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The transient dimerization of transmembrane proteins is an important event in several cellular processes and computational
methods are being increasingly used to quantify their underlying energetics. Here, we probe the thermodynamics and kinetics of a
simple transmembrane dimer to understand membrane protein association. A multi-step framework has been developed in which
the dimerization profiles are calculated from coarse-grain molecular dynamics simulations, followed by meso-scale simulations
using parameters calculated from the coarse-grain model. The calculated value of ∆Gassoc is approx. -20 kJ/mol and is consistent
between three methods. Interestingly, the meso-scale stochastic model reveals low dimer percentages at physiologically-relevant
concentrations, despite a favorable ∆Gassoc. We identify generic driving forces arising from the protein backbone and lipid
bilayer and complementary factors, such as protein density, that govern self-interactions in membranes. Our results provide an
important contribution in understanding membrane protein organization and linking molecular, nano-scale computational studies
to meso-scale experimental data.

1 Introduction

Membrane proteins play key roles in many cellular processes and understanding their structure and function is crucial for insight
into the pathological mechanisms underlying a variety of human diseases1–3. Interestingly, several helical membrane proteins
require a stable or transient association for their function, and recent evidence points to a ligand-independent association kinet-
ics4,5. High resolution microscopy methods have revealed new insights into monomer-dimer equilibrium within membranes6,
but the link between the molecular interactions and the population behavior is still missing. Further, conformational flexibility
within the transmembrane dimer state has been shown to be functionally-relevant7,8, suggesting a complex nature of transmem-
brane helix association beyond the simple sequence motifs characterized earlier9. Importantly, recent quantitative estimates of
transmembrane helix association10 have revealed key differences from the previous estimates in detergent micelles 11–16 and
via indirect in vivo measurements2,17–19. Related studies have shown that the lipid bilayer modulates association through se-
quence independent effects and membrane composition5,20, and fluidity21,22 have been suggested to play important roles in helix
association. To fully understand membrane-protein association and assembly, one needs to reconcile the roles of kinetics and
thermodynamic factors together with the molecular interactions within the membrane23.

Molecular simulations are being increasingly used to understand the molecular basis of several membrane processes, includ-
ing membrane protein association24. A wide range of models, such as atomistic8,25–28, coarse-grain7,29–33 and lower resolution
models34–37 have been used to probe transmembrane helix association. Quantitative analysis of transmembrane helix association
by the calculation of the potential of mean force (PMF) along the inter-helical distance has shown similar profiles for several
single transmembrane helix dimers7,25,29–31. The dimerization energies of alanine and leucine-rich transmembrane peptides rep-
resented by the MARTINI force-field have been reported to be in good agreement with previous experimental data38. However,
favorable ∆Gassoc values and the absence of a substantial energetic barrier calculated in several of these studies have been sug-
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gested to over estimate association kinetics compared to experimentally observed monomer-dimer equilibria1. Moreover, recent
work suggests that a 1D PMF along the inter-helical distance may result in limited sampling and overestimation of interaction
energetics39–41. The limited sampling arises from slow membrane dynamics, and biased simulations of membrane partitioning
have been recently shown to over- or underestimate the underlying energy surface42,43.

Several model peptides have been used to study transmembrane helix association, including synthetic peptides with ala-
nine and leucine repeats44. In particular, polyalanine peptides allow us to measure sequence-independent effects arising mainly
from the protein backbone, beyond the simple sequence motifs characterized earlier9. Polyalanine peptides have been used
to characterize the thermodynamic parameters related to membrane partitioning45, helix orientations46,47, helix-helix interac-
tions 48. The free energy of association of transmembrane peptides containing polyalanine stretches have been determined to
be in the range of -12 to -25 kJ/mol in vitro49,50. In contrast, in cellular membranes polyalanine peptides are suggested to
associate less than naturally-occurring transmembrane dimers such as glycophorin A51. In addition, polyalanine is the third-
most prevalent homopeptide repeat in eukaryotes52 and have been linked to human diseases such as congenital malformations
and muscular dystrophy53. Although, the disease mechanisms are uncertain, it is suggested that the polyalanine tracts lead to
aberrant protein-protein interactions54. Using polyalanine peptides as a model system, thus provides a method to understand
sequence-independent membrane effects as well as their possible role in healthy and diseased conditions.

