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We investigate the mechanical properties and stabilities of planar α-Boron monolayers under various large strains using density

functional theory (DFT). The α-Boron has a high in-plane stiffness, about 2/3 of that of graphene, which suggest that α-Boron is

four times as strong as iron. The potential profiles and the stress-strain curves indicate that the free standing α-Boron monolayer

can sustain large tensile strains, up to 0.12, 0.16, and 0.18 for armchair, zigzag, and biaxial deformations, respectively. The third,

fourth, and fifth order elastic constants are indispensable for accurate modeling of the mechanical properties under strains larger

than 0.02, 0.06, and 0.08 respectively. The second order elastic constants, including in-plane stiffness, are predicted to monoton-

ically increase with pressure, while the trend of Poisson ratio is reversed. The surface sound speeds of both compressional and

shear waves increase with pressure. The ratio of these two sound speeds increases with the increase of pressure and converges

to a value of 2.5. Our results imply that α-Boron monolayers are mechanically stable under various large strains with advanced

mechanical properties–high strength and high flexibility.

1 INTRODUCTION

Similar to the element of carbon, boron has diverse forms

of low-dimensional allotropic structures, predicted theoreti-

cally1–18 and observed in experiments19–24. The 2D struc-

ture of the boron monolayer is especially interesting since

the planar structure serves as the building block of 0D struc-

tures (flullerenes) by wrapping, 1D structures (nanotubes) by

rolling, 3D structures (bulk) by stacking25. To the authors’

best knowledge, the exact atomic structure of the boron mono-

layer sheet has not been determined from experiments, except

an indirect evidence of the interlayer distance within multi-

walled boron nanotubes (MWBNTs) being 3.2 Å 26. On the

contrary, various crystalline structures of monolayer structures

of boron are predicted from ab initio computations, including

α-8,27–29, β -27,28, γ-3,27, g1/8-, and g2/15-sheets9. Distinctly

different in structure, they all lie in a rather narrow range of

vacancy concentrations of 10-15%. A first-principles-based

global research of lowest-energy structures of the 2D boron

sheets concludes that α sheets (Fig. 1) is the leading candi-

dates10,27,28,30. Thus, we only focus on the α-Boron mono-
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Fig. 1 Geometry and structure (a) Top-view and (b) side-view of

the α-Boron monolayer plane; (c) the unit cell with simulation box

and boron atoms; (d) the orientations of the system.

layers in this study.

All the 2D Boron monolayer structures are determined by

the ground-state energy minimization, which however ignores

the profiles of the potential wells. In other words, the stabil-

ity of the structure under disturbance is unknown. In addition,

it is desired to know the mechanical properties of Boron 2D

monolayer for three reasons. First, it is critical in designing

parts or structures regarding their practical applications31. For

instance, the application in the high-end bendable electron-

ics requires the integration of the boron 2D monolayers with

stretchable polymer substrates. Second, strain engineering is

a common and important approach to tailor the functional and
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structural properties including bandgaps32 and radiation hard-

ness33 of nanomaterials34,35. At last, nanomaterials is vulner-

able to strain with or without intent because of its monatomic

thickness36,37. For instance, there are strains because of the

mismatch of lattice constants. In addition, elastic limits and

tolerances are desirable for functional manipulation38.

The goal of this paper is to study the mechanical stabilities

and properties of α-Boron sheets, the leading lowest-energy

Boron 2D monolayer structures. We used ab initio density

functional theory calculations to model their responses under

various mechanical loadings. The total energies of the system,

forces on each atom, and stresses on the simulation boxes are

directly obtained from DFT calculations. The response of the

Boron 2D monolayers under the nonlinear deformation and

fracture is studied, including ultimate strength and ultimate

strain. The high order elastic constants are obtained by fitting

the stress-strain curves to analytical stress-strain relationships

that belong to the continuum formulation39. Based on our re-

sult of the high order elastic constants, the pressure dependent

properties, such as sound speeds and the second order elastic

constants, including the in-plane stiffness, are predicted. Our

results are compared to that of graphene, graphene-like Boron

Nitride (g-BN), and graphene-like silicon monolayers g-Si.

The results of graphene40, g-BN39 and g-Si41 were reported

previously. Because these three structures are experimentally

fabricated, well known, and well studied, they can serve as a

reference to α-Boron sheets as they have similar structures.

