3G, the accuracy
of which is far from required accuracy to be compared with
experimental values. However, comparison with the quan-
tum frequency with the same electronic structure calculation
is meaningful. The reason for choosing HF/STO-3G as elec-
tronic structure calculation is limitation of the computational
cost.

3.1 Frequencies of H2O from perturbation theory

For the second- and fourth-order perturbation theories, we use
QFF PES given by

V (q1,q2,q3) =
1
2

3

∑
i=1

ω2
i q2

i +
1
6

3

∑
i=1

3

∑
j=1

3

∑
k=1

ci jkqiq jqk

+
1
24

3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

di jklqiq jqkql . (52)

Therefore, the first and second-order perturbation terms of
Hamiltonian are given by

H1 =
1
6

3

∑
i=1

3

∑
j=1

3

∑
k=1

ci jkqiq jqk , (53)

and

H2 =
1
24

3

∑
i=1

3

∑
j=1

3

∑
k=1

3

∑
l=1

di jklqiq jqkql . (54)

For classical frequencies, from Eq. (38) with vvvi = 000i (all of
(v1, ...,vN) are zero in Eqs. (36) and (37)), we obtain the second-
and fourth-order frequencies:

ωcl(2)
i [000i] = ωi + ε2h̄

(
2xii +

3

∑
j ̸=i

xi j

)
, (55)

and

ωcl(4)
i [000i] = ωcl(2)

i [000i]+ ε4h̄2
(

3yiii

+3
3

∑
j ̸=i

(yii j +
1
4

yi j j)+
3
4

3

∑
j ̸=i

3

∑
k ̸=i∩k ̸=i

yi jk

)
.

(56)
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Quantum frequencies are written in the same way. If vvv = 000
in Eq. (35), the second- and fourth-order fundamental quan-
tum frequencies for the transition (0, ...,0, ...,0)→ (0, ...,1, ...,0),
where the transition occurs in mode i, are obtained as follows:

ωqu(2)
i = ωi + ε2h̄

(
2xii +

3

∑
j ̸=i

xi j

)
, (57)

and

ωqu(4)
i = ωqu(2)

i + ε4h̄2
(

9
2

yiii

+3
3

∑
j ̸=i

(yii j +
1
2

yi j j)

+
3
4

3

∑
j ̸=i

3

∑
k ̸=i∩k ̸=i

yi jk +
1
24

yi

)
. (58)

We calculate the coefficients xi j, yi jk, and yi following the
procedures written in subsection I-2 and section II in the ESI†.
See also literatures36,37 concerning the details. xi j, yi jk, and yi
depend on the harmonic frequencies, ωi, and the force con-
stants, ci jk, and di jkl . The force constants are obtained at the
MP2/aug-cc-pVTZ level of theory using the GAMESS pack-
age.62,63

3.2 Frequencies of H2O from non-perturbative approach

Here, we show how to calculate ωcl(∞)[m]
i [000i] with m = 0,4

from FT of pi(t) from the MD trajectory. We use two types of
PES to generate dynamics. The first one is QFF PES given by
Eq. (52), and the second one is direct PES.

To set up the conditions given by Eqs. (43)–(46), we per-
form the following procedure.

Step 1: The molecular structure is optimized by means of
ab initio MO with the theoretical level of MP2/aug-cc-pVTZ.

Step 2: Normal mode analysis of the optimized geometry
is performed, and the harmonic frequencies ωωω are obtained.
The normal coordinates and conjugate momenta are expressed
in terms of the Cartesian coordinates rrr, namely,

rrr = LLLqqq , (59)

and

ṙrr = LLLppp , (60)

where LLL is a matrix obtained from normal mode analysis, and
rrr and ṙrr represent the position and velocity, respectively, in
Cartesian coordinates. In addition, the cubic and quartic po-
tential energy coefficients ci jk and di jkl are obtained at the op-
timized geometry.

Step 3: The initial values of p̄pp(m) and q̄qq(m) are determined
from Eqs. (43)–(46) using the harmonic frequencies ωωω calcu-
lated in Step 1.