In this paper, we have developed a framework that can accurately describe the energetics of α-helical dimerization in lipid
bilayer environment. We focus on polyalanine peptides to identify those properties that arise from the peptide backbone and are
therefore common to all transmembrane proteins. Backbone contributions are important for transmembrane helix association
and it has been shown to contribute substantially to the dimerization free energy31. However, the larger goal is to provide rules
for describing the general behavior of transmembrane proteins in lipid bilayers that would be applicable peptides and proteins
of arbitrary amino acid sequence and shape. We have calculated the dimerization free energy from three different methods and
show them to be comparable. Further, we have developed a spatial kinetic Monte Carlo model to link the nano-scale coarse-grain
results to meso-scale behavior.

2 Methods

2.1 Dimerization Profile Calculations

To calculate the dimerization profile of polyalanine peptides in bilayers, biased and unbiased coarse-grain molecular dynamics
simulations were performed. The protein, lipid and water were described by the MARTINI force-field55,56. Polyalanine peptides
(Ala23) containing 23 successive alanine residues were modeled using standard MARTINI parameters. The conformational
space was sampled using three different methodologies: (i) an unbiased simulation that describes ms time-scale dynamics (ii)
umbrella sampling (iii) multiple µs time-scale simulations.

2.1.1 System Setup

Long Unbiased Simulation: A single long simulation was performed for 320 µs, corresponding to 1.2 ms of effective atom-
istic simulations. Two copies of polyalanine peptides, in the coarse-grained representation, were embedded into a pre-equilibrated
DPPC bilayer (protein-lipid ratio = 1:128). The distance between the two peptides was 3 nm.

Multiple short unbiased simulations: 100 independent simulations were carried out for 1 µs each starting with two copies
of polyalanine peptides embedded in random orientation and separated by 3 nm in DPPC bilayers. The systems comprised on
an average of 94 lipids solvated by 863 coarse-grained water beads, corresponding to a protein-lipid ratio of 1:47. This approach
consists of many association simulations performed in parallel, starting from an isotropic distribution of relative orientations. We
achieve an optimal starting arrangement and ensure that the mean time to encounter is minimized and is approximately equal for
all directions. A triclinic box with a hexagonal tiling has been used. The proteins are placed in such a way that there is maximum
distance to their periodic image. This ensures that the time taken by the protein to encounter its periodic image is maximised,
with the smallest system size possible. For each simulation, the components are positioned on a grid using a specified distance
between the units and giving each unit a random rotation in the plane. Subsequently, each dimer is embedded in a membrane
and solvated. The systems thus obtained are subsequently processed using the automated coarse-grained simulation workflow
martinate57.

Biased simulations: A self-assembled dimer conformation extracted from the long unbiased simulation was used as starting
structure for calculating PMF using umbrella sampling technique. The system comprises of two polyalanine peptide self as-
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sembled in DPPC bilayer of 256 lipids solvated by 4000 coarse-grained water beads, corresponding to a peptide-lipid ratio of
1:128. A harmonic umbrella potential with a force constant of 1000 kJmol−1 nm−2 applied along the center of mass of peptide
backbone. The value of the force constant was optimized to achieve overlap between histograms. For each system, windows
were simulated corresponding to a 0.1 nm shift of the monomer per simulation starting from 0.5 nm to 4 nm. Each window was
simulated up to 6 µs. The WHAM method58 was used to unbias the umbrella potentials.

2.1.2 Simulation Protocol

Coarse grain molecular dynamics simulations were performed using the GROMACS software package, version 4.5.559, with
the scheme developed for the MARTINI model55,56. The temperature was coupled (coupling time 0.1 ps) to an external heat bath
at temperature T=310 K or 325 K, using a Berendsen thermostat60. The time step of the simulation was 20 fs. The pressure was
coupled (coupling time 1.0 ps) using a semi-isotropic coupling scheme, in which the lateral and perpendicular pressures were
coupled independently to an external pressure of 1 bar using a Berendsen barostat60. The non-bonded interactions were treated
with a switch function from 0.0 to 1.2 nm for the Coulomb interactions and 0.9 to 1.2 nm for the Lennard Jones interactions
(pair-list update frequency of once per 10 steps). The simulation times reported in the manuscript are actual simulation times
(which multiplied by a factor of 4 gives the effective times55).