Our results for the continuum formulation could also be use-

ful in finite element modeling of the multi-scale calculations

for mechanical properties of Boron 2D monolayer at the con-

tinuum level42. The organization of this paper is as follows.

Section II presents the computational details of DFT calcula-

tions. The results and analysis are in section III, followed by

conclusions in section IV.

2 DENSITY FUNCTIONAL THEORY CAL-

CULATIONS

The structures of monolayer α-Boron are explicitly examined

in this study because α-Boron is the first leading candidates

for the lowest energy structures10,27,28. As convention, we de-

fine the armchair direction as the nearest neighbor direction

and the zigzag direction is perpendicular to it within the atomic

plane formed by nearest neighbors. The periodic boundary

conditions along the plane are applied. The total energies of

the system, forces on each atom, stresses, and stress-strain re-

lationships of boron 2D monolayers under the desired defor-

mation configurations are characterized via DFT. The calcu-

lations were carried out with the Vienna Ab-initio Simulation

Package (VASP)43,44 which is based on the Kohn-Sham Den-

sity Functional Theory (KS-DFT)45 with the generalized gra-

dient approximations as parameterized by Perdew, Burke, and

Ernzerhof (PBE) for exchange-correlation functions46 since

it was reported to be reliable in modeling Boron nanomateri-

als47. The electrons explicitly included in the calculations are

the 2s22p1 electrons for boron atoms. The core electrons are

replaced by the projector augmented wave (PAW) and pseudo-

potential approach48. A plane-wave cutoff of 500 eV is used

in all the calculations. The convergence of the total energy and

forces is 10−5 eV and 10−3 eV/Å, respectively. The calcula-

tions are performed at zero temperature.

The atomic structures of all the deformed and undeformed

configurations were obtained by fully relaxing a 9-atom-unit

cell where all atoms were placed in one plane. The simulation

invokes periodic boundary conditions for the two in-plane di-

rections. There is a 15 Å thick vacuum region to reduce the

inter-layer interaction to model the single layer system. To

eliminate the artificial effect of the out-of-plane thickness of

the simulation box on the stress, we use the the second Piola-

Kirchhoff stress39 to express the 2D forces per length with

units of N/m.

All of the boron sheets can be constructed by carving dif-

ferent patterns of hexagonal holes within the triangular sheet.

The perfect triangle sheet has the atomic lattice point group

D3h. For a general deformation state, the number of indepen-

dent components of the second, third, fourth, and fifth order

elastic tensors are 21, 56, 126, and 252 respectively. How-

ever, there are only fourteen independent elastic constants that

need to be explicitly considered due to the symmetries of the

atomic lattice point group D3h, which consists of a three-fold

rotational axis and three mirror planes.

The fourteen independent elastic constants of 2D boron are

determined by a least-squares fit to the stress-strain results

from DFT calculations in two steps, detailed in our previ-

ous work39, which had been well used to explore the me-

chanical properties of 2D materials40,41,49–58. A brief intro-

duction is that, in the first step, we use a least-squares fit of

five stress-strain responses. Five relationships between stress

and strain are necessary because there are five independent

fifth-order elastic constants (FFOEC). We obtain the stress-

strain relationships by simulating the following deformation

states: uniaxial strain in the zigzag direction (zigzag); uniax-

ial strain in the armchair direction (armchair); and equibiaxial

strain (biaxial). From the first step, the components of the

second-order elastic constants (SOEC), the third-order elas-

tic constants (TOEC), and the fourth-order elastic constants

(FOEC) are over-determined (i.e, the number of linearly inde-

pendent variables are greater than the number of constrains),

and the fifth-order elastic constants are well-determined (the

number of linearly independent variables are equal to the num-

ber of constrains). Under such circumstances, the second step

is needed: least-square solution to these over- and well- deter-

mined linear equations.
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3 RESULTS AND ANALYSIS

3.1 Atomic structure

Previous studies show that α-sheet is a leading candidate

for the most stable planar (or locally unbuckled) boron

sheet10,27,28 . A special structural feature of α-sheet is that ev-

ery center-occupied hexagon is isolated from each other. The

α-Boron sheets are perfectly flat, as illustrated from the side-

view of the plane in Fig. 1(b), and we pay special attention to

this structure in this study.