Step 4: By means of the canonical transformation, the
original dynamical variables are expressed in terms of the trans-
formed variables, namely,

ppp = ppp(p̄pp(m), q̄qq(m)) , (61)

qqq = qqq(p̄pp(m), q̄qq(m)) . (62)

The initial conditions determined for p̄pp(m) and q̄qq(m) by Eqs.
(43)–(46) are expressed with respect to (rrr, ṙrr) using Eqs. (59)–
(62) for MD calculations. The Step 4 is not necessary when
m = 0, since

ppp = p̄pp(0) , (63)
qqq = q̄qq(0) . (64)

Trajectories are calculated by integrating Newton’s equa-
tion of motion with energies and forces obtained from QFF
(QFF-MD) or directly from ab initio molecular orbital theory
at each time step (direct-MD) with the theory of MP2/aug-cc-
pVTZ. We need to point out that in direct-MD the dynamics is
generated directly, but the canonical transformation to define
the initial conditions in Step 4 is performed with QFF if m> 0.
The effect of using QFF PES for canonical transformation
but generating dynamics direct PES is discussed in the result
section. The classical nuclear trajectories are integrated with
a constant total energy using a fourth-order Gear predictor–
corrector algorithm;64 a time step of 0.1 fs is used to ensure
the numerical accuracy. The total number of steps is 5000 for
each trajectory calculation. We used the HONDO2004 pro-
gram.65

Three trajectories are run in order to obtain three frequen-
cies of different modes of H2O with the different initial con-
ditions.

As non-perturbative approach to obtain ωqu(∞), cc-VSCF
calculations are performed using GAMESS program package.62,63

The PES used for cc-VSCF calculations and the level of elec-
tronic structure calculation are the same as those used in the
MD calculations.

3.3 Frequencies of C18H12 and C10H8

For C18H12 and C10H8, we calculate ωcl(∞)[0]
i [000i] and com-

pare it with ωqu(2)
i . Direct-MD is performed for generating

dynamics. The electronic structure calculations are done with
HF/STO-3G. The force constants and the second-order per-
turbation theory for quantum frequencies are carried out using
Gaussian09 program package.66

In order to obtain N frequencies of different modes, N tra-
jectories are run with different initial conditions.
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4 Results and discussion

4.1 H2O

The obtained classical and quantum frequencies are shown in
Table 1 and also plotted in Fig. A in the ESI†. (Hereafter [000i]

and i in ωcl(n)
i [000i] and ωqu

i are abbreviated.) One of the trajec-
tories is shown in Fig. B in the ESI† as example.

Classical and quantum frequencies agree within second-
order perturbation theory as addressed in subsection 3.5 with
the classical condition therein. They are compared with each
other in fourth- and infinite-orders to see the deviations.

In Table 1 the zeroth-order frequencies (1) are the har-
monic frequencies, and analytical expressions of second-order
frequencies (2) ωqu(2) and ωcl(2) are given by Eqs. (57) and
(55), and fourth-order frequencies (3) ωqu(4), ωcl(4) are given
by Eqs. (58) and (56), respectively. In non-perturbative ap-
proaches (5), cc-VSCF is used in this work for ωqu(∞) and MD
is used for ωcl(∞)[4]. ωcl(∞)[0] is also shown taken from our
previous calculations.16 Experimental values67 (6) are also
shown.

First, let us discuss perturbative calculations (1)–(3). The
ωqu(2) and ωcl(2) are the same in the condition of Eqs. (36) and
(37). The fourth-order frequencies ωqu(4) and ωcl(4) are no
longer the same. Nonetheless, the differences between them
are very small: ωqu(4) −ωcl(4) = 20 cm−1, -2 cm−1, and -7
cm−1 for the symmetric stretching, bending, and antisymmet-
ric stretching vibrational modes, respectively.

Next, we discuss non-perturbative approaches (4,5). In
MD, there are two complications as to the level of accuracy:
first, even though MD is a non-perturbative approach, the ini-
tial condition is determined based on the perturbative canoni-
cal transformation. Second, in direct-MD (5), the qualities of
PES are different between initial condition (QFF) and dynam-
ics (direct). The clue to estimate the accuracy is Eqs. (47)–
(51): the error comes from truncation of canonical transforma-
tion (εm+1) for initial condition gives a smaller error (εm+3) in
the frequency. Therefore we can say that ωcl(∞)[4] from QFF
MD (4) are as accurate as ωcl(6). In the same sense, using QFF
PES for canonical transformation in the initial condition deter-
mining process gives a smaller error in frequency than using
it for dynamics.

