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Chemistry in One Dimension

Pierre-François Loos,∗ Caleb J. Ball, and Peter M. W. Gill†

Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia

Abstract

We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting

via the Coulomb operator |x|−1. Using various wavefunction-type approaches, such as Hartree-

Fock theory, second- and third-order Møller-Plesset perturbation theory and explicitly correlated

calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic

and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions

is given and the expression of the high-density correlation energy is reported. We report the total

energies, ionization energies, electron affinities and other physical properties of the many-electron

1D atoms and, using these results, we construct the 1D analog of Mendeleev’s periodic table. We

find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We

also calculate the dissociation curves of several 1D diatomics and study the chemical bond in H+
2 ,

HeH2+, He3+2 , H2, HeH
+ and He2+2 . We find that, unlike their 3D counterparts, 1D molecules are

primarily bound by one-electron bonds. Finally, we study the chemistry of H+
3 and we discuss the

stability of the 1D polymer resulting from an infinite chain of hydrogen atoms.
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I. 1D CHEMISTRY

Chemistry in one dimension (1D) is interesting for many experimental and theoretical

reasons, but also in its own right. Experimentally, quasi-1D systems can be realized in

carbon nanotubes [1–5], organic conductors [6–10], transition metal oxides [11], edge states

in quantum Hall liquids [12–14], semiconductor heterostructures [15–19], confined atomic

gases [20–22] and atomic or semiconducting nanowires. Theoretically, Burke and coworkers

[23, 24] have shown that 1D systems can be used as a “theoretical laboratory” to study strong

correlation in “real” three-dimensional (3D) chemical systems within density-functional theory

[25]. Herschbach and coworkers calculated the ground-state electronic energy of 3D systems

by interpolating between exact solutions for the limiting cases of 1D and infinite-dimensional

systems [26–28].

However, all these authors eschewed the Coulomb operator 1/|x|. For example, Burke

and coworkers [23, 24] used a softened version of the Coulomb operator 1/
√
x2 + 1 to study

1D chemical systems, such as light atoms (H, He, Li, Be, . . . ), ions (H–, Li+, Be+, . . . ), and

diatomics (H+
2 and H2). Herschbach and coworkers have worked intensively on the 1D He

atom [29–32] replacing the usual Coulomb inter-particle interaction with the Dirac delta

function δ(x) [33–36]. There are few studies using the Coulomb operator because of its strong

divergence at x = 0. Most of these focus on non-atomic and non-molecular systems [37–43].

In this manuscript, we develop a consistent and systematic framework for examining

electron correlation within simple models that involve only one spatial coordinate. We prefer

the Coulomb operator because, although it is not the solution of the 1D Poisson equation,

it pertains to particles that are restricted to a 1D sub-space of 3D space. We refrain from

modifying this operator, for example by softening the singularity or using harmonic potentials

to create the linear confinement, as this can have dramatic effects upon the behaviour that we

seek to study [41]. Furthermore, such modifications typically require a parameter to describe

the extent to which they differ from the original operator, thereby unhelpfully complicating

the analysis.

The first 1D chemical system to be studied was the H atom by Loudon [44]. Despite its

simplicity, this model has been useful for studying the behavior of many physical systems,

such as Rydberg atoms in external fields [45, 46] or the dynamics of surface-state electrons in

liquid helium [47, 48] and its potential application to quantum computing [49, 50]. Most work
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since Loudon has focused on one-electron ions [44, 51–57] and, to the best of our knowledge,

no calculation has been reported for larger chemical systems.

In part, this can be attributed to the ongoing controversy concerning the mathematical

structure of the problem. The nature of the appropriate eigenfunctions, namely their parity

and boundedness, has generated much debate in the past [57–64]. At the same time there

has been significant work on the appropriate boundary conditions (or, equivalently, the

self-adjoint extension) for the problem [65–68]. In the present work we assume, based upon

recent publications by a number of authors [57, 67–69], that the Coulomb potential gives

rise to impenetrable nuclei. We discuss this further in Sec. III.

