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ABSTRACT 

Numerous studies have shown that the performance of hematite photoanodes for light-driven 

water splitting is improved substantially by doping with various metals, including tin.  Although 

the enhanced performance has commonly been attributed to bulk effects such as increased 

conductivity, recent studies have noted an impact of doping on the efficiency of the interfacial 

transfer of holes involved in the oxygen evolution reaction.  However, the methods used were not 

able to elucidate the origin of this improved efficiency, which could originate from passivation of 

surface electron-hole recombination or catalysis of the oxygen evolution reaction.  The present 

study used intensity-modulated photocurrent spectroscopy (IMPS), which is a powerful small 

amplitude perturbation technique that can de-convolute the rate constants for charge transfer and 

recombination at illuminated semiconductor electrodes.  The method was applied to examine the 

kinetics of water oxidation on thin solution-processed hematite model photoanodes, which can be 

Sn-doped without morphological change.  We observed a significant increase in photocurrent 

upon Sn-doping, which is attributed to higher transfer efficiency.  The kinetic data obtained using 

IMPS show that Sn doping brings about a more than tenfold increase in the rate constant for 

water oxidation by photogenerated holes.  This result provides the first demonstration that Sn-

doping speeds up water oxidation on hematite by increasing the rate constant for hole transfer.   

 

KEYWORDS: α-Fe2O3, hematite, intensity-modulated photocurrent spectroscopy (IMPS), 

photoelectrolysis, recombination, tin-doping, transfer efficiency, oxygen evolution, water 

splitting  
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Introduction 

The photoelectrochemical splitting of water into hydrogen and oxygen under solar irradiation 

holds the promise of providing a vital fuel for a future low-carbon energy economy.  In order to 

reach competitive efficiencies for hydrogen production, tandem cell architectures will be 

required,1 for example by connecting appropriate n-type and p-type semiconductors in optical 

series.2  This has sparked intensive research into semiconductor materials able to perform one of 

the half-reactions in water splitting.  Metal oxide semiconductors are promising materials for this 

application owing to their relative low cost, ease of preparation and stability..3  However, the 

sluggish kinetics of the light-driven oxygen and hydrogen evolution reactions (OER and HER, 

respectively) compared with recombination of electrons and holes typically limit the efficiency of  

metal oxide photoelectrodes.  The problem of recombination is evident from the characteristic 

“spike and overshoot” in the transient photocurrent response to chopped illumination, which has 

been observed in Fe2O3, BiVO4, Cu2O and WO3 photoelectrodes during HER and OER.4-7  

Hematite, or α-Fe2O3, is one of the most widely studied photoanode materials for the 

OER, owing to its chemical stability in basic media, abundance, visible light absorption and 

suitable valence band energy.  Significant improvements in the performance of hematite 

photoanodes have been achieved through nanostructuring, which has helped to overcome the 

trade-off that exists between sufficient light absorption and carrier collection (due to hematite’s 

indirect bandgap and poor hole-mobility).8, 9  Doping1 of hematite with additives such as Sn,10-14 

Si,8, 15-18 Ti,10, 19-23 Pt,24, 25 Cr,26 Mo,26 Zn27 and I,28  enhances the performance of hematite for the 

light-driven OER.  Several studies have attributed the effect of such dopants to changes in bulk 

hematite properties such as conductivity,10, 11, 13, 16, 18, 19, 29, 30 or crystallinity,8 but very few studies 
                                                 
1 The term ‘doping’ is widely used in the water splitting literature, and we therefore use it here whilst noting that the 
levels of inclusion of ‘dopants’ are generally many orders of magnitude higher than those encountered in classical 
semiconductor physics. 
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have explored other possible beneficial roles that dopant atoms may play in the processes 

involved in light-driven oxygen evolution.  However, recent work by Zandi et al
31 and 

Chemelewski et al.
17 has not only shown that Ti and Si do not act as an electrical dopant in their 

materials, but also that the efficiency of interfacial hole transfer to take part in the OER (or 

“transfer efficiency”) is improved by doping. 

The hole transfer efficiency, which is of the order of just 25 % under standard operating 

conditions (at 1.23 V vs. RHE under AM 1.5 illumination) for benchmark hematite 

photoanodes,32 can be assessed by comparing the photocurrent of a photoanode in the presence 

and absence of a hole scavenger32 or by analysis of photocurrent transients to chopped 

illumination.7  While these methods are equivalent in the evaluation of the transfer efficiency, 

only the latter allows the distinction between a catalytic effect and a passivation of surface 

recombination (this is discussed in detail below).  The sluggish kinetics of the multistep (4-

electron) oxygen evolution reaction leads to a large build-up of photogenerated holes that are 

vulnerable to recombination with electrons.  The competition between recombination and transfer 

thus lowers the efficiency of hole-transfer to the solution phase.  The hole transfer efficiency can 

therefore be improved by speeding up interfacial hole transfer by catalysis33-35 and by suppressing 

surface recombination.7, 36  In spite of the obvious importance of the kinetics of interfacial charge 

transfer in this context, only a few studies have measured the rate constants for reactions 

involving photogenerated holes.7 

The lack of kinetic information arises from the fact that methods commonly used to 

measure rate constants for electron transfer at metal electrodes are not applicable to reactions 

involving photogenerated minority carriers at illuminated semiconductor electrodes.  The reason 

for this is that the rate constants cannot be changed simply by altering the applied potential.  
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Variations in potential appear predominantly across the space charge region in the semiconductor 

rather than across the Helmholtz layer, so in the ideal case at least, the rate constants remain 

unperturbed.  The rate (rather than rate constant) of  reactions involving photogenerated holes can 

be changed by altering the illumination intensity.  This gives rise to a family of experimental 

methods that are analogues of conventional electrochemical techniques, with potential 

perturbation replaced by perturbation of light intensity.37  So, for example, the potential step 

method to determine rate constants at metal electrodes corresponds to the light step method for 

determining rate constants at illuminated photoelectrodes.  The electrochemical impedance 

method for metal electrodes corresponds to intensity modulated photocurrent spectroscopy 