Similar to the fourth-order perturbation theory, the differ-
ences between ωqu(∞) from cc-VSCF and ωcl(∞)[4] with QFF
PES are ωqu(∞)−ωcl(∞)[4] = 11 cm−1, −1 cm−1, and −1 cm−1,
and with direct PES: ωqu(∞)−ωcl(∞)[4] = 3 cm−1, -30 cm−1,
and -33 cm−1, for the symmetric stretching, bending, and an-
tisymmetric stretching modes, respectively. Those differences
are possibly due to inaccuracy of cc-VSCF not MD because if
the more reliable direct-VCI is used as ωqu(∞), the differences
are smaller. From literature,2 ωqu(∞) values are 3647 cm−1,
1576 cm−1, and 3760 cm−1, and ωqu(∞)−ωcl(∞)[4] = 4 cm−1,

Table 1 Fundamental frequencies (ωqu(n), ωcl(n), ωcl(n)[m]) of H2O
in cm−1. Non-perturbative approaches are used for n = ∞. The level
of electronic structure calculations is MP2/aug-cc-pVTZ.

Symmetric stretching
PESa Quantum Classical
(1) – ωqu(0) 3800 ωcl(0) 3800

(2) QFF ωqu(2) 3643 ωcl(2) 3643
(3) QFF ωqu(4) 3685 ωcl(4) 3665
(4) QFF ωqu(∞) 3687b ωcl(∞)[4] 3676

(5) Direct ωqu(∞) 3646b ωcl(∞)[0] 3640d

(5) Direct ωqu(∞) 3647c ωcl(∞)[4] 3643
(6) Experimental 3657e

Bending
PESa Quantum Classical
(1) – ωqu(0) 1626 ωcl(0) 1626

(2) QFF ωqu(2) 1565 ωcl(2) 1565
(3) QFF ωqu(4) 1556 ωcl(4) 1558
(4) QFF ωqu(∞) 1556b ωcl(∞)[4] 1557

(5) Direct ωqu(∞) 1547b ωcl(∞)[0] 1578d

(5) Direct ωqu(∞) 1576c ωcl(∞)[4] 1577
(6) Experimental 1595e

Antisymmetric stretching
PESa Quantum Classical
(1) – ωqu(0) 3923 ωcl(0) 3923

(2) QFF ωqu(2) 3743 ωcl(2) 3743
(3) QFF ωqu(4) 3787 ωcl(4) 3794
(4) QFF ωqu(∞) 3787b ωcl(∞)[4] 3788

(5) Direct ωqu(∞) 3744b ωcl(∞)[0] 3751d

(5) Direct ωqu(∞) 3760c ωcl(∞)[4] 3777
(6) Experimental 3756e

a The numbering of methods (1)–(6) is consistent with Fig. 1 and
Fig. A in the ESI†. b From cc-VSCF. c From VCI. 1 d From previous
work.16 e The experimental values. 67

-1 cm−1, and -17 cm−1, for the symmetric stretching, bending,
and antisymmetric stretching modes, respectively.

From Fig. A in the ESI,† we can say that quantum and
classical frequencies converge as increasing order of perturba-
tion theory (1)–(4), but slightly changes if PES is changed to
direct (5). Results from direct-MD and direct-VCI are more
close to the experimental values (5) than from QFF-MD and
cc-VSCF with QFF PES, respectively.

In practical point of view, however, ωcl(∞)[0] is much eas-
ier to calculate than ωcl(∞)[4] from MD, because ωcl(∞)[0] re-
quires only normal mode analysis to determine the initial con-
dition whereas ωcl(∞)[4] requires higher order force constants
and performing the canonical transformation. ωcl(∞)[0] from
direct-MD also well agrees with ωqu(∞) from direct-VCI: ωqu(∞)−
ωcl(∞)[0] = 7 cm−1, −2 cm−1, and 9 cm−1. The differences of
ωcl(∞)[0] from experimental values are also small: 17 cm−1, 17
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cm−1, and 5 cm−1.
Summarizing the results of H2O, quantum and classical

frequencies are close to each other by applying the proper
condition given by Eqs. (36)–(37). Even in higher orders of
perturbation, the agreement is reasonable.

4.2 C18H12 and C10H8

Direct-MD calculations of C18H12 and C10H8 are carried out
based on the condition Eqs. (39)–(42) with m = 0:

1
2

p̄(0)i (0)2 = h̄ωi(vi +1) , (65)

1
2

p̄(0)j (0)2 = h̄ω j(v j +
1
2
) , (66)

1
2

q̄(0)i (0)2 = 0 , (67)

1
2

p̄(0)j (0)2 = 0 . (68)

In order to calculate N frequencies of different modes, N tra-
jectories are run with different initial conditions, i.e. different
i in Eqs. (65)–(68). From each trajectory, ωcl(∞)[0] is calcu-
lated, and it is compared with ωqu(2) calculated by second-
order perturbation theory (2PT). Note that direct PES is used
for ωcl(∞)[0] but QFF is used for ωqu(2). The level of electronic
structure calculation is HF/STO-3G.

