PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

KCaSrTa₅O₁₅ Photocatalyst with Tungsten Bronze Structure for Water Splitting and CO₂ Reduction

Tomoaki Takayama,¹ Kentaro Tanabe,¹ Kenji Saito,^{1†} Akihide Iwase,^{1,2} Akihiko Kudo^{1,2}* ¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan; ²Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan

*Corresponding author: Fax: +81-3-5261-4631, E-mail: a-kudo@rs.kagu.tus.ac.jp

[†]Present address: Office for Development of Young Researchers, Research Planning and Promotion Division, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, JAPAN.

Abstract

KCaSrTa₅O₁₅ with tungsten bronze structure and 4.1 eV of a band gap showed activity for water splitting without cocatalysts. The activity was improved by loading NiO cocatalyst. The apparent quantum yield of optimized NiO-loaded KCaSrTa₅O₁₅ was 2.3% at 254 nm for water splitting. When CO₂ gas was bubbled into the reactant aqueous solution, Ag cocatalyst-loaded KCaSrTa₅O₁₅ produced CO and H₂ as reduction products of CO₂ and H₂O, respectively, and O₂ as an oxidation product of H₂O. The carbon source of CO was confirmed to be CO₂ molecules by using ¹³CO₂. The ratio of the number of electrons to that of holes calculated from the amounts of products (CO, H₂ and O₂) was almost unity. Additionally, the turnover number of electrons consumed for CO production to the total number of an Ag atom of the cocatalyst that was the active site for CO₂ reduction was 8.6 at 20 h. These results indicate that water was consumed as an electron donor for this photocatalytic CO₂ reduction in an aqueous medium. Thus, KCaSrTa₅O₁₅ with tungsten bronze structure has arisen as a new photocatalyst that is active for water splitting and CO₂ reduction utilizing water as an electron donor.

Introduction

An artificial photosynthesis system has been extensively studied to develop systems for CO_2 conversion to fuels and chemicals. Photocatalytic CO₂ reduction is one of the potential candidates for the artificial photosynthesis. Homogeneous and heterogeneous photocatalyst systems for CO₂ reduction have been studied. The homogeneous photocatalysts including Re-complex and Re-Ru-complex require sacrificial reducing reagents such as TEOA (Triethanolamine) to reduce CO₂ to CO and HCOOH.¹⁻⁶ Although a heterogeneous CdS photocatalyst shows activity for CO₂ reduction to form CO under visible light irradiation, sacrificial reagents are also indispensable.⁷⁻⁸ Heterogeneous metal oxide photocatalysts which possess the ability for O₂ evolution by oxidation of water have been reported for the CO₂ reduction to form HCOOH, CO, CH₃OH and CH₄ in aqueous media without sacrificial reagents.⁹⁻¹⁶ However, oxygen evolution in a stoichiometric amount is not observed in many cases. Among them, a ZrO₂ photocatalyst produces CO and H₂ as reduction products and O₂ as an oxidation product in a stoichiometric amount under UV irradiation.¹⁴ Moreover, the activity and selectivity for CO_2 reduction to form CO are enhanced by loading a Cu cocatalyst on the ZrO₂ photocatalyst. BaLa₄Ti₄O₁₅¹⁵ and Zn-doped Ga₂O₃¹⁶ are highly active for CO₂. reduction using water as an electron donor when Ag cocatalyst is employed. Thus, metal oxide photocatalysts for water splitting can be applied to CO₂ reduction using water as an electron donor if suitable cocatalysts are chosen.