In Sec. III and Sec. IV, we report electronic structure calculations for 1D atomic and

molecular systems using the unadorned Coulomb operator 1/|x|. Sec. IV discusses several

diatomic systems, the chemistry of H+
3 and an infinite chain of 1D hydrogen atoms.

Because of the singularity of the Coulomb interaction in 1D, the electronic wavefunction

has nodes [70] at all points where two electrons touch [71]. As a result, all 1D systems are

spin-blind [37–39, 41] and we are free to assume that all electrons have the same spin. This

also means that the Pauli exclusion principle forbids any two electrons in 1D to have the

same quantum state and, in independent-electron models such as Hartree-Fock (HF) theory

[72], orbitals have a maximum occupancy of one.

Unless otherwise stated, atomic units are used throughout: total energies in hartrees (Eh),

correlation energies in millihartrees (mEh) and bond lengths in bohrs.

II. THEORY

A. Notation

Because of the impenetrability of the Coulomb operator [57, 62, 69] (see Sec. III), electrons

cannot pass from one side of a nucleus to the other and are trapped in domains which are

either rays (to the left or right of the molecule) or line segments (between nuclei).

The resulting domain occupations lead to families of states which can be defined by

specifying the occupied orbitals in each domain. For example, the notation iA
ZA−2
j denotes

an atom A of nuclear charge ZA whose ith left orbital and jth right orbitals are (singly)

occupied. Likewise, AZA−2
i,j indicates an atom with two electrons, in the ith and jth orbitals,

3
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on the right side of the nucleus. 1D molecules can be similarly described. For example,

A1,4B
ZA+ZB−3
1 denotes a diatomic in which two electrons are between the nuclei and one

electron is on the B side of the molecule. When consecutive orbitals are occupied in the same

domain, we use dashes. For example, A1–3B
ZA+ZB−3 implies that the three lowest orbitals

between the nuclei are occupied.

B. Computational details

We have followed the methods developed by Hylleraas [73, 74] and James and Coolidge

[75] to compute the exact or near-exact energies Eexact of one-, two-, and three-electron

systems. We have written a standalone program [76] called Chem1D to perform HF and

Møller-Plesset perturbation theory calculations [72] on arbitrary 1D atomic and molecular

systems.

All our atomic and molecular calculations use a normalized basis of exponentials on the

ray to the left of the leftmost nucleus,

LA
k (x) = 2k3α3/2(A− x)e−k2α(A−x), (1)

exponentials on the ray to the right of the rightmost nucleus,

RB
k (x) = 2k3α3/2(x− B)e−k2α(x−B), (2)

even polynomials on the line segment between adjacent nuclei,

EAB
k (x) =

√

2/π1/2

RAB

Γ(2k + 3/2)

Γ(2k + 1)
(1− z2)k, (3)

and odd polynomials on the line segment between adjacent nuclei,

OAB
k (x) =

√

4/π1/2

RAB

Γ(2k + 5/2)

Γ(2k + 1)
z(1− z2)k, (4)

where z = (A+ B − 2x)/(A− B), RAB = |A− B| and Γ is the Gamma function [77]. By

including only positive integer k, we ensure that the orbitals vanish at the nuclei. Some of

4
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these basis functions are shown in Fig. 1. Full details of these calculations will be reported

elsewhere [76].

The HF eigenvalues and orbitals yield [72] the second- and third-order Møller-Plesset

(MP2 and MP3) correlation energies EMP2
c and EMP3

c , and the exact and HF energies yield

the correlation energy

Ec = Eexact − EHF. (5)

III. ATOMS

A. Hydrogen-like ions

The electronic Hamiltonian of the 1D H-like ion with nucleus of charge Z at x = 0 is

Ĥ = −1

2

d2

dx2
− Z

|x| , (6)

and this has been studied in great detail (see [44, 51–53, 56, 57] and references therein),

giving rise to much controversy over the nature of such a Hamiltonian and the eigenfunctions

that it permits.