We calculate 4 C–H stretching modes of C18H12 and 8 C–
H stretching modes of C10H8 as shown in Figs. 2 and 3, re-
spectively. In each MD calculation, since energies are given
to all vibrational modes in each trajectory, there are several
peaks in each spectrum. In order to extract the peak corre-
sponding to ith mode, the trajectory needs to be projected to
the ith normal mode. We project the MD trajectories to the
quasi-normal coordinates as defined bellow, instead of rigor-
ous projection to normal coordinates, which is cumbersome
in such large molecules. The time derivative of quasi-normal
coordinate Qi is defined as:

dQi

dt
=

NC–H

∑
j=1

si j
dr j

dt
, (69)

where r j is jth C–H bond length, NC–H is the number of C–
H bonds, si j is either +1 or −1 depending on the direction of
ith C–H bond vibration contributing to the quasi-normal mode
Qi. See Figs. 2 and 3.

Power spectra are obtained from FT of Q̇i. The power
spectra of C18H12 are shown in Figs. 4–7 from the MD cal-
culations with initial conditions for 1–4 mode frequencies, re-
spectively. The power spectra of C10H8 are shown in the ESI.†

The spectra in each figure were obtained from three time-
windows of the same trajectory: 0.0 – 0.5 ps, 0.1 – 0.6 ps,
and 0.2 – 0.7 ps. Each time-window has 0.5 ps length of time,

Fig. 2 C–H vibrational modes 1 to 4 of C18H12, which are
calculated by MD. The labels of modes are numbered from the
highest harmonic frequencies.

FT of which gives 67 cm−1 intervals between the neighboring
discrete values in frequency domain. In order to make the in-
tervals smaller, we put zero as fictitious data outside of the 0.5
ps time-windows and make the time length 13 ps which gives
1.3 cm−1 of intervals. This procedure does not affect the posi-
tions of the major peaks, but gives small artificial oscillations
on the feet of peaks due to the discontinuous change in time
domain at the edge of the time-window.

We consider the top of the main peaks in spectra from time
windows of 0.0 – 0.5 ps as the classical frequencies calcu-
lated with the condition given by Eqs. (65)–(68) as indicated
by black arrows in Figs 4–7. After a certain time of dynam-
ics, classical frequencies generally shift to lower or higher fre-
quency region because of the resonance between modes. If
the peak is widely shifted, the corresponding frequency is no
longer equivalent to the one calculated from Eqs. (65)–(68)
and the calculated frequency may not be comparable to quan-
tum frequency. We estimate the magnitude of a peak shift
during dynamics by calculating

∆ω ≡
[1

2
(
(ω0.0−0.5 −ω0.1−0.6)

2 (70)

+(ω0.0−0.5 −ω0.2−0.7)
2)] 1

2
,
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where ωt1−t2 is the peak position of spectrum in the time-
window (t1 ps – t2 ps). For instance, ω0.0−0.5 is indicated by
the black arrow in each power spectrum.

From Fig. 5 and Fig. 7, we can see that the classical condi-
tion to calculate the corresponding frequencies (mode 2 and 4,
respectively) are well conserved, because the shapes of spec-
tra are similar in the three time-windows. Validity of mode 3
calculation in Fig. 6 is questionable even at 0.0 – 0.5 ps, be-
cause the spectrum of initial time window is already split in
multiple peaks. The split is likely due to resonances between
vibrational modes. It also occurs in mode 1 calculation in Fig.
4 after 0.5 ps.

We show the frequencies of those peaks with ∆ω in Table 2
(also shown by arrows in Figs. 4–7). The differences between
ωqu(2)

i and ωcl(∞)[0]
i are small (−7, −14, −2 cm−1) in modes

1, 2, and 4. That the difference in mode 3 is large is accounted
for by the fact that ∆ω is large and ωcl(∞)[0]

3 is not reliable.

Table 2 Frequencies of C18H12 in cm−1. The level of electronic
structure calculations is HF/STO-3G.