We first optimized the geometry of the unit cells of the α-

Boron monolayer which contains eight boron atoms. The most

energetically favorable structure is set as the strain-free struc-

ture in this study. The optimized atomic structures, as well as

the conventional cells are shown in Fig. 1. Our atomic struc-

ture is in good agreement with previous DFT calculations.

3.2 Energy Profile

When strain is applied, the system will be disturbed away from

the equilibrium state. Since the configuration energy of the

strain-free configuration is the minima of the potential well,

any strain will increase the system’s energy. By applying dif-

ferent amounts of strain along different directions, the poten-

tial well can be explored. Once the strain is applied, all the

atoms of the system are allowed full freedom of motion. A

quasi-Newton algorithm is used to relax all atoms into equi-

librium positions within the deformed unit cell that yields the

minimum total energy for the imposed strain state of the super

cell.

Both compression and tension are considered with La-

grangian strains ranging from -0.1 to 0.3 with an increment of

0.02 in each step for all three deformation modes. It is impor-

tant to include the compressive strains since they are believed

to be the cause of the rippling of the free standing atomic

sheet59. It was observed that a graphene sheet experiences

biaxial compression after thermal annealing60, which could

also happen with Boron 2D monolayers. Such an asymmet-

rical range was chosen due to the non-symmetric mechanical

responses of material, as well as its mechanical instability61,

to the compressive and the tensile strains, as illustrated in the

next subsection.

We define the strain energy per atom Es = (Etot −E0)/n,

where Etot is the total energy of the strained system, E0 is the

total energy of the strain-free system, and n = 8 is the num-

ber of atoms in the unit cell. This size-independent quantity

is used for comparison between different systems. The Es of

the α-Boron monolayer as a function of strain in uniaxial arm-

chair, uniaxial zigzag, and biaxial deformation are plotted in

Fig. 2a. The result of the potential profile of α-Boron is com-

pared with that of graphene (Fig. 2b) and g-BN (Fig. 3c). Es

is anisotropic with strain direction. Es is non-symmetrical for

Fig. 2 Energy profile The strain energy per atom under uniaxial

strain in armchair and zigzag directions, and equibiaxial strains of

α-Boron (a), compared with graphene (b) and g-BN (c).
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compression (η <0) and tension (η >0) for all three modes.

This non-symmetry indicates the anharmonicity of the Boron

2D monolayer structures. The harmonic region where the Es

is a quadratic function of applied strain can be taken between

-0.02< η <0.02. The stresses, derivatives of the strain ener-

gies, are linearly increasing with the increase of the applied

strains in the harmonic region.

The anharmonic region is the range of strain where the lin-

ear stress-strain relationship is invalid and higher order terms

are not negligible. With even larger loading of strains, the

systems will undergo irreversible structural changes, and the

systems are in a plastic region where they may fail. The maxi-

mum strain in the anharmonic region is the critical strain. The

critical strain under uniaxial armchair, uniaxial zigzag, and bi-

axial deformation is ηa
c = 0.30, ηz

c = 0.24, and ηb
c = 0.30, re-

spectively. The width of the stable region is the opening width

of the potential energy well (Fig. 2). The opening width of the

potential energy well ηs could serve as a scale to quantify the

stability of nano structures. Thus the average width of the sta-

ble regions of the three deformation modes (i.e., the opening

width of the potential energy wells) is a reasonably good scale

for the mechanical stabilities of the nano structures, denoted

as ηs. As a result, from the point view of potential energy, we

conclude that α-Boron is mechanically stable. However, it is

less stable than graphene and g-BN as expected.

The ultimate strains are determined as the corresponding

strain of the ultimate stress, which is the maxima of the stress-

strain curve, as discussed in the following section. Note that in

general the compressive strains will cause rippling of the free-

standing thin films, membranes, plates, and nanosheets59.

The critical compressive strain for rippling instability is much

less than the critical tensile strain for fracture, for example,

0.0001% versus 2% in graphene sheets61. However, the rip-

pling can be suppressed by applying constraints, such as em-

bedding (0.7% )62, substrates (0.4% before heating)60, ther-

mal cycling on SiO2 (0.05%)63 and BN (0.6%)64, and sand-

wiching65. Our study of compressive strains is important in

understanding the mechanics of these non-rippling applica-

tions. The rippling phenomena are interesting and important,

which is, however, out the scope of this study.