The heart of this argument lies in a difficulty that emerges from the unusually strong

Coulomb singularity in 1D. This singularity becomes non-integrable in the limited dimension-

ality, which causes the Hamiltonian above to be unbounded and hence not self-adjoint. Such

a Hamiltonian cannot provide the energy of the system and we must find an appropriate

extension of it that does. Such extensions are equivalent to defining a set of boundary

conditions for the eigenfunctions at the positions of the nuclei.

There are a family of possible extensions [65, 66] and it is not clear a priori which is the

most appropriate. However, Oliveira and Verri [67, 68] have shown that, when restricting the

system to a sequence of increasingly narrow 3D cylinders, only Dirichlet boundary conditions

permit finite energies and thereby give rise to physically meaningful results. This also agrees

with previous, similar studies [65, 78]. The eigenfunctions consistent with these boundary

5
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conditions are

ψ+
n (x) = xL

(1)
n−1(+2Zx/n) exp(−Zx/n), x > 0, (7)

ψ−
n (x) = xL

(1)
n−1(−2Zx/n) exp(+Zx/n), x < 0, (8)

where L
(a)
n is a Laguerre polynomial [77] and n = 1, 2, 3, . . .. These eigenfunctions vanish at

the nucleus, satisfying the boundary condition ψn(0) = 0.

It is tempting to combine these two sets of functions into families of even and odd parity.

However, this is not admissible [57, 69] because the Dirichlet boundary conditions require

that the nuclei be impenetrable to the electrons [79], as stated above.

Núñez-Yépez and coworkers [69] have provided the following justification for this impene-

trability. Taking the hydrogen-like ion described by the Hamiltonian above and computing

its quantum flux j(x) at the nucleus, we find

j(0) = i

(

ψn
dψ∗

n

dx
− ψ∗

n

dψn

dx

)∣

∣

∣

∣

x=0

= 0 (9)

where ψn is the electronic wavefunction and the boundary conditions imply ψn(0) = 0. It is

clear from this that there is no passage of electrons in either direction across the nucleus.

Instead there is total reflection of the electron and the nucleus is impenetrable. An immediate,

but curious, consequence of this is that any odd-electron 1D atom has a non-vanishing dipole

moment. The ground state of the 1D H atom, for example, has 〈x〉 = ±1.5.

B. Helium-like ions

The electronic Hamiltonian of the 1D He-like ion is

Ĥ = −1

2

(

∂2

∂x21
+

∂2

∂x22

)

− Z

|x1|
− Z

|x2|
+

1

|x1 − x2|
(10)

and two families of electronic states can be considered:

• The one-sided AZ−2
i,j family where both electrons are on the same side of the nucleus;

• The two-sided iA
Z−2
j family where the electrons are on opposite sides of the nucleus.

Some of the properties of the first ten ions are gathered in Table I.

6
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1. One-sided or two-sided?

Because of the constraints of movement in 1D, electrons shield one another very effectively

and, as a result, the outer electron lies far from the nucleus in the AZ−2
1,2 state. Because of

this, the AZ−2
1,2 state is significantly higher in energy than the 1A

Z−2
1 state. For example, the

HF energies of He1,2 and 1He1 are −2.107356 and −3.242922, respectively.

In the hydride anion H– (Z = 1), the nucleus cannot bind the second electron in the H−
1,2

state and this species autoionizes. The corresponding state of the helium atom is bound

but its ionization energy is only 0.1074. Whereas the minimum nuclear charge which can

bind two electrons is Zcrit ≈ 1.1 in the AZ−2
1,2 state, it is Zcrit ≈ 0.65 in the 1A

Z−2
1 state. In

comparison, Baker et al. have reported [80] that the corresponding value in 3D is Zcrit ≈ 0.91.

In the 1A
Z−2
1 state, each electron is confined to one side of the nucleus, and is perfectly

shielded from the other electron by the nucleus. As a result, the electron correlation energy

Ec is entirely of the dispersion type and is much smaller than in 3D atoms. For example, Ec

in 1He1 is −3.022 while Ec in the ground state of 3D He is −42.024. It is interesting to note

that, unlike the situation in 3D, the correlation energy of 1H
–
1 is slightly larger than in 1He1

and approaches the large-Z limit from below.