We have developed tantalum-based photocatalysts, such as NaTaO₃ and NaTaO₃:A (A = La and Sr) with perovskite structure, and K₂LnTa₅O₁₅ (Ln = La, Pr, Nd, Sm, Gd, Tb, Dy and Tm) with tungsten bronze structure, for highly efficient water splitting under UV irradiation.¹⁷⁻¹⁹ The high activities for the tantalum-based photocatalysts are mainly due to their high conduction bands formed by Ta5d orbitals. We have also reported that a BaLa₄Ti₄O₁₅ photocatalyst²⁰ with two dimensional anisotropy of crystal structure for water splitting also shows activity for CO₂ reduction using water as an electron donor by loading highly dispersed Ag cocatalyst.¹⁵ The selectivity for the CO₂ reduction is superior to that for water reduction to form H₂ even in an aqueous medium. On the other

hand, there is a tantalate group that possesses tungsten bronze structure with anisotropy to a c-axis of the crystal structure and the framework consisting of TaO₆ octahedra with corner sharing being similar to the perovskite structure as seen in NaTaO₃ of a highly efficient photocatalyst for water splitting. Therefore, the tantalates with tungsten bronze structure are expected to be active for water splitting and CO₂ reduction. In the present study, KCaSrTa₅O₁₅ with tungsten bronze structure²¹ was prepared by a solid-state reaction, and their photocatalytic activities for water splitting and CO₂ reduction were investigated. The photocatalyst particles and cocatalysts were characterized using SEM, XPS and DRS.

Experimental

Preparation of KCaSrTa₅O₁₅

KCaSrTa₅O₁₅ was prepared by a solid-state reaction as follows. K₂CO₃ (Kanto Chemical: 99.0%), CaCO₃ (Kanto Chemical: 99.5%), SrCO₃ (Kanto Chemical: 99.9%) and Ta₂O₅ (Rare Metallic: 99.99%) were used as starting materials for the solid-state reaction. The carbonates and oxide were mixed in a molar ratio of K:Ca:Sr:Ta = 1.05:1:1:5 in an alumina mortar. The excess amount of potassium (5 mol%) was to compensate the volatilization.²² The mixed powder was calcined in air at 1173 K for 1 h and subsequent 1423 K for 10 h in a platinum crucible. The excess potassium was washed out with water from the obtained powder.

Various cocatalysts were loaded by impregnation and photodeposition methods on the surface of KCaSrTa₅O₁₅ photocatalyst. NiO and Ag cocatalysts were loaded by an impregnation method. Photocatalyst powder was dispersed in aqueous solutions dissolving Ni(NO₃)₂ (Wako Pure Chemical: 98.5%) and AgNO₃ (Tanaka Rare Metal) in a porcelain crucible. The slurry solution was stirred with a glass rod during evaporation using a hot plate. Obtained powder was calcined in air at 575 K and 723 K for 1 h for loading the NiO and Ag cocatalysts, respectively. The NiO and Ag cocatalysts were reduced with H₂ at 773 K, if necessary. Ag, Ni, Ru, Rh, Pt, Cu and Au cocatalysts were photodeposited from aqueous solutions dissolving suitable amounts of AgNO₃, Ni(NO₃)₂, RuCl₃, RhCl₃, H₂PtCl₆, Cu(NO₃)₂ and HAuCl₄ in situ.

KCaSrTa₅O₁₅ powders prepared by a solid-state reaction at several temperatures were examined by X-ray diffraction using Cu K α radiation (Rigaku: Miniflex). Diffuse reflectance spectra of these powders were obtained using a UV-vis-NIR spectrometer (Jasco: UbestV-570) and were converted from reflection to absorption by the Kubelka-Munk method. Photocatalyst powders were observed by a scanning electron microscope (JEOL: JSM-6700F). Surface species of cocatalysts on photocatalysts were analyzed by X-ray photoelectron spectroscopy (Shimazdu: ESCA-3400; Mg anode). Metallic Ni (Nilaco: 99+%), NiO (Soekawa Chemical: 99.9%) and Ni(OH)₂ (Wako Pure Chemical: 95.0%) were employed as references for the XPS measurements. Binding energies were corrected using C 1s (285.0 eV) on a metallic Au foil (84.0 eV).²³