3.3 Stress-strain relationships

The second P-K stress versus Lagrangian strain relationships

of α-Boron sheets for uniaxial strains along the armchair

and zigzag directions, as well as biaxial strains, are shown

in Fig. 3a, compared with that of graphene (Fig. 3b) and g-

BN (Fig. 3c), since these two nano materials were extensively

studied and well known. The results show that the α-Boron

sheets can sustain large strains. The ultimate tensile strength is

the maximum stress that a material can withstand while being

stretched, and the corresponding strain is the ultimate strain.

Table 1 Elastic limits Ultimate strengths (Σa
m,Σz

m,Σb
m) in units of

N/m and ultimate strains (ηa
m, ηz

m, ηb
m) under uniaxial strain

(armchair and zigzag) and biaxial from DFT calculations, compared

with graphene, g-BN, and g-Si.

α-Boron Graphenea g-BNb g-Sic

Σa
m 12.8 28.6 23.6 6.3

ηa
m 0.12 0.19 0.18 0.15

Σz
m 16.0 30.4 26.3 6.0

ηz
m 0.16 0.23 0.26 0.16

Σb
m 18.1 32.1 27.8 6.3

ηb
m 0.18 0.23 0.24 0.15

a Ref.40;
b graphene-like Boron nitride monolayer from Ref.39;

c graphene-like silicon monolayer from Ref.57;

Under ideal conditions, the critical strain is larger than the ul-

timate strain. The systems of perfect α-Boron sheets under

strains beyond the ultimate strains are in a meta-stable state.

The ultimate tensile strain, which reflects the intrinsic bonding

strengths and acts as a lower limit of the critical strain, should

be considered when exploring the potential applications.

The ultimate tensile strains of α-Boron sheets are 0.12,

0.16, and 0.18 along the armchair, zigzag, and biaxial, respec-

tively (Table 1). The ultimate tensile stresses are 12.8, 16.0,

and 18.1 N/m for the armchair, zigzag, and biaxial strains, re-

spectively. The α-Boron sheets exhibits a large ultimate ten-

sile stress of 18.1 N/m, which is about 56.6 GPa if we take the

monolayer height of 3.2 Å 26. Such a large ultimate tensile

stress could serve as an another evidence of its stability and

bond strengths.

The ultimate strengths and strains corresponding to the dif-

ferent strain conditions are summarized in Table 1, compared

with that of graphene, g-BN, and planar silicene (g-Si). since

they have similar structure and they are close to each other in

the periodic table. The α-Boron sheet behaves in an asym-

metric manner with respect to compressive and tensile strains.

With increasing strains, the B-B bonds are stretched and even-

tually rupture. The positive slope of the stress-strain curves

and the positive ultimate tensile stresses indicate that this

structure is mechanical stable. The α-Boron has smaller ul-

timate tensile strengths than graphene and g-BN, but larger

than g-Si. This indicates that α-Boron will have a better me-

chanical performance than g-Si which had been fabricated, but

worse than graphene and g-BN as expected.

We examined the elastic stability under pure shearing along

the armchair direction. The stress-strain relationship is shown

in Fig. 4. The α-Boron monolayers are stable in the examined

range of shearing as of -0.1 to 0.2.

Our results show that the α-Boron sheet has good me-
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Fig. 3 Stress-strain responses The stress-strain relationships of the α-Boron monolayers under the armchair, zigzag, and biaxial strains. Σ1

(Σ2) denotes the x (y) component of stress. “Cont” stands for the fitting of DFT calculations (“DFT”) to continuum elastic theory. The

compressive domain is η < 0 (cyan) and the tensile domain is η > 0 (green). The harmonic region is η ≤ ηh and the anharmonic region is

ηh < η ≤ ηm. The mechanically unstable region is η > ηm (yellow region), and the mechanically stable region is η ≤ ηm.
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Fig. 4 Shearing The stress-strain relationships of the α-Boron

monolayers under pure shearing along the armchair direction. Σ1

(Σ2) denotes the x (y) component of stress. The insets are the

snapshots of the configurations under different shearing state.

chanical performance under various strains. The stress-strain

curves indicate that the α-Boron sheet is a stable structure un-

der mechanical strains. Recall that the potential wells of α-

Boron sheet are also wide open with high instability barriers

(Fig. 2). Our results are consistent with previous highly ac-

curate PBE0 calculations which concluded that the α-Boron

sheet has largest cohesive energy and dynamical stabilities

from phonon calculations10.