Table I also shows that correlation energies Esoft
c arising from use of the softened Coulomb

operator [23] are totally different from energies Ec from the unmodified operator. This

qualitative change arises because the softened operator allows the electrons to share the same

orbital.

2. Large-Z expansion

In the large-Z (i.e. high-density) limit, the exact and HF energies of the two-sided He-like

ions can be expanded as a power series using Rayleigh-Schrödinger perturbation theory [81]

Eexact = E(0) Z2 + E(1) Z + E(2) +
E(3)

Z
+O(Z−2), (11)

EHF = E
(0)
HF Z

2 + E
(1)
HF Z + E

(2)
HF +

E
(3)
HF

Z
+O(Z−2), (12)

7
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where

E(0) = E
(0)
HF = −1, E(1) = E

(1)
HF = 2/5. (13)

For large Z, the limiting correlation energy is thus

Ec = E(2) − E
(2)
HF +

E(3) − E
(3)
HF

Z
+O(Z−2) = E(2)

c +
E

(3)
c

Z
+O(Z−2). (14)

The second- and third-order exact energies

E(2) = −0.045545, E(3) = −0.000650, (15)

can be found by Hylleraas’ approach [82], while the second- and third-order HF energies

E
(2)
HF = −0.042832, E

(3)
HF = −0.000495, (16)

can be found by Linderberg’s method [83, 84]. We conclude, therefore, that

Ec = −2.713− 0.155

Z
+O(Z−2). (17)

The negative sign of E
(3)
c explains the reduction in the correlation energy as Z increases.

It is interesting to note that the 2D and 3D values of E
(2)
c are −220.133 and −46.663,

respectively [81, 85, 86], which are much larger than the corresponding 1D values.

C. Periodic Table

We have computed the ground-state energies of the 1D atoms from Li to Ne at the HF,

MP2 and MP3 levels. We have also computed these energies for their cations and anions.

To compute the exact energy of Li and Be+, we have used a Hylleraas-type wavefunction

containing a large number of terms. The results are reported in Table II and the HF ground

state of the first six atoms are represented in Fig. 2.

Where exact energies are available, it appears that the MP2 and MP3 calculations recover

a large proportion of the exact correlation energy. Their performance appears to improve

8
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rapidly as the atomic number grows and, for this reason, we consider the MP3 energies to be

reliable benchmarks for the heavy atoms.

In view of the modest sizes of these atomic correlation energies, we conclude that it is

likely that, for 1D systems, even the simple HF model is reasonably accurate and MP2 offers

a very accurate theoretical model chemistry.

The accuracy of perturbative methods throughout Table II may be surprising given the

small band gaps in some of the species, e.g. Li. Although a small gap is often an indicator

of poor performance for perturbative corrections, the associated HOMO-LUMO excitations

correspond to the movement of an electron from the outermost orbital on one side of the

nucleus to the corresponding orbital on the other side, e.g. exciting from 1Li1,2 to 1,2Li1.

However, such excitations are excluded from the perturbation sums because they involve the

(physically forbidden) movement of an electron from one domain to another.

We have computed the ionization energy IE (A −→ A+ + e–) and the electron affinity EA

(A + e– −→ A–) of each atom and these are summarised in Table III. Our HF calculations

revealed that anions of even-Z atoms (viz. He–, Be–, C–, O– and Ne–) autoionize. The IEs

display a clear zig-zag pattern as the atomic number grows, reminiscent of the IEs in 3D.

However, in 1D the period is very short, viz. two.

The odd-Z atoms have a non-zero dipole moment, which allows reactivity with other

odd-Z atoms via dipole-dipole interactions. In contrast, the even-Z atoms have only a

quadrupole and would be expected to be more electrostatically inert. The combination of

the periodic trends in the IEs and the pattern of atomic reactivities allows us to construct a

periodic table for 1D atoms (Fig. 3). The 1D atoms H, Li, B, N and F are the analogs of

the 3D alkali metals (i.e. H, Li, Na, K and Rb) and the 1D atoms He, Be, C, O and Ne are

the analogs of the 3D noble gases (i.e. He, Ne, Ar, Kr and Xe).