Photocatalytic water splitting and CO₂ reduction

Photocatalytic reactions were conducted using an inner irradiation cell made of quartz with a 400 W high-pressure mercury lamp. 0.5 g of photocatalyst powder was dispersed in 350 mL of water. The Ar (99.99%) or CO₂ (99.995%) gas was continuously bubbled at 30 mL min⁻¹ of a flow rate during the photocatalytic reaction. Gaseous products of H₂, O₂ and CO were determined with GC (Shimadzu: GC-8A with Molecular Sieve 5A, TCD and Ar carrier, and GC-8A with methanizer, Molecular Sieve 13X, FID and N₂ carrier). ¹³CO₂ (purity: 99.5 atom%) was also employed for an isotope experiment to confirm the carbon source for photocatalytic CO₂ reduction. ¹³CO was analyzed by a GC-MS (Shimadzu: GC-MS Plus 2010, RESTEK: RT-Msieve 5A).

Results and Discussion

Characterization of KCaSrTa₅O₁₅

The X-ray diffraction patterns of the materials prepared at different calcination temperatures were assigned to KCaSrTa₅O₁₅ (PDF: 40-351) (Figure S1). Calcination below 1573 K gave small amounts of Ca₂Ta₂O₇ (PDF: 53-743) and an unknown compound as impurities (Figure S1 (a), (b) and

Physical Chemistry Chemical Physics

(c)), while the single phase of highly crystalline KCaSrTa₅O₁₅ was obtained by calcining at 1773 K for 10 h (Figure S1 (d)). The band gap of KCaSrTa₅O₁₅ was estimated to be 4.1 eV from the absorption edges except for the material prepared at 1173 K as shown in Figure 1. Primary particles of KCaSrTa₅O₁₅ with 200-300 nm of an average diameter aggregated, when they were prepared below 1573 K as shown in Figure 2 (a), (b) and (c). In contrast, the morphology of KCaSrTa₅O₁₅ prepared at 1773 K was rod as shown in Figure 2 (d), reflecting tungsten bronze structure in which TaO₆ octahedral units were connected with each other along the c-axis.

Effect of loading cocatalyst on water splitting and CO₂ reduction

Table 1 shows activity for water splitting over KCaSrTa₅O₁₅ under Ar gas flow. All samples prepared at different temperatures showed the activity for water splitting without cocatalyst. Moreover, the activities were drastically enhanced when NiO cocatalyst was loaded on KCaSrTa₅O₁₅. In contrast, the activities of KCaSrTa₅O₁₅ were not enhanced when Ni cocatalysts were loaded by a photodeposition, and an impregnation and H₂ reduction. NiO-loaded KCaSrTa₅O₁₅ prepared at 1423 K showed the highest activity. Although the initial activity of this photocatalyst was high, the rates of H₂ and O₂ evolution decreased at the initial stage as shown in Figure 3. H₂ and O₂ steadily evolved in a stoichiometric amount after the deactivation. The apparent quantum yield was 2.3% at 254 nm for water splitting (Figure S2). Thus, KCaSrTa₅O₁₅ with tungsten bronze structure has arisen as a new photocatalyst for water splitting.

The KCaSrTa₅O₁₅ photocatalyst was applied to CO₂ reduction as shown in Table 2. The pristine KCaSrTa₅O₁₅ produced only H₂ and O₂ without any reduction products of CO₂. This indicates that there were no active sites for CO₂ reduction on the surface of the KCaSrTa₅O₁₅ photocatalyst. Therefore, various cocatalysts were loaded to introduce active sites. Water splitting activity of KCaSrTa₅O₁₅ was enhanced when NiO and Au of effective cocatalysts^{17, 24-25} for water splitting were loaded as observed for BaLa₄Ti₄O₁₅ photocatalyst.¹⁵ No CO₂ reduction proceeded, when Ni, Ru, Rh, Pd, Pt and Au were loaded. When Cu cocatalyst was loaded, a small amount of CO evolved. In