2.1.3 Analysis

PMF Calculation From Unbiased Simulations: The potential of mean force (PMF) was used to describe the interaction
strength between two structures. The PMF is a free-energy profile generated by integrating the mean force between two distinct
states described by a reaction coordinate along the “path” connecting them. It is expressed as the negative logarithm of the
population density between two states

Pi
f =−kT logH i/Hmax

where, Pi
f is the dimerization PMF, H i and Hmax the relative populations in the given bin and the reference population, k is the

Boltzmann constant and T the temperature. The inter-helical distance, calculated from the centre of mass (COM) separation, r,
was chosen as the reaction coordinate for the PMF. The population densities were sampled at a bin size of 0.1 nm.

Interaction Energies: The interaction energies for protein-protein, lipid-lipid and water-water were calculated from the sum
of the Lennard-Jones and electrostatic contributions, as a function of the inter-helical distance.

2.2 Monte Carlo Simulations

A rule-based kinetic Monte Carlo model of particles61 was developed to probe the longer time and length-scale dynamics of
polyalanine dimerization in membranes. The scheme comprised of three microscopic events: peptide diffusion, dimerization and
dissociation. The membrane was represented by a two-dimensional lattice and the peptides as point particles. The square lattice
was initially randomly populated with a given density of peptide. Volume exclusion was implemented to ensure a position on
the lattice is occupied by a single peptide or dimer. Each peptide was propagated with displacement steps (δ r), derived from
the expression of the mean squared displacement (< r2 > ) of a two-dimensional random walk, by the relation: δ r =

√
4 ·D ·δ t

where, D is the diffusion coefficient of the monomer or dimer and δ t the time interval61. In the model, the monomers were
allowed to associate if the new site was occupied by another monomer, with the probability of association (Pon) given by Pon ≈
kon ·δ t, where kon is the on-rate (1/s). Dimer dissociation was based on the probability Po f f ≈ ko f f ·δ t, where ko f f is the off rate.
We ensured δ t is small enough to avoid numerical errors

Simulation parameters and configuration: A square lattice of 100 by 100 lattice points spaced 1 nm apart was modeled with
periodic boundary conditions. This lattice corresponds to a two-dimensional cell membrane of area of 10,000 nm2. Simulations
were performed at four peptide:lipid ratios (a)1:20 (1000 receptors), (b) 1:50 (400 receptors), (c) 1:100 (200 receptors) and (d)
1:200 (100 receptors). The peptide:lipid ratios were calculated considering an average area per lipid of 1 nm2, corresponding
to 10,000 lipids in each leaflet of the membrane. The kinetic parameters were determined from the coarse-grain models and
are listed in Table 1. Simulation time steps of 10 µs were determined by comparing the diffusion of simulated particles with
the analytical mean square displacement to minimize deviation from diffusion theory. In vivo estimates of transmembrane helix
diffusion were used to determine monomer and dimer diffusion coefficients (Table 1).
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3 Results

To study the molecular details of the association of transmembrane proteins, self-assembly simulations of polyalanine peptides
embedded in DPPC membranes were performed. The two transmembrane peptides were initially placed in a parallel orientation
at a distance of 3 nm from each other. During the simulation, the peptides diffused freely and associated within 700 ns. The
evolution of the inter-helical distance of the two peptides is shown in (Figure 1a). No dissociation events were observed for 5 µs
after association, and the dimer appeared stable within the time-scales. Interestingly, the dimer state did not appear to exhibit
large dynamics and a tight association with an inter-helical distance of 0.75 nm was observed. The contact maps for helix-helix
association (shown in Supp. Fig. 1) confirm a tight dimer interface, although flexibility was seen in the the inter-helical angles
(Supp. Fig. 2).

To analyze the ms time-scale behavior of the dimer species, we extended the simulations to 320 µs, corresponding to 1.2 ms
of effective atomistic simulations (Figure 1b). After about 10 µs simulation time, the dimer dissociated and the monomers
diffused freely in the membrane. The two monomers re-associated within 500 ns. Subsequently, several dissociation events were
observed that appeared to be stochastic. The lifetime of the dimer species was variable and dissociation occurred at a time-scale
of approx. 50 µs. All dissociated states re-associated within 1 µs. A few conformations with increased inter-helical distances,
that corresponded to large fluctuations in the inter-helical angle, and contacts at either the N- or C-terminal were also observed.
Such conformations have been suggested to be intermediates in the association pathway, but they did not lead to any dissociation
event in our simulation. In total, ten association/dissociation events were sampled within 320 µs simulation time.