(IMPS), which is based on a small ac perturbation of the light intensity.38-40  Although these 

methods have been known for some time, surprisingly few studies of light-driven water splitting 

have made use of them to understand the influence of interfacial kinetics on efficiency.  Here we 

illustrate the power of the approach by an IMPS study of the influence of tin-doping on light-

driven water splitting at hematite electrodes. 

In practice, one of the most widely encountered effects of doping of hematite layers is a 

modification of the nanostructure morphology, leading in many cases to a reduction in feature 

size and thus to an increase in surface area.8, 11, 13, 14, 16, 20, 23, 26, 29, 41  Although this effect may be 

partly responsible for the reported performance improvement, it complicates the task of 

uncovering other possible roles played by the dopant atoms.  In order to circumvent this problem, 

we have developed a simple solution-processed route to fabricate model systems in which up to 

3.2 atomic % Sn can be incorporated into thin nanostructured hematite films with only minimal 

morphological change.  The films are about 50 nm thick, and produce 0.06 mA cm-2 at 1.23 V vs. 

RHE under AM 1.5 illumination.  The extremely thin nature of these films leads to a low light 
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harvesting efficiency, and consequently modest performance.  However, they make good model 

systems because their internal quantum efficiency (IQE) under standard conditions is comparable 

to that of benchmark hematite prepared by atmospheric pressure chemical vapour deposition, 

APCVD,32 (see supporting information for details).  Indeed, 400 nm thick films of our material 

give 0.38 mA cm-2 at 1.23 V vs. RHE under AM 1.5 illumination, which is very close to the 

photocurrent of benchmark solution-processed Sn-doped hematite photoanodes.14  Nonetheless, 

we chose to use the thin films for mechanistic studies, since these constitute the simplest model 

system. 

In line with other studies,10-14 we found that  Sn-doping our hematite photoanodes 

significantly enhances the  photocurrent..  This improvement in performance can be  attributed to 

a concomitant increase in the transfer efficiency in good agreement with recent work by Zandi et 

al
31 and Chemelewski et al..

17  In principle, the improvement could be explained either by a 

higher rate constant for the transfer of holes across the interface, or by suppression of surface 

electron-hole recombination.  In order to discover which explanation holds in the present case, 

the rate constants for surface recombination and charge transfer were de-convoluted using 

intensity-modulated photocurrent spectroscopy (IMPS), which showed that Sn-doping increases 

the rate constant for hole-transfer by more than an order of magnitude.  The material composition 

was characterized by analytical transmission electron microscopy (TEM), which probes the 

degree of Sn-incorporation in the bulk of the hematite crystallites and provides insights into the 

spatial distribution of Sn.  It emerged that Sn-atoms are incorporated into the hematite structure 

without phase separation or formation of tin oxide clusters, but that the tin atoms are 

preferentially distributed in the near-surface regions of the hematite nanoparticles, resulting in a 

core-shell type structure.  The results of our study thus provide the first proof that doping 
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hematite can speed up the interfacial reaction of photogenerated holes, which is one of the 

fundamental limitations of hematite and other photoelectrodes for light driven water splitting.   

Theory 

The external quantum efficiency, EQE(λ), of light-driven water oxidation taking place at bulk 

semiconductor electrolyte junctions depends on the product of the efficiencies of light harvesting, 

ηLH(λ), charge separation, ηsep(λ), and hole-transfer, ηtrans, to the electrolyte, the first two being 

functions of the light wavelength, λ. 

( ) ( ) ( )LH sep transEQE λ η λ η λ η=        (0) 

 In the absence of light scattering and internal reflection, the light harvesting efficiency can be 

calculated from the wavelength-dependent absorption coefficient, α(λ), and the film thickness, d. 

( ) ( )1 d

LH e
α λη λ −= −          (0) 

For a planar electrode geometry, the electron-hole separation efficiency ηsep(λ) can be calculated 

using the Gärtner equation42 (see below) if the width of the space charge region, Wsc, and the hole 

diffusion length, Lp, are known.  However, this calculation will not be correct if substantial 

recombination takes place in the space charge region (in which case ηsep is lower) or if the 

electrode is nanostructured (see supporting information).  For this reason, we derive ηsep(λ) from 

the measured external quantum efficiency using the light harvesting efficiency calculated from 

the absorption spectrum and the transfer efficiency derived using the rate constants for hole 

transfer and recombination obtained from IMPS or photocurrent transient measurements . 