Mode Harmonic ωqu(2) ωcl(∞)[0](±∆ω) ωqu(2) −ωcl(∞)[0]

1 3742 3640 3647(±52) -7
2 3742 3663 3677(±3) -14
3 3735 3641 3599(±113) 42
4 3735 3654 3656(±10) -2

In the same way, the classical frequencies are obtained for
C10H8. The obtained spectra are shown section V in the ESI
and the frequencies are given in Table 3. Even though ∆ω
are small in modes 1–3, the difference between ωqu(2) and
ωcl(∞)[0] is relatively larger in C10H8 comparing C18H12 and
H2O. Possible factors of these disagreements are the inherent
error O(ε3) in MD calculation (Eq. (51)) and the difference of
QFF in 2PT and direct PES in MD. Because of those factors,
we cannot conclude which is more reliable. As long as ∆ω is
small, ωcl(∞)[0] is considered to be comparable to ωqu(2).

Table 3 Frequencies of C10H8 in cm−1. The level of electronic
structure calculation is HF/STO-3G.

Mode Harmonic ωqu(2) ωcl(∞)[0](±∆ω) ωqu(2) −ωcl(∞)[0]

1 3744 3649 3705(±4) -56
2 3743 3663 3684(±10) -21
3 3735 3652 3680(±7) -28
4 3735 3656 3702(±18) -46
5 3721 3620 3615(±98) 5
6 3720 3639 3686(±29) -47
7 3712 3612 3666(±29) -54
8 3707 3599 3490(±119) -109

Second-order perturbation theory or post-VSCF methods
are efficient by taking advantage of QFF PES. However con-

structing QFF requires enormous costs for large systems, and
direct-MD is more efficient in such cases. The total num-
ber of fourth-order force constant (di jkl) is 3na−6C4 (if indices
(i, j,k, l) are different). For C18H12 this number is 1929501
(na = 30). Direct-MD requires (3na −6)Nstep energy and gra-
dient calculations (420000 for C18H12), if all modes’ frequen-
cies are calculated, where Nstep is the number of time step
and is 5000 in our analysis. Thus, for such a large system as
C18H12 direct-MD has advantage in computational cost over
2PT using QFF.

5 Conclusion

We determined the proper initial condition Eqs. (39) – (42)
for MD to calculate fundamental frequency, based on classical
and quantum normal form theories. Because of the similarity
between the classical Hamiltonian and the quantum Hamilto-
nian operator in normal form, the classical frequency in that
condition is equivalent to the quantum frequency (fundamen-
tal frequency) within the second-order perturbation theory.

In the case of H2O calculations, we found that (1) the
agreement between classical and quantum frequencies are good
in fourth-order perturbation theory and non-perturbative ap-
proaches using MD and post-VSCF calculations and (2) direct
evaluation of PES is important to obtain accurate fundamental
frequencies.

We also proposed an approximated proper condition given
by Eqs. (43) and (46) with m = 0 for practical application of
MD. Only normal mode analysis is required to set up that con-
dition. Nevertheless, the quality of such a classical frequency
is also as reliable as the second-order perturbation theory in
quantum mechanics as indicated by Eq. (51). Computational
cost of direct-MD with such an initial condition can be lower
than the second-order perturbation theory for large molecules
such as C18H12 as we demonstrated because analytical anhar-
monic PES such as QFF is not required in direct-MD. A dis-
advantage of MD is it may be impossible to calculate the fre-
quencies of certain modes because of the resonances between
different modes.
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Fig. 3 C–H vibrational modes of C10H8, which are calculated by
MD. The labels of modes are numbered from the highest harmonic
frequencies.
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Fig. 4 Power spectrum of C18H12 from the MD calculation for
ωcl(∞)[0]

1 . Intensity (I) is normalized by the total value (I0). The
black arrow indicates the classical frequency of 0.0 ps – 0.5 ps.
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Fig. 5 Power spectrum of C18H12 from the MD calculation for
ωcl(∞)[0]

2 . Intensity (I) is normalized by the total value (I0). The
black arrow indicates the classical frequency of 0.0 ps – 0.5 ps.
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Fig. 6 Power spectrum of C18H12 from the MD calculation for
ωcl(∞)[0]

3 Intensity (I) is normalized by the total value (I0). The black
arrow indicates the classical frequency of 0.0 ps – 0.5 ps.
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Fig. 7 Power spectrum of C18H12 from the MD calculation for
ωcl(∞)[0]

4 . Intensity (I) is normalized by the total value (I0). The
black arrow indicates the classical frequency of 0.0 ps – 0.5 ps.
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