3.1 Dimerization Profiles

To predict features of the underlying thermodynamics of association, we calculated the PMF of dimerization as a function of the
inter-helical distance. The profiles were calculated by three different methods: the self-assembly simulation describing the ms
time-scale, umbrella sampling calculations and from a series of shorter µs simulations.

3.1.1 Simulations Describing the Millisecond Time-scale Dynamics The dimerization profile was calculated from the
trajectory describing the ms time-scale dynamics by binning the inter-helical distances sampled during the simulation. The PMF
was then expressed as the negative logarithm of the population density between two states (see methods for details). The free-
energy of the two well separated monomers is assumed to be zero. Consistent with the self-assembly simulations and previous
experimental studies, the dimerized state is observed to be the most favorable. The PMF of dimerization shows a single energy
minimum at 0.75 nm (Figure 2a). A negligible small barrier to association (1 kJ/mol) was observed. The free-energy difference
between the monomeric state and the dimerized state, related to the ∆Gasso is -19 kJ/mol. To probe the convergence of the
dimerization profile, we calculated the profiles as a function of the number of dissociations (see Supp. Fig. 3). It is clear that
PMFs calculated from a limited number of association/dissociation events differ from the final converged PMF, although the
statistical errors calculated are small.

We would like to point out that the PMF calculated here is along a single reaction coordinate, namely the inter-helical
distance, but the unbiased simulations performed here do not sample just along this coordinate. Previously, slow membrane
dynamics has been implicated to contribute to insufficient sampling in biased simulations along a single reaction coordinate42,43.
However, this is of less concern in our unbiased simulations since the PMF is built by projection of the data onto the 1D reaction
coordinate. In particular, the sampling of multiple association/dissociation events suggests a complete representation of the
underlying coarse-grain free energy landscape, and the main features of the PMF of association can be considered converged.

3.1.2 Umbrella Sampling Calculations Umbrella sampling calculations were performed to calculate the PMF using the
inter-helical distance as the reaction coordinate. The final PMF calculated is shown in (Figure 2b). The minimum of the associa-
tion profile is again located at 0.75 nm, with a corresponding free-energy of -19 kJ/mol. To test the convergence, we calculated
the profiles at different time intervals (Supp. Fig. 4). The global shape of the profile remains the same for the different sampling
times. Increasing the sampling in each window leads to a convergence in the PMF profile. Beyond 2.0 nm, the changes in the
free energy levels off.

Although 1D PMFs calculated from biased methods such as umbrella sampling have been extensively used to probe helix-
helix association, recent work suggests that 1D PMFs may result in limited sampling and overestimate the energetics39,40. The
umbrella sampling calculations reported here compare well with the PMF calculated from the unbiased long simulations, sug-
gesting adequate sampling along the reaction coordinate for a simple peptide such as polyalanine. In this case, limited dynamics
in the side-chain packing and rotational motion of the peptide contributes to the complete sampling of the dimerization. For
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more complex proteins, it is possible, that sampling all degrees of freedom could take longer than current accessible simulation
time-scales.

3.1.3 Multiple microsecond time-scale simulations In the third step, multiple unbiased simulations were performed with
two polyalanine transmembrane peptides placed at least 3 nm apart in DPPC membranes. The peptides were distributed randomly
such that each starting conformation was unique. As the ensemble of simulations progresses over time, the peptides approach
each other and influence their relative orientations, according to the underlying energy landscape of interaction. The dimerized
state was observed to be stable in the vast majority of the simulations. PMFs were generated from the ensemble of simulations
using the population distributions. The PMFs obtained in the current study were generated from 100 simulations, each of 1µs,
with the standard error of the mean determined by the bootstrap method. A single minimum is observed in the PMF at 0.75 nm,
with corresponding free energy of -20 kJ/mol, and no barrier to association. The free-energy levels off at distances greater
than 2.0 nm. To test the convergence, we calculated the profiles taking into account multiple time-frames from ensemble of
simulations (Supp. Fig. 5). The global shape of the profile remains the same with different sampling times and convergence is
seen at 900 ns .