Hematite photoanodes respond to chopped illumination with a characteristic “spike and 

overshoot” photocurrent transient.43-45  This transient response is typical for systems with a large 

degree of surface electron-hole recombination.7, 45  When the light is switched on, holes generated 
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in the space charge region are swept rapidly towards the semiconductor electrolyte junction.  Due 

to the slow kinetics of the 4-hole oxidation of water to molecular oxygen, the concentration of 

holes builds up considerably at the interface until the rate of arrival of holes is balanced in the 

steady state by the rates of charge transfer and recombination.  Since surface recombination leads 

to a flux of electrons towards the surface, the resulting photocurrent transient is the sum of the 

hole and electron contributions.  The instantaneous photocurrent measured when the illumination 

is switched on corresponds to a charging or displacement current due to the initial movement of 

photo-generated holes towards the surface.  By contrast, the steady-state photocurrent 

corresponds to the flux of holes that are transferred successfully to the electrolyte without 

undergoing recombination with electrons at the surface.  It follows that the ratio of the steady 

state photocurrent to the instantaneous photocurrent, jss/j(t=0), is a measure of the efficiency of 

hole-transfer from the electrode to the electrolyte.  This situation has been modelled in terms of 

the surface concentration of holes using a simple phenomenological approach.38, 39  Assuming 

that both hole transfer and recombination are pseudo-first order in the surface hole concentration, 

the transfer efficiency can also be expressed in terms of the phenomenological first order rate 

constants of hole transfer, ktrans, and recombination, krec. 

0

ss trans

trans

t trans rec

j k

j k k
η

=

= =
+

         (0) 

An example of the type of predicted transient photocurrent response is shown in Figure 1. 
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Figure 1.  Normalized transient photocurrent response calculated for ktr = krec = 10 s-1. The decay 
time constant in this case is (krec + ktr)

-1 = 50 ms and the hole transfer efficiency = ktr/(ktr + krec) = 
0.5, so that the steady state current is half of the instantaneous current. 

In principle, the exponential decay of the current towards the steady state, which is 

characterized by the time constant (ktrans + krec)
-1, can be analysed, and then ktrans and krec can be 

separated using equation (0).  In practice, however, it is more convenient to determine the time 

constant using small amplitude frequency-resolved measurements such as IMPS7 or 

photoelectrochemical impedance spectroscopy (PEIS).46  The IMPS method involves small 

amplitude (< 10%) variable frequency sinusoidal modulations of the light intensity about a dc 

value.  The resulting phase and amplitude of the photocurrent are recorded as a function of 

frequency, and the results are displayed in the complex plane.47, 48  The imaginary component of 

the photocurrent reaches a maximum when the frequency, ωmax, matches the characteristic 

relaxation constant of the system, i.e. the same time constant (ktrans + krec)
-1 seen in the 

exponential decay of the transient photocurrent. 

max trans rec
k kω = +          (0) 
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The high and low frequency intercepts of the IMPS response in the complex plane 

correspond respectively to the instantaneous and steady state photocurrents seen in Figure 1, and 

their ratio is therefore given by equation (0).  The main advantage of the IMPS technique is that it 

involves a small amplitude modulation, so that changes in band bending induced by illumination 

are minimized (the effect on the IMPS response of light-induced modulation of band bending has 

been considered elsewhere49).  By contrast, large changes in band bending may occur with 

chopped illumination (this probably explains the lack of symmetry between transient ‘on’ and 

‘off’ responses in Figure 5 a).  The IMPS response is also attenuated by the RC time constant 

determined by the product of the series resistance, Rseries, and the space charge capacitance, Csc
 .2  

This attenuation gives rise to a high semicircle in the opposite quadrant with a maximum circular 

frequency equal to the product RseriesCsc, which allows estimation of the space charge capacitance, 

Csc, if the series resistance is known.  An example of the IMPS response predicted for the same 

values of ktrans and krec as those used for the transient in Figure 1 is shown in Figure 2. 

 

                                                 
2 The RC time constant also determines the rise time of the transient photocurrent.  This has not been considered in 
the calculation of Figure 1. 
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Figure 2. IMPS response predicted for krec = ktrans = 10 s-1, Csc = 1 µF cm-2, Rser = 20 Ω. The 
response is normalized to the hole current, qJh, generated by collection of holes in the space 
charge region. The radial frequency corresponding to the maximum of the upper recombination 
semicircle is equal to ktrans + krec, and the normalized low frequency intercept is equal to 
ktrans/(ktrans + krec), which corresponds to the ratio of the steady state current to the instantaneous 
current in Figure 1. 

As noted above, this interpretation of photocurrent transients and IMPS is valid for 

semiconductors with a well-defined depletion layer at the interface with the electrolyte.  To be 

applicable to structured semiconductors, such as those studied here, WSC should be smaller than 

the average feature size.  One method to determine the width of the depletion region is through 

the measurement of the electrode capacitance.  The flat band potential, Vfb, and donor density, Nd, 

derived from the Mott Schottky relationship50 (equation (0)), are then used to calculate values of 

WSC as a function of applied potential (equation (0)), where εr is the relative permittivity, ε0 is the 

permittivity of free space, A is the electrode area, V is the applied potential, q is the elementary 

charge, kB is Boltzmann’s  constant and T is the temperature. 