Note that the softening of the Boron 2D monolayers under

strains beyond the ultimate strains only occurs for ideal con-

ditions. The systems under this circumstance are in a meta-

stable state, which can be easily destroyed by long wavelength

perturbations and vacancy defects, as well as high tempera-

ture effects, and enter a plastic state66. Thus only the data

within the ultimate strain has physical meaning and was used

in determining the high order elastic constants in the following

subsection.

3.4 Elastic Constants

The elastic constants are critical parameters in finite element

analysis models for mechanical properties of materials42. Our

results of these elastic constants provide an accurate contin-

uum description of the elastic properties of Boron 2D mono-

layers from ab initio density functional theory calculations.

They are suitable for incorporation into numerical methods

such as the finite element technique.

The second order elastic constants model the linear elastic

response. The higher (> 2) order elastic constants are impor-

tant to characterize the nonlinear elastic response of Boron 2D

monolayers using a continuum description. These can be ob-

tained using a least squares fit of the DFT data and are reported

in Table 2. Corresponding values for graphene are also shown.

The in-plane Young’s modulus Ys (or stiffness) and Poison’s

ratio ν may be obtained from the following relationships: Ys =
(C2

11 −C2
12)/C11 and ν = C12/C11. For α Boron sheet, we

have Ys =224.6 N/m, and ν =0.165. The in-plane stiffness is

smaller (about 2/3) than that of graphene (341 N/m40), and g-

BN (278.3 N/m39) however it is still relatively large compared

to metals. Taken the experimental value of 3.2 Å as the height

of Boron 2D monolayer26. This stiffness is equivalent to 702

GPa, which is relatively strong – about 4 times of the strength

of iron, recalling that the stiffness of iron is about 170 GPa.

Although the α-Boron sheet is less stiff than graphene and

g-BN, it is much stronger than g-Si. The Poisson ratio of α-

Boron sheet is very close to that of graphene, but much smaller

than g-BN and g-Si, indicating less shear motion in α-Boron

under strains.

Besides second order elastic constants, higher order (> 2)

elastic constants are also important quantities.67–69 Experi-

mentally by measuring the changes of sound velocities under

the application of hydrostatic and uniaxial stresses, these high

order elastic constants can be determined70,71. The high or-

der elastic constants are very important in studying the nonlin-

ear elasticity72, thermal expansion (through gruneisen param-

eter)73, temperature dependence of elastic constants73,74, har-

monic generation71, phonon-phonon interactions75, photon-

phonon interactions76, lattice defects77, phase transitions78,

echo phenomena79, and strain softening80, and so on40. In

addition, with the higher order elastic continuum description

utilizing these elastic constants, one can model the stress and

deformation state under uniaxial stress, rather than uniaxial

strain81. Explicitly, when pressure is applied, the pressure de-

pendent second-order elastic moduli can be obtained from the

high order elastic continuum description39. The third-order

elastic constants are important in understanding the nonlinear

elasticity of materials, such as changes in acoustic velocities

due to finite strain. As a consequence, nano devices (such

as nano surface acoustic wave sensors and nano waveguides)

could be synthesized by introducing local strain31,49, as dis-

cussed in details later in this paper.

Stress-strain curves in the previous section show that they

will soften when the strain is larger than the ultimate strain.

From the view of electron bonding, this is due to the bond

weakening and breaking. This softening behavior is deter-

mined by the TOECs and FFOECs in the continuum aspect.

The negative values of TOECs and FFOECs ensure the soft-

ening of Boron 2D monolayer under large strain.

A good way to check the importance of the high order elas-

tic constants is to consider the case when they are missing.

With the elastic constants, the stress-strain response can be

predicted from elastic theory39. When we only consider the

second order elasticity, the stress varies with strain linearly.
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Table 2 Elastic constants Nonzero independent components for the SOEC, TOEC, FOEC, and FFOEC tensor components, Poisson’s ratio ν

and in-plane stiffness Ys of α-Boron monolayers from DFT calculations, compared with graphene, g-BN, and g-Si.