The PMF calculated from the multiple short simulations closely matches the PMF calculated from the fully sampled long
simulations, albeit with larger error estimates in the monomer regime. Despite the absence of any dissociation events in the
multiple short simulations, the evolution of the ensemble of simulations allows a close estimate of the landscape sampled by
the coarse-grain simulations describing the ms time-scale. Unbiased simulations do not bias the underlying energy surface, as
represented by the force-field, but how much of that energy landscape we can reproduce is dependent on the sampling issues. In
the case of polyalanine association, the presence of relatively flat surfaces with small barriers allows us to estimate the underlying
energetics. In addition, the extensive sampling in the multiple simulations allows us to probe the various pathways of association.

3.2 Interaction energies of protein association

To gain further insight into the driving forces of transmembrane helix association, we decomposed the free energy into protein-
protein, protein-lipid and lipid-lipid interaction energies as a function of inter-helical distance. The protein-protein interaction
energy decreases as the transmembrane peptides approach each other. The minimum in the free energy at the associated state
(0.75 nm) can not be discerned for any of the three sets of simulations. The protein-lipid and lipid-lipid interaction energies can
not be directly compared between the simulation methodologies, due to the difference in the number of lipid molecules, although
the trends can be compared. The protein-lipid interaction energies increase as the peptides are de-lipidated upon association, for
all three protocols. Consequently, the lipid-lipid interaction energies decrease in the same regime. Interestingly, a minimum in
the lipid-lipid interaction energy is seen at 0.75 nm, corresponding to the minimum in the free-energy of dimerization. In the
single long simulation, the sampling of the protein-lipid and lipid-lipid energies in the monomer regime (beyond 1.5 nm) is seen
to be limited and longer sampling in the monomer regime is required.

3.3 Meso-scale Stochastic Simulations

To probe the experimentally-relevant, ms-s time-scale dynamics of multiple transmembrane peptides, we developed a spatial
kinetic Monte Carlo model. The receptors evolve during the simulations based on a rule-based algorithm discussed in the
Methods. The kinetic rate constants, kon and ko f f were estimated from the long time-scale coarse-grain simulations. Due to the
high kon and the absence of a barrier to association, the probability of association at each time step was considered to be 0.9. The
value of ko f f was calculated based on an average dimer lifetime of 50 µs, corresponding to 20,000 s−1. The value was estimated
from the long unbiased simulation, since it is the only method that samples binding/unbinding events. The diffusion constants
were taken from previous in vivo measurements. The simulations were performed at four peptide-lipid ratios: 1:20, 1:50, 1:100
and 1:200. Figure 4 (a) shows the evolution of the percentage of dimers over the simulation time at a peptide-lipid ratio 1:100,
and (b) shows the average dimer percentages obtained from the simulations at different protein-lipid ratios (1:20, 1:50, 1:100
1:200). The time evolution of the percentage of dimers during the course of the simulations at varying peptide-lipid ratios is
shown in Supp. Fig. 6. The dimer percentage is low at the start of the simulation and reaches a steady-state within a few time
steps. At physiologically relevant peptide-lipid ratios (1:100, 1:200), extremely low ( ≈ 5 ) dimer percentages are observed. The
dimer percentage increases as the peptide-lipid ratio is increased. At the highest peptide-lipid ratios studied (1:20), the dimer
percentage is below 20%. Although the on rate of dimer formation directly affects dimer percentages, it is interesting that even
at high values of kon, the dimer percentages remain low at physiologically relevant concentrations.
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4 Discussion

Transmembrane helix organization is of significant interest due to its central role in cellular signaling and membrane protein fold-
ing. Specific sequence motifs have been probed extensively but non-specific effects are only now being recognized as important.
Here, we have used long time-scale coarse-grain and meso-scale simulations to probe the association between two polyalanine
peptides within the lipid bilayer and extracted the thermodynamic and kinetic factors. A favorable dimerization energy was
observed with no barrier to association, and the PMF of association is similar in topology to previously calculated profiles of
membrane receptor dimerization7,25,29–31. The value of ∆Gasso is consistent with in vitro estimates of related polyalanine pep-
tides49,50. At the ms-s time-scale, we observed a low population of dimers under physiological conditions, in agreement with
previous in vivo results. Although the association rate, kon is fast, the relatively high off rates results in low dimer percent-
ages. The results highlight the importance of non-sequence based metrics in modulating helix association within membranes and
provide a link between molecular-level simulation studies with population-level experimental data.