 

 ( )2 2
0

1 2 B
fb

sc r d

k T
V V

C N A qε ε
 

= − − 
 

       (0) 

( )
1/2

02 fb r

sc

d

V V
W

qN

ε ε −
 =
 
 

        (0) 

Another method to estimate the width of the space charge layer in illuminated 

semiconductor electrolyte junctions under reverse bias involves using the Gärtner equation.42  

This equation applies if holes are consumed so rapidly at the interface that there are no 

recombination losses (this is the case if a fast redox system is used to capture holes). For 

materials with very small hole-diffusion lengths, Lp, such as hematite, only carriers generated in 

the space charge layer contribute to the photocurrent, simplifying the Gärtner expression. 
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 ( )
( )

( )
( )1 1

1

sc

sc

W
W

p

e
EQE e

L

α λ
α λλ

α λ

−
−= − ≈ −

+
  (0) 

However, in the case of the light driven OER, some fraction of the holes reaching the surface is 

lost by surface recombination so that the EQE is lower than predicted by equation (0).  If we take 

the non-unity transfer efficiency into account, the simplified Gärtner equation can be rearranged 

to give the width of the space charge region. 

 
( )
1

ln 1
sc

trans

EQE
W

α λ η
 

= − − 
 

  (0) 

Experimental 

Synthetic route for the incorporation of Sn into mesoporous hematite electrodes 

Hematite precursor solutions were prepared according to the following procedure.  0.630 g 

(1.56 mmol) Fe(NO3)3
.9 H2O was dissolved in a solution of the block copolymer Pluronic P123 

(0.25 g) in 10 mL tert-butanol under sonication for 15 minutes.  2.5 mL water (Millipore) was 

then added, forming a dark red solution.  The solution was stirred at room temperature overnight 

resulting in a light brown dispersion of iron oxide (Fe2O3).  The synthesis is a development of the 

protocol described by Redel et al..51  However, these authors did not use any surfactant, and their 

synthesis led to formation of a two-phase mixture of hematite and maghemite, in the ratio of 

65:35.  By contrast, addition of the surfactant yields phase-pure hematite. 

For the preparation of the Sn-containing hematite, Sn(OAc)4 was added to the solution 

described above, see Table 1 in the supporting information for further details.  The desired 

amounts of Sn(OAc)4 were first dispersed under vigorous stirring for 5 h followed by 15 min 

sonication in the above mixture of Pluronic P123 and tert-butanol.  The remaining steps of the 

synthesis then followed those described above for pure hematite.  It is important to note that 
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throughout the following text, the Sn:Fe-ratio refers to the atomic ratio of the two elements in the 

precursor solutions, unless stated otherwise. 

After cleaning the FTO glass (Pilkington TEC 15 Glass™, 2.5 × 1.5 cm) by sequential 

sonication for 15 min each in detergent (1 mL Extran in 50 mL Millipore water), water 

(Millipore) and ethanol, the substrates were dried and masked with Scotch Tape on the 

conducting side to retain a non-covered area of 1.5 × 1.5 cm.  The backs of the substrates were 

completely masked to avoid contamination during the spin-coating procedure. 

Before spin-coating, the fresh solutions were filtered through a 220 nm syringe filter 

(Sartorius Minisart cellulose acetate membrane) to remove agglomerates, ensuring the 

preparation of homogeneously smooth films.  The masked substrates were covered with 100 µL 

of solution and spun at 1000 rpm for 30 seconds.  To remove the surfactant and crystallize the 

material, the samples were calcined in air in a laboratory oven (3 hour ramp to 600 °C, 30 min 

dwell time), resulting in films of about 50 nm thickness.  To obtain thicker films, the films were 

dried for 5 minutes at 60 °C and the spin-coating step was repeated.  Powders for X-ray 

diffraction (XRD) and TEM analysis were obtained by scraping material off the substrate with a 

razor blade. 

 

Thin film characterization 

XRD measurements were performed on a STOE powder diffractometer in transmission 

geometry (Cu-Kα1, λ = 1.5406 Å) equipped with a position-sensitive Mythen-1K detector.  

Scanning electron microscopy (SEM) was performed on a JEOL JSM-6500F scanning electron 

microscope equipped with a field emission gun.  Material was scraped from the substrate, and 

deposited on a copper grid with a carbon film for TEM analysis.  The analysis was carried out on 
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a FEI Titan 80-300 (S)TEM with a Fischione Instruments (Model 3000) high angle annular dark 

field (HAADF) detector and an EDAX energy-dispersive X-ray spectroscopy (EDX) detector.  

All measurements were conducted at an acceleration voltage of 300 kV. 

The UV-visible transmission and reflection of the mesoporous thin films on FTO-coated 

glass substrates was measured with a Perkin Elmer Lambda 1050 UV/Visible/NIR 

spectrophotometer equipped with an integrating sphere.  For transmission measurements, the 

sample was placed directly outside the integrating sphere with the film facing inwards, and for 

reflection measurements, the sample was placed directly after the integrating sphere with the 

glass substrate facing the incoming beam.  The Naperian absorbance spectra of the hematite 

layers AbsH were calculated from the wavelength dependent transmission of the FTO substrate 

and hematite-coated substrate, TS and TS+H, respectively, and reflection of the substrate and 

hematite coated sample, RS and RS+H, according to the following formula, which is derived in 

reference52. 