α-Boron Graphenea g-BNb g-Sic

a (Å) 3.865 2.468 2.512 3.901

Ys (N/m) 224.6 340.8 278.3 71.2

ν 0.165 0.178 0.225 0.401

SOECs
C11 (N/m) 230.9 352.0 293.2 84.8

C12 (N/m) 38.0 62.6 66.1 34.1

TOECs

C111 (N/m) -2126.6 -3089.7 -2513.6 -696.5

C112 (N/m) -318.9 -453.8 -425.0 -281.6

C222 (N/m) -2373.6 -2928.1 -2284.2 -617.2

FOECs

C1111 (N/m) 10987 21927 16547 1951

C1112 (N/m) 480 2731 2609 1683

C1122 (N/m) 2912 3888 2215 2549

C2222 (N/m) 18768 18779 12288 1108

FFOECs

C11111 (N/m) -44814 -118791 -65265 -19595

C11112 (N/m) -92368 -19173 -8454 -11405

C11122 (N/m) -58393 -15863 -28556 -7628

C12222 (N/m) -70897 -27463 -36955 -16955

C22222 (N/m) -435594 -134752 -100469 -21326
a Ref.40;

b graphene-like Boron nitride monolayer from Ref.39;
c graphene-like silicon monolayer from Ref.57;

Fig. 5 Order effects The predicted stress-strain responses of

biaxial deformation of ordered graphene oxide monolayer from

different orders (second, third, fourth, and fifth order) of elastic

constants of α-Boron sheet, compared to that from the DFT

calculations (circle line), using biaxial deformation as an example.

Here we take the biaxial deformation of the α-Boron sheet

as an example. As illustrated in Fig. 5, the linear behaviors

are only valid within a small strain range, about -0.02 ≤ η ≤

0.02, as the same result obtained from the energy versus strain

curves in Fig. 2. With the knowledge of the elastic constants

up to the third order, the stress-strain curve can be accurately

predicted within the range of -0.04 ≤ η ≤ 0.04. Using the

elastic constants up to the fourth order, the mechanical behav-

iors can be well treated up to a strain as large as 0.08. For the

strains beyond 0.08, the fifth order elastic are required for an

accurate modeling. The analysis of the uniaxial deformations

comes to the similar results.

Our results illustrate that the monatomic layer structures

possess different mechanical behaviors in contrast to the bulk

or multi-layered structures, where the second order elastic

constants are sufficient in most cases. The second order elas-

tic constants are relatively easier to be calculated from the

strain energy curves66,82, however, they are not sufficient for

monatomic layer structures. The high order elastic constants

are required for an accurate description of the mechanical be-

haviors of monatomic layer structures since they are vulnera-

ble to strain due to the geometry confinements.

Our results of mechanical properties of Boron 2D monolay-

ers are limited to zero temperature due to current DFT calcu-

lations. Once finite temperatures are considered, the thermal
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Fig. 6 Pressure dependent elastic moduli Second-order elastic

moduli and Poisson ratio as function of the pressure for the α-Boron

monolayer from DFT predictions.

expansions and dynamics will in general reduce the interac-

tions between atoms. As a result, the longitudinal mode elastic

constants will decrease with respect to the temperature of the

system. The variation of shear mode elastic constants should

be more complex in responding to the temperature. A thor-

ough study will be interesting, which is, however, beyond the

scope of this study.

3.5 Pressure effect on the elastic moduli

With third-order elastic moduli, one can study the effect of

the second-order elastic moduli on the pressure p acting in the

plane of Boron 2D monolayers. Explicitly, when pressure is

applied, the pressure dependent second-order elastic moduli

(C̃11, C̃12, C̃22) can be obtained from C11, C12, C22, C111, C112,

C222, Ys, and ν as53–55:

C̃11 =C11 − (C111 +C112)
1−ν

Ys

P, (1)

C̃22 =C11 −C222
1−ν

Ys

P (2)

C̃12 =C12 −C112
1−ν

Ys

P (3)

The general trend is that the second-order elastic moduli in-

crease linearly with the applied pressure (Fig. 6). C̃11 is asym-

metrical to C̃22 unlike the zero pressure case. C̃11 = C̃22 =C11

only occurs when the pressure is zero. This anisotropy could

be the outcome of anharmonicity. The Fig. 6 depicts the gen-

eral trend that Poisson’s ratio decreases monotonically with

the increase of pressure. Our results show that the α-Boron

sheet are mechanically stable under the various pressures.