The first interesting feature of our work is the role of the lipid bilayer in driving transmembrane helix association in the
absence of sequence motifs. Early work on transmembrane helix association focussed extensively on characterizing the specific
protein motifs, such as the GxxG motif and the leucine zipper2,11–15,17–19, but recent studies have questioned such a simplistic
view1,9. Non-specific contributions that could play an important role are only now being recognized as important and further
studies are required to quantify their effect1. Although, the bilayer has been previously implicated as an important factor in
transmembrane helix dimerization30,31, our current study provides a direct quantitative estimate of the lipid contributions in the
absence of sequence motifs. Further, our calculations reveal favorable backbone-backbone interactions that together with the
lipid effects act as a generic driving force of transmembrane helix association. Backbone self-interactions in membranes have
not been studied earlier due to the inherent focus on side-chain packing. In addition, since the peptide studied here does not
contain flanking residues such as lysine and tryptophan, we are able to probe the non-specific effects of the acyl chains in the
absence of the complex contributions of the head group. Our work thus provides a comprehensive understanding of the generic
driving forces governing transmembrane helix association.

The thermodynamic dimerization profile was calculated here by three different methods: a long unbiased simulation, um-
brella sampling calculations and multiple short unbiased simulations. Unbiased simulations sample the entire conformational
space without an external bias (potential/force)62. However, the system only samples the thermodynamically accessible energy
landscape and large barriers (larger than kT) are not easily overcome. The major limitation of long unbiased simulations is there-
fore, the adequate sampling of transitions between states and all possible conformations within a state. The statistical significance
of a single long trajectory is arguably low, and an exhaustive search of the conformational space is needed that is computationally
very expensive. In most cases, due to the time-scale issues the system’s properties can only be obtained with meaningful statis-
tics by enhanced sampling approaches, such as umbrella sampling. Enhanced sampling approaches are usually biased and out of
equilibrium simulations due to the external force/potential that is applied to improve the sampling along a reaction coordinate62.
A careful analysis has to be carried out to correctly estimate the underlying unbiased true energy landscape. Often only a single
reaction coordinate is used to describe transmembrane dimerization, and has been suggested to over estimate the energies due to
limited sampling of the remaining degrees of freedom, such as the inter-helical angle39–41. The third approach used is the mul-
tiple short unbiased simulations that have been observed to reproduce the dimer states, but their representation of the underlying
energy landscape has not yet been examined. The advantages are the absence of a pre-defined reaction coordinate and the sam-
pling of multiple binding pathways and all thermodynamically-accessible peptide degrees of freedom. In addition, performing
multiple shorter simulations is computationally more advantageous than generating longer simulations and allows us to sample
hundreds of shorter trajectories in a regular high-performance computing cluster. The main limitation is the time-scale issue and
in this particular example, the simulations do not sample unbinding events. Care must be taken to ensure the convergence of the
ensemble.

The position and the value of the free energy minimum is similar for the profiles calculated by the three different approaches.
Interestingly, no additional minima were observed in any of the PMFs. Additional minima have been observed in glycophorin A
only upon increased sampling and suggested to arise due to favorable lipid-lipid interactions31. The profiles calculated here are
well sampled but the lack of additional minima suggests the absence of non-native dimer states with favorable lipid packing in
polyalanine. In the first method reported here, we have performed 320 µs of coarse-grain simulations, corresponding to effective
1.2 ms of effective atomistic simulations. On a standard HPC cluster, this long simulation requires several months. Additionally,
related transmembrane receptors have been suggested to have dimer lifetimes in the range of ms-s6, that is difficult to access with
current computational resources. To overcome the computational load and limited statistical sampling in related scenarios, we
have tested the framework of multiple unbiased simulations. In this particular case, the simulation cost of the method is half or
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third of the other methods. The total simulation time for the multiple short simulation method is 100 µs, compared to 320 µs of
the long simulation and 216 µs in the biased simulations. It is encouraging to see the direct correspondence of the three methods,
suggesting that umbrella sampling calculations can be used in the future to probe similar processes. Care should however to be
taken to test the convergence of the simulations and not simply report the apparent standard error of the mean, which appears to
be low in all cases. In particular, sampling around the rotational axes should be tested when sampling is enhanced only along the
inter-helical distance. The short unbiased simulations used in our study appears promising and further work is required to assess
whether they would help predict the energetics for different transmembrane dimers.