2

ln
1

S H

S
H

S H S

S

T
T

Abs
R R

T

+

+

 
 
 =

− − 
 

        (0) 

Photoelectrochemical characterization 

Hematite photoelectrodes were masked with a PTFE-coated glass fibre adhesive tape leaving a 

circular area of 1 cm in diameter exposed to a 0.1 M NaOH aqueous electrolyte.  Electrochemical 

measurements were carried out in a cubic optical grade glass cell (Hellma Analytics) using a µ-

Autolab III potentiostat (Metrohm) equipped with an FRA 2 impedance analyser connected to a 

saturated Ag/AgCl reference electrode (Sigma Aldrich, 0.197 V vs. SHE) and a Pt mesh counter 
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electrode.  Electrode potentials versus the reversible hydrogen electrode, VRHE, were calculated 

from those measured at pH 13 versus the Ag/AgCl electrode, VAg/AgCl, according to 

/ 0.197 0.059RHE Ag AgCl
V V

pH
V

− 
= + 

 
       (0) 

The light intensity was measured at the position of the electrode inside the cell using a 

4 mm2 photodiode, which had been calibrated against a certified Fraunhofer ISE silicon reference 

cell equipped with a KG5 filter. 

The current-voltage characteristics of the films were obtained by scanning from negative 

to positive potentials in the dark or under illumination with a 20 mV s-1 sweep rate.  Illumination, 

provided either by a high-power light emitting diode (LED, Thorlabs, 455 nm) or by a solar 

simulator (AM1.5G. Solar Light Model 16S) at 100 mW cm-2, was incident through the FTO-

coated glass substrate. For external quantum efficiency (EQE) measurements, chopped 

monochromatic light (chopping frequency 2 Hz) was provided by a 150 W xenon lamp in 

combination with a monochromator and order-sorting filters. The cell was biased close to 1.2 V 

vs. RHE under simulated solar irradiation to ensure realistic operating conditions.  The current 

recorded by the Autolab potentiostat was output to a lock-in amplifier synchronized to the 

chopper frequency. 

Photocurrent transients were used to estimate the transfer efficiency of holes to the 

solution phase.7  The high power light emitting diode, LED, was switched on and off every 

500 ms.  The hematite electrodes were held at a given potential, and the transient current was 

sampled at 0.1 ms intervals.  This fast sampling allowed the instantaneous current to be 

determined.  In cases where the current transient had not reached a steady state value after 

500 ms, additional photocurrent transients were recorded with 5 s on/off times, sampled at 1 ms 

intervals.  Electrochemical impedance spectroscopy (EIS) was carried out in the dark at applied 
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potentials at which no significant dark current flows (between 0.75 and 1.5 V vs RHE), and the 

potential was modulated by 10 mV at frequencies ranging logarithmically from 100 kHz to 1 Hz.  

Intensity modulated photocurrent spectroscopy (IMPS) was carried out using a PGSTAT302N 

Autolab (Metrohm), equipped with an FRA32M frequency response analyser, connected to an 

LED driver kit which powered a 470 nm high-power LED.  The light intensity was modulated by 

10 % between 100 kHz and 0.1 Hz. 

Results and discussion 

 

 

Figure 3.  Top view and cross section SEM images of undoped hematite films (top).  Top view 
SEM-image of films prepared with 5 %, 10 %, 20 % and 30 % Sn-precursor in the hematite 
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synthesis.  Each item is labelled with the appropriate Sn-precursor percentage; all films are on an 
FTO coated glass substrate. 

Figure 3 gives an overview of the impact of Sn-doping on the film morphology.  The SEM top 

view images show a disordered mesoporous “worm-like” structure for films prepared with up to 

20 % Sn-precursor, similar to that seen for various hematite films prepared by other solution-

based synthetic routes.11, 13, 14, 53, 54  The morphology remains practically unchanged with the 

addition of Sn-precursor to the hematite synthesis, with a mean particle size slightly decreasing 

from ca. 35 x 80 nm to ca. 30 x 70 nm for the films prepared without Sn-precursor and with 20 % 

Sn-precursor added to the synthesis, respectively.  The appearance of protruding FTO features in 

the 20 % Sn-doped film is discussed further in the supporting information.  The addition of 30 % 

Sn-precursor leads to a more compact and less well-defined morphology.  The cross section SEM 

view indicates that the film is approximately made up of a monolayer of “worm-like” particles.  

The roughness factor of the films, of the order of 2.5 was estimated from this description of the 

morphology, see the supporting information. 

Figure 4 compares the steady state current-voltage characteristics of films prepared from 

precursors containing 0 % Sn, 5 % Sn, 10 % Sn, 20 % Sn and 30 % Sn.  In the case of the pure 

hematite film, the photocurrent density is very low.  For films prepared using precursor solutions 

with a Sn-content above 5 %, the photocurrent increases substantially, reaching a maximum for 

the 20 % Sn film.  The drop in photocurrent observed for the 30 % Sn film is accompanied by a 

significant change in morphology, see Figure 3.  While the slightly smaller feature size of the 

20 % Sn sample may contribute to the higher photocurrent, this cannot be the dominant factor, 

because even at 5 % Sn-precursor, the rise in photocurrent is substantial, although the feature size 

does not change.  The goal of this study was to determine the role played by Sn-doping in 

improving the PEC performance of hematite during water oxidation.  Under standard operating 
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conditions, these films have an IQE of the order of 3 %, in close agreement to the IQE of 

benchmark Si-doped hematite films prepared by APCVD,32 see the supporting information for 

the full analysis.  We therefore conclude that these films are suitable model systems for this 

study.   