contrast, Ag-loaded KCaSrTa₅O₁₅ photocatalyst produced CO from CO₂ as a reduction product regardless of loading methods of the Ag cocatalyst. In particular, the highest activity for CO₂ reduction was observed, when Ag cocatalyst was loaded by photodeposition and impregnation methods as shown in Table 2 and Figure S3. The fact that CO₂ was reduced on the Ag-loaded KCaSrTa₅O₁₅, but not on the pristine KCaSrTa₅O₁₅, indicates that Ag cocatalyst works as a reduction site of CO₂. Metallic Ag is a good electrocatalyst for reduction of CO₂ to CO.²⁶ The process of CO₂ reduction to CO on the Ag cocatalyst would be similar to that on the Ag electrocatalyst²⁷⁻²⁸ as observed for BaLa₄Ti₄O₁₅¹⁵ and Zn-doped Ga₂O₃¹⁶ photocatalysts. A CO₂ molecule is reduced to CO₂⁻ adsorbed on Ag cocatalyst by a photoexcited electron. Although the redox potential of CO₂⁻ formation is -1.9 V,²⁷ the redox potential should become more positive due to stabilization by adsorption. The adsorbed CO₂⁻ is reacted with a H⁺ ion in water to form an adsorbed –COOH. The adsorbed –COOH is subsequently reduced to become CO and OH⁻ by an another electron.²⁷⁻²⁸

 H_2 , O_2 and CO evolved steadily with a reaction time on the optimized Ag-loaded KCaSrTa₅O₁₅ photocatalyst as shown in Figure 4. The turnover number of electrons reacted for CO evolution to the number of the Ag atom in the cocatalyst calculated using the equation (1) was 8.6 at 20 h, and the ratio of electron to hole calculated using the equation (2) was unity. These results indicate that the CO₂ reduction over Ag-loaded KCaSrTa₅O₁₅ proceeded photocatalytically and water was consumed as an electron donor.

 $TON_{CO2} = (The number of electrons consumed for CO formation) / (The total number of a Ag atom in cocatalyst on KCaSrTa₅O₁₅) (1)$

 $e^{-}/h^{+} =$ (The number of electrons consumed for H₂ and CO formation) / (The numbers of holes consumed for O₂ formation) (2)

It has been reported that methane forms from not CO_2 but an organic contamination adsorbed on the photocatalyst surface.²⁹ Therefore, an isotope experiment using ¹³CO₂ was carried out to clarify the carbon source of CO formed. When the ¹³CO₂ gas was analyzed by a GC-MS using a MS-5A column, no peaks with mass numbers due to ¹²CO and ¹³CO were detected, indicating that the ¹³CO₂ gas contained negligible amounts of ¹²CO and ¹³CO. In contrast, photocatalytic reduction of ¹³CO₂ over Ag-loaded KCaSrTa₅O₁₅ photocatalyst gave ¹³CO and no ¹²CO (Figure S4). Additionally, the ratio of electron to hole calculated from the products was about unity also in this isotopic experiment. Therefore, it was proven that CO was produced from CO₂ molecules over the Ag-loaded KCaSrTa₅O₁₅ photocatalyst.

Characterization of cocatalysts loaded on KCaSrTa₅O₁₅

NiO and Ag cocatalysts loaded on KCaSrTa₅O₁₅ before and after photocatalytic water splitting and CO₂ reduction were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS) in order to clarify the active states of these cocatalysts.

The particle size and morphology of NiO and Ni cocatalysts loaded on KCaSrTa₅O₁₅ photocatalysts were observed using SEM before and after photocatalytic water splitting (Figure S5). A particle size of NiO loaded by an impregnation method was about 10 nm (Figure S5 (a)). Small particle sizes of metallic Ni remained after H₂ reduction, though a part of metallic Ni sintered (Figure S5 (c)). The metallic Ni aggregated after the photocatalytic water splitting, and nano-particles of Ni were hardly observed (Figure S5 (d)). The shape of Ni loaded by a photodeposition method was not spherical particle being clearly different from that loaded by an impregnation method (Figure S5 (e)). Thus, the particle size and the shape of NiO and/or Ni cocatalysts after photocatalytic water splitting depended on the loading methods.