The Monte Carlo simulations reported here indicate that relatively low dimer percentages exist in vivo at physiological
peptide concentrations, despite a favorable dimerization energy. These results are consistent with the association constants
obtained from in vitro measurements49,50 and low dimer percentages seen in in vivo studies51. Our results thus appear to resolve
a seemingly contradictory aspect of transmembrane helix association. Previous Monte Carlo simulations have suggested that
large-scale organization of membrane proteins is low unless driven by long-range “lipophobic” interactions36. In addition,
corral-induced clustering has been implicated to increase dimerization propensity of transmembrane proteins63. Mathematical
models have further implicated the role of diffusion and encounter frequency in the organization of membrane receptors64.
Taken together, our results indicate that favorable driving forces are not adequate to corroborate high dimer populations in vivo.
At physiological protein densities, complementary factors such as surface coverage and encounter frequency are important.
The dynamic equilibrium of membrane protein association is thus governed by both thermodynamic and kinetic factors. This
interplay between the thermodynamic and kinetic parameters within the context of the membrane is an important aspect of
membrane receptor association that remains to be further unraveled.

5 Conclusions

In conclusion, we have performed coarse-grain and meso-scale simulations, that have allowed us to predict features of the under-
lying landscape of association of polyalanine peptides in lipid bilayers. Transmembrane polyanaine dimers are observed even in
the absence of any sequence motif, highlighting the importance of non-specific effects in membrane protein association. Addi-
tionally, features of the dynamics are observed to be robust to the sampling protocols used. Short unbiased simulations, although
not directly sampling the helix dissociation events, appears to correctly estimate dimerization profiles and closely matches the
estimates from umbrella sampling and unbiased coarse-grain simulations describing the ms time-scale regime. Spatial Monte
Carlo methods developed here allow us to probe the longer time-scale phenomenon for multiple peptides. We observe that at
high peptide-lipid ratios, high dimer percentages are observed in accordance with the favorable dimerization free energies. At
low peptide-lipid ratios, the overall dimer percentages are low and emphasizing the role of physiological conditions in modu-
lating membrane protein association. The study constitutes an important step towards relating nano-scale computational studies
with the meso-scale experimental studies of membrane protein organization.

6 Supporting Information Available

Supporting information is available. Additional graphics: Additional information on the characterization of the dimer state
(Supplementary Figure 1, 2) and convergence testing of the PMF calculations (Supplementary Figure 3-5). Additional details of
the meso-scale simulations are shown in Supplementary Figure 6. Additional Table: Overview of simulations performed.
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8 Tables

Table 1 Parameters used for the spatial Monte Carlo simulations

Sr.no Parameters Description Values

1 δ t Time (µs) 10
2 R Lattice size (nm) 1
3 Dmono Monomer Diffusion Coefficient (µm2/s) 0.09
4 Ddimer Dimer Diffusion Coefficient (µm2/s) 0.02
5 Pon Association Probability 0.9
6 kon Association rate constant (s−1) 90000
7 ko f f Dissociation rate constant (s−1) 20000
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9 Figures

(a)

(b)

Fig. 1 Association and dissociation events of polyalanine transmembrane helices. The inter-helical distances are plotted during the course of
the simulation for a) 0-5 µs and b) 0-320 µs. Helix-Helix distances greater than 1 correspond to the monomer regime and those less than 1
correspond to the dimer regime. The dissociation events are seen as spikes in the plot due to the µs time-scale lifetimes of the monomers. The
times reported in the manuscript are simulation times, i.e. when multiplied by a factor of four, approximately accounts for the speed-up of
coarse-grained dynamics resulting from the neglect of friction associated with the atomistic degrees of freedom.
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(a)

(b)

(c)

Fig. 2 The potential of mean force (PMF) of dimerization of polyalanine transmembrane helices along the inter-helical distance reaction
coordinate. The PMFs have been calculated from (a) long ms-timescale unbiased simulations (b) biased umbrella sampling calculations and
(c) multiple short µs-timescale unbiased simulations.
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Fig. 3 The protein-protein (a, d, g), protein-lipid (b, e, h) and lipid-lipid (c, f, i) interaction energies as a function of inter-helical distance. The
values are calculated from (top panel) long ms-timescale unbiased simulations (middle panel) biased umbrella sampling calculations and
(bottom panel) multiple short µs-timescale unbiased simulations.
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(a) (b)

Fig. 4 (a) The time evolution of the percentage of the dimers formed in the meso-scale simulation at a protein-lipid ratio of 1:100. (b) The
average dimer percentages obtained from the simulations at different protein-lipid ratios (1:20, 1:50, 1:100, 1:200).
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