 

Figure 4.  Current-voltage curves, measured with a scan rate of 20 mVs-1, for single layers of 
mesoporous hematite prepared with 0 %, 5 %, 10 %, 20 % and 30 % Sn-precursor added to the 
synthesis. Electrolyte: 0.1 M NaOH. Illumination was through the substrate. λ = 455 nm, incident 
photon flux = 1017 cm-2 s-1.  In all cases, the dark current was negligible over the potential range 
(see Fig. SI 5 for dark current voltage curves). 

Improvement in the PEC performance of hematite upon doping are typically attributed to 

improvements in conductivity.10, 11, 13, 16, 18, 19, 29, 30  In n-type semiconductors, the conductivity is 

given by the product ����, where � is the electron mobility.  In the case of compact planar 

electrodes, the doping density (and hence conductivity) can be obtained from Mott Schottky plots 

according to equation (0).  Rough semiconductor layers, such as the ones studied here, are not 

ideal for quantitative Mott Schottky analysis, due to the poorly defined surface area, and the 

possible presence of exposed FTO providing parallel charge transfer pathways.  However, 

assuming the electron mobility, surface area and dielectric constants of the hematite do not 

change significantly upon doping, a qualitative increase in doping density would be clearly 
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apparent as decrease in the slope of the Mott-Schottky plot.  Since there is no significant change 

in the slopes of the Mott-Schottky plots (see Figure SI 9), we conclude that enhanced 

conductivity is not responsible for the observed improvements in performance in this system. 

In order to elucidate the role of Sn-incorporation in improving the performance of the 

hematite photoelectrodes, photocurrent transients were recorded, as illustrated in Figure 5a.  In 

order to ensure that the theoretical treatment outlined above is applicable, the condition that the 

depletion layer should be narrower than the nanostructure feature size was tested (see supporting 

information for a detailed discussion of the methods used to evaluate WSC).  Calculation of the 

width of the space charge region requires knowledge of the relative permittivity, εr, of hematite.  

Values of εr for hematite in the literature vary considerably.  For example Glasscock et al.
55 

measured values of εr between 31 and 57, whereas Lunt et al.
56 have recently calculated values 

between 7.6 and 26.4 for different crystal orientations and a mean value of around 25 using DFT.  

At 1.2 V vs. RHE, values of WSC obtained from the Mott-Schottky analysis for the 20 % sample 

in the dark ranged from 10 to 25 nm for values of relative permittivity of 25 and 57, respectively.  

By contrast, analysis of the EQE data using equation (0) indicated much smaller values of the 

space charge layer thickness in the range of a few nm (see supporting information for details).  

This lower value is likely to be due to a reduction of band bending arising from the build-up of 

holes at the surface, which results in more potential being dropped across the Helmholtz layer 

rather than across the depletion layer.  It follows that - under illumination at least - the condition 

of a well-defined depletion layer with Wsc smaller than the feature size (≥ 30 nm) should be 

satisfied.  This reduction in Wsc under illumination highlights why small amplitude perturbation 

methods such as IMPS are preferable to large amplitude ones such as photocurrent transients.  

Further evidence for the assumption that Wsc is smaller than the feature size is provided by the 
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fact that  the photocurrent does not saturate, but instead increases with potential over the whole 

potential range.  This indicates  that the space charge layer continues to penetrate deeper into the 

film as the applied voltage increases.   

The photocurrent transients shown in Figure 5a clearly indicate that almost all holes 

reaching the surface of the 0 % Sn sample recombine, leading to a negligible steady state 

photocurrent.  Addition of only 5 % Sn-precursor to the hematite synthesis increases both the 

instantaneous and steady state current densities significantly.  Since j(t=0) corresponds to the flux 

of holes swept to the surface upon illumination, an increase in its value indicates an increase in 

the charge separation efficiency (provided the light harvesting efficiency remains unchanged), 

suggesting that the “bulk” properties of the material improve.  Possible reasons for improved 

charge separation include a reduction in space charge recombination losses, or an enhanced hole 

diffusion length.  Interestingly, j(t=0) decreases with further addition of Sn.  This is most 

pronounced for the 30 % Sn doped sample, which has a significantly less well-defined 

morphology compared to the rest of the series, see Figure 3.  We attribute the slight decrease in 

j(t=0) for the 20 % sample to a the lower extinction coefficient (and hence light harvesting 

efficiency) of these samples, see Figure SI 4d.  This lower extinction coefficient is an artefact 

related to the film preparation, and is discussed in detail in the supporting information. 

Most remarkably, the transfer efficiencies, obtained from the ratio jss/j(t=0) according to 

equation (0), increase steadily with increasing Sn content, see Figure 5b.  The increased transfer 

efficiency brought about by the incorporation of tin into the hematite can be explained in terms of 

the competition between interfacial transfer of holes taking part in the OER, and electron-hole 

recombination at the surface, see equation (0).  On the one hand, the transfer efficiency can be 

improved by increasing the rate of hole transfer across the interface, the kinetics of which are 

Page 20 of 32Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



21 
 

known to be very slow at hematite photoanodes.57  On the other hand, suppression of surface 

recombination can also significantly enhance performance.7, 36  The objective of the present study 

was a clear distinction between these two possibilities. 