Figure 5 shows DRS of NiO and Ni-loaded KCaSrTa₅O₁₅ before and after photocatalytic water splitting. Non-loaded KCaSrTa₅O₁₅ was white and possessed 302 nm of an absorption edge (Figure 5 (a)). A color of KCaSrTa₅O₁₅ loaded with NiO by an impregnation method was gray and the background of the DRS arose at visible and near IR regions (Figure 5 (b)). A color of Ni/KCaSrTa₅O₁₅ obtained by an impregnation and subsequent H₂ reduction was pale brown and gave a broad absorption band with a peak around 400 nm (Figure 5 (d)). All Ni or NiO-loaded photocatalysts were dark purple after photocatalytic water splitting giving broad absorption bands in visible light region (Figure 5 (c), (e) and (f)). This result suggests that the condition of nickel cocatalysts was similar to each other during photocatalytic water splitting regardless of the loading methods. The dark purple color did not quickly change after exposing to air.

Figure 6 shows XPS of Ni 2p of NiO and Ni cocatalysts loaded on KCaSrTa₅O₁₅ before and after photocatalytic water splitting. Binding energies of standard samples of metallic Ni, NiO and Ni(OH)₂ agreed with those of previous reports.³⁰ The surface of the standard NiO powder was covered with surface hydroxyl groups. NiO loaded on KCaSrTa₅O₁₅ by an impregnation method also gave peaks due to NiO and Ni(OH)₂ (Figure 6 (a)). Ni/KCaSrTa₅O₁₅ obtained by an impregnation and subsequent H₂ reduction gave XPS signals due to metallic Ni with NiO (Figure 6 (c)). All samples showed XPS signals mainly due to Ni(OH)₂ after photocatalytic water splitting (Figure 6 (b), (d) and (e)). Ni(OH)₂ is generally green, not dark purple as mentioned above. DRS of the samples after photocatalytic water splitting were different from that of Ni(OH)₂ (Figure S6). Therefore, the XPS signals due to Ni(OH)₂ but the surface nickel hydroxide as observed for a NiO_x/SrTiO₃ photocatalyst.³⁰ It has been reported that a color of a NiO/InBO₄ photocatalyst also changed to dark purple after photocatalytic water splitting.³¹ Ultra fine NiO cocatalyst loaded on a NaTaO₃:La photocatalyst gives visible light absorption bands which are different from that of Ni(OH)₂.³² Thus, active NiO cocatalyst loaded on the photocatalysts with wide band gaps has a unique character.

The impregnation method for loading the nickel cocatalyst was more effective than impregnation and subsequent H_2 reduction, and photodeposition methods for water splitting over the KCaSrTa₅O₁₅ photocatalyst as shown in Table 1. SEM and XPS measurements suggested that the most active KCaSrTa₅O₁₅ photocatalyst possessed the cocatalyst of fine NiO particles covered with surface nickel hydroxide.

SEM images of Ag loaded on KCaSrTa₅O₁₅ photocatalysts were also observed before and after photocatalytic CO₂ reduction (Figure S7). An impregnation method gave Ag cocatalyst with about 10

Physical Chemistry Chemical Physics

nm of the particle size before and after H_2 reduction (Figure S7 (a) and (c)). The Ag cocatalyst aggregated after photocatalytic CO₂ reduction (Figure S7 (b) and (d)). The growth of some Ag particles reached up to 50-100 nm. The particle size of Ag after photocatalytic CO₂ reduction was similar to that obtained by a photodeposition method (Figure S7 (e) and (f)).

Nano-sized metallic Ag particle generally gives a surface plasmonic absorption band in visible light region.³³ Therefore, DRS of samples before and after photocatalytic CO_2 reduction were measured as shown in Figure 7. Ag cocatalyst obtained by H₂ reduction was orange and gave a characteristic surface plasmonic absorption spectrum (Figure 7 (c)), while such a spectrum was not observed for Ag cocatalyst obtained by an impregnation method (Figure 7 (a)). All samples after photocatalytic CO_2 reduction gave similar absorption spectra to the sample obtained by H₂ reduction (Figure 7 (b), (d), (e) and (f)), although the intensities of the absorption spectra decreased after the photocatalytic reduction of CO_2 . This result suggests dissolution and re-deposition of Ag during the photocatalytic reaction giving aggregated Ag particles as observed by SEM. Ag cocatalyst prepared by an impregnation method after the photocatalytic reduction of CO_2 also gave the similar absorption spectrum indicating that the Ag cocatalyst was reduced to fine metallic particles by photogenerated electrons. These results indicate that the metallic Ag giving the surface plasmonic absorption spectrum is an active site for the photocatalytic CO_2 reduction.