3.6 Pressure effect on the velocities of sound

As shown in previous subsections, there are non-zero in-plane

Young’s moduli and shear deformations in the α-Boron mono-

layers. These mechanical properties could have important ap-

plications. Specifically, it is possible to generate sound waves

with different velocities depending on the deformation mode.

Sound waves generating biaxial deformations (compressions)

are compressional or p-waves. Sound waves generating shear

deformations are shear or s-waves. The sound velocities of

these two types of waves are calculated from the second-order

elastic moduli and mass density using the following relations:

vp =

√

Ỹs(1− ν̃)

ρm(1+ ν̃)(1−2ν̃)
, (4)

vs =

√

C̃12

ρm

. (5)

The dependence of vp and vs on pressure (biaxial stress) is

plotted in Fig. 7. Both vp and vs monotonically increase with

an increase in pressure. Thus they can be tuned by introducing

the biaxial strain through the stress-strain relationship shown

in Fig. 3.

The ratio of the compressional to shear wave velocities

(vp/vs) is a very useful parameter in the determination of a

material’s mechanical properties. It depends only on the Pois-

son’s ratio as

vp

vs

=

√

1

ν̃
(1+

ν̃2

1−2ν̃
). (6)

The ratio of vp/vs decreases with the increase of pressure

(Fig. 7), and it approaches a value of 2.5 at positive pressure.

As shown in Fig. 7, a sound velocity gradient could be

achieved by introducing stress into an α-Boron monolayer.

such a sound velocity gradient could lead to refraction of

sound wavefronts in the direction of lower sound speed, caus-

ing the sound rays to follow a curved path83. The radius of

curvature of the sound path is inversely proportional to the

gradient. Such a negative sound speed gradient could also be

achieved by a negative strain gradient. This tunable sound

velocity gradient can be used to form a sound frequency and

ranging channel, which is the functional mechanism of waveg-

uides and surface acoustic wave (SAW) sensors84–86. Count-

ing on the large ultimate tensile strengths, α-Boron-based

nano-devices of SAW sensors, filters, and waveguides might

be synthesized using local strains for next generation electron-

ics.

4 CONCLUSIONS

In summary, by applying various mechanical strains, we stud-

ied the mechanical properties and stabilities of the α-Boron
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Fig. 7 Sound velocity p-wave and s-wave velocities, and

compressional to shear wave velocity ratio vp/vs as a function of

in-plane pressure.

monolayer. The potential profiles, the stress-strain relation-

ships, the in-plane stiffness, Poisson’s ratio, second order,

third order, fourth order, and fifth order elastic constants, the

ultimate stresses, ultimate strains, critical strains, and the pres-

sure effect on the elastic moduli are studied. According to the

results of the positive ultimate strengths and strains, second

order elastic constants, and the in-plane Young’s modulus, we

conclude that α-Boron structures are mechanically stable un-

der various strains and pressures.

The nonlinear elasticity of the structure is also investigated.

We obtained an accurate continuum description of the elas-

tic properties of this structure by explicitly determining the

fourteen independent components of high order (up to fifth or-

der) elastic constants from the fitting of stress-strain curves

obtained from DFT calculations. This data is useful to de-

velop a continuum description which is suitable for incorpo-

ration into a finite element analysis model for its applications

at large scale. We also determined the valid range using these

elastic constants in different orders. The harmonic elastic con-

stants are only valid with a small range of -0.02 ≤ η ≤ 0.02.

With the knowledge of the elastic constants up to the third or-

der, the stress-strain curve can be accurately predicted within

the range of -0.06 ≤ η ≤ 0.06. Using the elastic constants

up to the fourth order, the mechanical behaviors can be accu-

rately predicted up to a strain as large as 0.08. For the strains

beyond 0.08, the fifth order elastic constants are required for

accurate modeling. The high order elastic constants reflect the

high order nonlinear bond strength under large strains.

We predicted that both the second order elastic constants

and the in-plane stiffness monotonically increase with ele-

vating pressure, while the trend of Poisson ratio is reversed.

The sound velocity of both compressional and shear waves in-

crease with pressure. The ratio of vp/vs decreases with the

increase of pressure and converges to a value of 2.5 at posi-

tive pressure. Our results could serve as a road map for the

synthesis of the α-Boron monolayers.
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