 

Figure 5.  a) Photocurrent transients of hematite films prepared with 0 %, 5 %, 10 %, 20 % and 
30 % Sn precursor in the synthesis.  Measured at 1.164 V vs. RHE under 455 nm illumination, 
incident photon flux 1017 cm-2s-1.  b) Transfer efficiency calculated from the photocurrent 
transients according to equation (3). 

 

Although the analysis of photocurrent transients demonstrates that adding tin improves 

the hole transfer efficiency, further the quantitative analysis was not attempted, since “on-off” 

illumination is likely to change the band bending as a consequence of the build–up of holes at the 
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surface.  For this reason, we used IMPS to extract the time constants for hole-transfer and surface 

electron-hole recombination as described in the theory section.  In the following discussion, we 

focus on the comparison of the pure hematite and 20 % Sn doped sample, since this gave the 

highest photocurrent.  Typical IMPS spectra obtained for samples doped with 0 % and 20 % Sn 

are shown in Figure 6.  Both doped and undoped samples give very similar high-frequency semi-

circles in the lower quadrant, which correspond to the RC attenuation of the IMPS response with 

the time constant RseriesCsc.  Since the series resistance is of the order of 25 Ω for both samples, 

this indicates that the space charge capacitance, and hence the width of the space charge layer, is 

not changed by the incorporation of Sn.  Since the time constant of the recombination semicircle 

is at least two orders of magnitude slower than the RC time constant, RC attenuation does not 

interfere with the kinetic analysis.7   

By contrast, the low-frequency semicircles in the upper quadrant, which correspond to the 

competition between charge transfer and recombination, are quite different for the two samples.  

Whereas the undoped sample gives a semicircle that returns almost to the origin at low 

frequencies, the semicircle for the Sn-doped sample is much smaller with a low frequency 

intercept that is much larger.  The ratios of the high and low frequency intercepts of the 

recombination semicircles give values of the transfer efficiency, see Figure 7a.  These values are 

in excellent agreement with the results obtained from the analysis of the corresponding 

photocurrent transients, see Figure 5b.  The potential dependence of ktrans and krec obtained from 

the analysis of the IMPS responses is illustrated in Figure 7b & c.  The krec values are very similar 

for both samples, except at the most negative potentials, where the 20 % Sn sample exhibits 

slightly faster recombination.  Strikingly, Sn-inclusion increases ktrans by more than an order of 

Page 22 of 32Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



23 
 

magnitude across almost the whole potential range, indicating better catalysis of the light-driven 

OER on the surface of tin-doped hematite (note the logarithmic scale in Figure 7c). 

 

Figure 6.  IMPS spectra of samples prepared with 0 % and 20 % Sn-precursor in the synthesis, 
recorded at 1.164 V vs. RHE. λ= 470 nm, incident photon flux 1017 cm-2s-1.  Note the large 
difference in the low frequency semicircles, which reflect the competition between charge 
transfer and recombination. 
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Figure 7.  Parameters extracted from IMPS of photoanodes prepared with 0 % and 20 % Sn-
precursor in the synthesis, illuminated by a 470 nm LED, intensity 1017 cm-2s-1.  a) Transfer 
efficiency, b) rate constant for electron-hole recombination, c) rate constant for hole transfer. 

Having established that the improved performance of hematite photoanodes prepared with 

an additional Sn-precursor in the synthesis is due to the better catalysis of the OER reaction, we 

investigated the location of the Sn in the structure.  Powder XRD and electron diffraction in TEM 

mode (Figures SI 1 and SI 3 in the supporting information) indicate that the overall structure of 

the material remains that of hematite, without the formation of secondary phases (SnO2, for 

example).  The presence of Sn in the hematite layers was confirmed by EDX in TEM mode.  25 
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individual EDX spectra were acquired on 20 % Sn doped samples, for which both the position of 

the electron beam and its diameter were chosen at random, leading to EDX-measurements of 

areas of several micrometers as well as of individual particles.  All measurements yielded similar 

Sn contents, indicating a homogeneous distribution on the micron scale.  A mean Sn-

concentration of 3.2 ± 1.5 atomic % was calculated using the Cliff-Lorimer equation. 

Since these measurements did not probe the distribution of Sn within the individual 

hematite particles, scanning transmission electron microscopy (STEM) was employed in 

combination with EDX to probe the Sn-content with a step size of approximately 2 nm.  To this 

end, an electron beam with a diameter of less than 1 nm and, consequently low intensity, was 

used.  Line scans across the width of a particle can reveal inhomogeneities between surface and 

bulk compositions, as illustrated in the inset of Figure 8b.  Close to the edge of the particle, when 

the STEM beam is tangent to the particle edge, the electron beam probes primarily the surface.  