Conclusions

KCaSrTa₅O₁₅ (BG = 4.1 eV) with tungsten bronze structure has arisen as a new photocatalyst for water splitting and CO₂ reduction under UV light irradiation. KCaSrTa₅O₁₅ showed activity for water splitting without cocatalyst. In addition, NiO was an effective cocatalyst. The NiO cocatalyst activated during water splitting was dark purple and possessed a Ni hydroxide-shell/NiO-core structure as an active site for water reduction. The apparent quantum yield of optimized NiO-loaded KCaSrTa₅O₁₅ was 2.3% at 254 nm for the water splitting. On the other hand, Ag-loaded KCaSrTa₅O₁₅ photocatalyst was active for CO₂ reduction to CO in an aqueous medium. The Ag cocatalyst activated during CO₂ reduction gave surface plasmonic absorption band in visible light region suggesting that fine metallic Ag particle is the active site for the CO₂ reduction. Isotope experiment using ¹³CO₂ revealed that the carbon source of produced CO was CO₂ molecules. Moreover, a stoichiometric amount of O₂ evolution and TON_{CO2} calculated from products was larger than 1 indicating that the CO₂ reduction to CO photocatalytically proceeded using water as an electron donor.

Acknowledgments

This work was supported by a Grant in Aid (No. 24246131) from the Ministry of Education, Sports, Science & Technology in Japan and the ENEOS hydrogen foundation.

References

- (1) J. Hawecker, J. M. Lehn, R. Ziessel, J. Chem. Soc., Chem. Commun., 1983, 536.
- (2) J. Hawecker, J. M. Lehn, R. Ziessel, Helv. Chim. Acta., 1986, 69, 1990.
- (3) H. Takeda, K. Koike, H. Inoue, O. Ishitani, J. Am. Chem. Soc., 2008, 130, 2023.
- (4) H. Takeda, O. Ishitani, Coord. Chem. Rev., 2010, 254, 346.
- (5) T. Yui, Y. Tamaki, K. Sekizawa, O. Ishitani, in *photocatalysis*, *Top. Curr. Chem.*, ed. C. A. Bignozzi, Springer, 2011, vol. 303, pp. 151-184.
- (6) Y. Tamaki, K. Watanabe, K. Koike, H. Inoue, T. Morimoto, O. Ishitani, *Faraday Discuss.*, 2012, 155, 115.
- (7) S. M. Aliwi, K. F. Al-Jubori, Sol. Energy Mater., 1989, 18, 223.
- (8) M. Kanemoto, K. Ishihara, Y. Wada, T. Sakata, H. Mori, S. Yanagida, Chem. Lett., 1992, 835.
- (9) K. Koči, L. Obalova, Z. Lacny, Chem. Pap., 2008, 62, 1.
- (10) S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem. Int. Ed., 2013, 52,

10

7372.

- (11) M. Tahir, N. S. Amin, Energy Convers. Manage., 2013, 76, 194.
- (12) S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ChemSusChem, 2013, 6, 562.
- (13) J. Mao, K. Li, T. Peng, Catal. Sci. Technol., 2013, 3, 2481.
- (14) K. Sayama, H. Arakawa, J. Phys. Chem., 1993, 97, 531.
- (15) K. Iizuka, T. Wato, Y. Miseki, K. Saito, A. Kudo, J. Am. Chem. Soc., 2011, 133, 20863.
- (16) K. Teramura, Z. Wang, S. Hosokawa, Y. Sakata, T. Tanaka, Chem. Eur. J., 2014, 20, 9906.
- (17) A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
- (18) H. Kato, A. Kudo, Catal. Today, 2003, 78, 561.
- (19) A. Kudo, H. Okutomi, H. Kato, Chem. Lett., 2000, 1212.
- (20) Y. Miseki, H. Kato, A. Kudo, Energy Environ. Sci., 2009, 2, 306.
- (21) D. Nelson, B. Scheetz, C. Abate, The International Centre for Diffraction Data, # 40-351.
- (22) H. Kato, A. Kudo, J. Phys. Chem. B, 2001, 105, 4285.
- (23) M. P. Seah, Surf. Interface Anal., 1989, 14, 488.
- (24) A. Iwase. H, Kato, A. Kudo, Appl. Catal.B: Environmental, 2013, 89, 136.
- (25) Y. Negishi, M. Mizuno, M. Hirayama, M. Omatoi, T. Takayama, A. Iwase, A. Kudo, *Nanoscale*, 2013, 5, 7188.
- (26) Y. Hori, K. Kikuchi, S. Suzuki, Chem. Lett., 1985, 1695.
- (27) Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, *Electrochim. Acta*, 1994, 39, 1833.
- (28) T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N Abram, T. F. Jaramillo, *Phys. Chem. Chem. Phys.*, 2014, **16**, 13814.
- (29) O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, J. Photochem. Photobiol. A: Chem., 1993, 72, 269.
- (30) K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, J. Phys. Chem., 1986, 90, 292.
- (31) Q. Jia, Y. Miseki, K. Saito, H. Kobayashi, A. Kudo, Bull. Chem. Soc. Jpn., 2010, 83, 1275.

- (32) H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc., 2003, 125, 3082.
- (33) K. Matsubara, T. Tatsuma, Adv. Mater., 2007, 19, 2802.

Preparation	Cocatalyst	Loading method Activity / µmol h ⁻		µmol h ⁻¹
Temperature / K			H_2	O_2
1173	None	-	271	180
1173	NiO	Impregnation	639	263
1423	None	-	102	42
1423	NiO	Impregnation	1339	700
1423	Ni	Photodeposition	25	12
1423	Ni	Impregnation + H_2 red.	115	62
1573	None	-	106	47
1573	NiO	Impregnation	1270	644
1773	None	-	66	31
1773	NiO	Impregnation	212	95

Table 1 Photocatalytic water splitting over KCaSrTa₅O₁₅ prepared at different temperatures.

Photocatalyst: 0.5 g, cocatalyst: 0.5 wt%, loading conditions: impregnation (573 K for 1 h in air), impregnation and subsequent H₂ reduction (773 K for 2 h in H₂ flow), photodeposition (*in situ*), reactant solution: water (350 mL), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Manuscrip
Accepted
I Physics
Chemical
Chemistry
nysical

Fable 2 Photocatal	ytic CO ₂	reduction	over various	cocatalysts	-loaded	KCaSrTa ₅ O ₁₅ .
---------------------------	----------------------	-----------	--------------	-------------	---------	--

Activity / µmol h-1 Cocatalyst Loading Condition H_2 O_2 CO None 116 48 0 Impregnation^a NiO 764 398 0 Ni Photodeposition 58 0 111 Photodeposition Cu 216 100 trace Ru Photodeposition 28 13 0 Rh Photodeposition 43 19 0 Photodeposition 53 37 8.1 Ag Impregnation^b 55 5.5 Ag 28 Impregnation^b+ H_2 red. 96 48 1.0 Ag Pt Photodeposition 62 23 0 Photodeposition 584 269 0 Au

Photocatalyst: 0.5 g, cocatalysts: 0.5 wt%, loading conditions: photodeposition (*in situ*), impregnation (^a 573 K for 1 h in air, ^b 723 K for 1 h in air), impregnation and subsequent H₂ reduction (773 K for 2 h in H₂ flow), reactant solution: water (350 mL) dissolved with CO₂ under 1 atm, light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure captions

Figure 1 Diffuse reflectance spectra of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Figure 2 SEM images of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Figure 3 Water splitting over NiO(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with Ar gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. NiO cocatalyst was loaded by an impregnation method.