In contrast, when the beam is incident normal to the surface of the particle, the X-ray generated 

due to inelastic scattering of the electron beam is dominated by the bulk (X-rays stemming from 

the surface contribute to a lesser extent to the total signal, due to the shorter path length through 

the surface with respect to the bulk).  Six particles were probed along lines approximately 

perpendicular to the surface, such as the one depicted in Figure 8a.  Due to an insufficient signal-

to-noise-ratio, background subtraction could not be performed, and therefore the local atomic 

ratio could not be quantified.  However, the ratio of the intensity of the signals attributable to Sn 

and that obtained from both Sn and Fe (including the background), revealed a substantial Sn-

enrichment at all measured surfaces.  The Sn-content strongly decays towards the middle of the 

particle, where very little signal attributable to Sn was detected.  The enrichment of Sn at the 

surface is also visible in the HAADF-STEM images as a white brim.  Since the signal in 
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HAADF-STEM images is approximately proportional to the square of the atomic number for a 

given thickness,58 this bright rim is attributed to a higher average atomic number, which is 

consistent with the inclusion of Sn in the surface atomic columns.  Thus, we conclude from our 

EDX line scan and HAADF STEM results that the introduction of a Sn-precursor into the 

hematite synthesis leads to a gradient doping with preferential incorporation of Sn-atoms near the 

surface of the hematite nanoparticles.  Due to the small overall content of Sn, an investigation of 

the mode of tin incorporation into the hematite structure proved difficult.  However, in HRTEM 

images such as those shown in Figure 8c and 8d, the lattice planes of several dozen undoped and 

doped particles extend to the surface, and there is no evidence for newly formed separate phases 

such as SnO2 or SnO at the surface.  We therefore conclude that the Sn incorporates into the 

hematite structure without substantial structural changes.  

 

Figure 8. a) a HAADF-STEM image of the 20 % Sn particles probed with EDX and b) relative 
atomic content of Sn to total metal atomic content as a function of position along the line-scan 
marked in a). The sketch inset in b) illustrates how the STEM beam probes the bulk and surface 
properties of the particles. Furthermore, HRTEM images of c) undoped, and d) Sn-doped, 
hematite are shown. In c), the (202) lattice planes are shown, in d) the (012) lattice planes.  In 
both images, a distortion from the perfect lattice is visible at the surface, indicating atomic 
disorder in the outer 5 Angstroms. 

Our experimental evidence therefore reveals a structure-function relationship between 

preferential Sn-doping near the surface of hematite, and an increased hole transfer efficiency (i.e. 

a higher proportion of photogenerated holes taking part in the OER).  This result is in very good 
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agreement with recent reports that Ti- and Si-doping can increase the transfer efficiency in 

hematite photoanodes during water oxidation.17, 31  In this work, the power of dynamic light-

perturbation techniques further allows us to provide the first demonstration that the increased 

transfer efficiency brought about by Sn-doping hematite is due to enhanced catalysis of the OER 

rather than a passivation of surface recombination. 

While it is not clear at present how the Sn dopants beneficially impact the OER kinetics, 

the insight that dopants can speed up the sluggish OER is an important milestone in the 

optimisation of photoanodes for water oxidation.  Indeed, if the specific role of different dopants 

(and other surface treatments) can be unambiguously identified by methods such as IMPS, the 

virtues of each could potentially be combined to further improve the efficiency of state of the art 

hematite photoanodes for water oxidation.  Our observations may support recent theoretical 

predictions that mixed metal sites at the hematite surface (i.e. surface doping) could play a role in 

balancing the intermediate energetic barriers involved in the OER.59, 60  Although these studies 

considered many common hematite dopants such as Si and Ti, Sn was not included.  Given the 

phenomenological nature of the rate constants obtained here, it is plausible that Sn atoms at the 

hematite surface may affect the OER intermediates, which would, in turn lead to an increased 

ktrans.  A parallel can be drawn between our findings and recent work by Riha et al.,35 who 

suggest that a sub-monolayer Co-coating also catalyses the OER on hematite photoanodes.  

Interestingly, the authors note that the existence of neighbouring Fe and Co sites may be crucial 

to this catalytic activity, which could be an example of the behaviour predicted by Busch and 

Carter.59, 60 
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Conclusions 

We have synthesized thin Sn-doped hematite layers to investigate the role of Sn-doping under 

light-driven water oxidation conditions.  The material is a useful model system because the 

morphology remains unchanged upon doping and the internal quantum efficiency is similar to 

that reported for benchmark hematite photoanodes prepared by APCVD and ultrasonic spray 

pyrolysis.  Transient photocurrent responses to chopped illumination revealed that the efficiency 

of hole-transfer to the solution phase during the OER increased significantly due to the Sn 

doping.  A study by IMPS revealed a tenfold increase in the rate of hole-transfer, i.e. the OER 

appears catalysed on the Sn-doped hematite as compared to plain hematite.  While the 

mechanism by which the Sn dopant influences the surface kinetics is not yet known, we report 

the first example of a dopant catalysing the OER on hematite.  STEM-EDX line scans revealed a 

Sn-enrichment at the surface of the nanoparticles, indicating a structure-function relationship 

between the surface nature of the Sn-doping, and the improved catalytic properties at the surface.  

While all dopants may not affect hematite in this way, catalysis due to surface doping could be a 

more widespread effect than realized currently.  Application of techniques such as IMPS to 

distinguish between changes in the rates of hole transfer and surface recombination brought about 

by inclusion of dopant atoms in other cases would therefore be useful.  The combination of 

dopants playing complimentary roles in the enhancement of hematite photoanodes for water 

oxidation could be a useful strategy towards significant future improvements in performance.  

Supporting information available: 

Further synthetic details, powder XRD, SEM images, absorbance, dark cyclic voltammetry data, 

cyclic voltammetry of 20 % Sn sample under AM 1.5, electron diffraction data obtained in TEM, 
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Mott-Schottky analysis, determination of WSC from Mott-Schottky and Gärtner analysis, cyclic 

voltammograms recorded under chopped illumination, EQE, IQE, geometrical estimation of the 

roughness of the films. 
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