Figure 4 CO₂ reduction over Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst in an aqueous medium. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with CO₂ gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. The Ag cocatalyst was loaded by a photodeposition.

Figure 5 Diffuse reflectance spectra of (a) pristine KCaSrTa₅O₁₅ and (b)-(f) NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after water splitting. (b) Before and (c) after water splitting for the sample prepared by an impregnation method, (d) before and (e) after water splitting for the sample prepared by impregnation and subsequent H₂ reduction, (f) after water splitting for the sample prepared by a photodeposition. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 6 X-ray photoelectron spectroscopy of Ni 2p of NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅. Nickel cocatalyst on KCaSrTa₅O₁₅ (a) before and (b) after water splitting for the sample prepared by an impregnation method, (c) before and (d) after water splitting for the sample prepared by an impregnation and subsequent H₂ reduction, (e) after water splitting for the sample prepared by a photodeposition. Standard sample of (f) Ni(OH)₂, (g) NiO, (h) metallic Ni foil. Reference data³⁰ are indicated as dashed lines respectively: Ni metal (853.1 eV), NiO (854.5 eV), Ni(OH)₂ (856.6 eV).

Figure 7 Diffuse reflectance spectra of Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after CO₂ reduction. (a) Before and (b) after CO₂ reduction for the sample prepared by an impregnation method, (c) before and (d) after CO₂ reduction for the sample prepared by an impregnation and subsequent H₂ reduction, after CO₂ reduction for the sample prepared by a photodeposition at (e) 2h and (f) 20h, and (g) metallic and bulky Ag. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 1 Diffuse reflectance spectra of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Figure 2 SEM images of KCaSrTa₅O₁₅ prepared at (a) 1173 K, (b) 1423 K, (c) 1573 K and (d) 1773 K for 10 h.

Figure 3 Water splitting over NiO(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with Ar gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. NiO cocatalyst was loaded by an impregnation method.

Figure 4 CO₂ reduction over Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ photocatalyst in an aqueous medium. Photocatalyst: 0.5 g, reactant solution: water (350 mL) with CO₂ gas flow (30 mL min⁻¹), light source: a 400 W high-pressure mercury lamp, reactor: an inner irradiation cell made of quartz. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h. The Ag cocatalyst was loaded by a photodeposition.

Figure 5 Diffuse reflectance spectra of (a) pristine KCaSrTa₅O₁₅ and (b)-(f) NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after water splitting. (b) Before and (c) after water splitting for the sample prepared by an impregnation method, (d) before and (e) after water splitting for the sample prepared by impregnation and subsequent H₂ reduction, (f) after water splitting for the sample prepared by a photodeposition. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.

Figure 6 X-ray photoelectron spectroscopy of Ni 2p of NiO(0.5 wt%) and Ni(0.5 wt%)-loaded KCaSrTa₅O₁₅. Nickel cocatalyst on KCaSrTa₅O₁₅ (a) before and (b) after water splitting for the sample prepared by an impregnation method, (c) before and (d) after water splitting for the sample prepared by an impregnation and subsequent H₂ reduction, (e) after water splitting for the sample prepared by a photodeposition. Standard sample of (f) Ni(OH)₂, (g) NiO, (h) metallic Ni foil. Reference data³⁰ are indicated as dashed lines respectively: Ni metal (853.1 eV), NiO (854.5 eV), Ni(OH)₂ (856.6 eV).

Figure 7 Diffuse reflectance spectra of Ag(0.5 wt%)-loaded KCaSrTa₅O₁₅ by various methods before and after CO₂ reduction. (a) Before and (b) after CO₂ reduction for the sample prepared by an impregnation method, (c) before and (d) after CO₂ reduction for the sample prepared by an impregnation and subsequent H₂ reduction, after CO₂ reduction for the sample prepared by a photodeposition at (e) 2h and (f) 20h, and (g) metallic and bulky Ag. KCaSrTa₅O₁₅ was prepared by a solid-state reaction at 1423 K for 10 h.