Like their 3D analogs [87–92], the 1D IEs drop as the nuclear charge increases. However,

this behaviour is more dramatic in 1D than in 3D because the strong shielding in 1D causes

the outermost electrons to be very weakly attracted to the nucleus. This effect is so powerful

that the third 1D noble gas (C) has an IE (4.733 eV) which is lower than the IE (5.139 eV)

of the third 3D alkali metal (Na).

1D EAs also behave similarly to their 3D counterparts, decreasing as the nuclear charge

increases. Because one side of the nucleus is completely unshielded, the EA of 1D H (3.961

eV) is far larger than that of 3D H (0.754 eV). However, like the 1D IEs, shielding effects

9
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lead to a rapid reduction in EA as the nuclear charge increases. As a result, the fifth 1D

alkali metal (F) has an EA (0.160 eV) which is considerably smaller than the EA (0.486 eV)

of the fifth 3D alkali metal (Rb).

We have also computed
√

〈x2〉 as a measure of atomic radius and compared these to the

calculated values of Clementi et al. [93, 94] for 3D atoms. Whereas a 3D alkali metal atom

is much larger than the noble gas atom of the same period, the 1D alkali metal atoms are

only slightly larger than their noble gas counterparts.

IV. MOLECULES

A. One-electron diatomics

The electronic Hamiltonian of a one-electron diatomic ABZA+ZB–1 composed of two nuclei

A and B of charges ZA and ZB located at x = −R/2 and x = +R/2 is

Ĥ = −1

2

d2

dx2
− ZA

|x+R/2| −
ZB

|x−R/2| . (18)

For these systems, three families of states are of interest:

• The iAB
ZA+ZB−1 and ABZA+ZB−1

i families where the electron is outside the nuclei [95];

• The AiB
ZA+ZB−1 family where the electron is between the two nuclei.

Some of the properties of three such systems are reported in the upper half of Table IV.

1. H+

2

The simplest of all molecules is the homonuclear diatomic H+
2 , in which ZA = ZB = 1. In

3D, this molecule was first studied by Burrau who pointed out that the Schrödinger equation

is separable in confocal elliptic coordinates [96]. In 1928, Linus Pauling published a review

summarizing the work of Burrau and many other researchers [97, 98]. In Appendix A, we

report some exact wavefunctions for H1H
+ in 1D.

The near-exact potential energy curves of the H1H
+ and HH+

1 states are shown in Fig. 4.

Beyond R = 1.5, the H1H
+ state is lower in energy than the HH+

1 state. However, when the

bond is compressed, the kinetic energy of the trapped electron becomes so large that the

10
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H1H
+ state rises above the HH+

1 state. The bond dissociation energy (0.3307 Eh) of H1H
+ is

large and its equilibrium bond length (Req = 2.581 bohr) is long. Both values are much larger

than the corresponding 3D values (0.1026 Eh and 1.997 bohr) [99]. Note that the electrostatic

forces within the H1H
+ state are attractive due to a favorable charge-dipole interaction,

while those of the HH+
1 state are repulsive because of a similar, but unfavorable, interaction.

Using this simple argument, one can predict that the H1H
+ and HH+

1 potential energy curves

behave as −µH/R
2 and +µH/R

2 for large R, where µH = 3/2. This charge-dipole model is

qualitatively correct for R >∼ 10 for H1H
+ and R >∼ 5 for HH+

1 .

2. HeH2+ and He3+
2

The Hamiltonians of HeH2+ and He3+2 are given by (18) for ZA = 1 and ZB = 2, and

ZA = ZB = 2, respectively. As in H+
2 , we find that He1He

3+ is more stable than HeHe3+1 ,

and He1H
2+ is more stable than HeH2+

1 and 1HeH
2+, except at short bond lengths.

In 3D, the molecules HeH2+ and He3+2 are unstable except in strong magnetic fields [100].

However, as Fig. 5 shows, He1H
2+ and He1He

3+ are metastable species in 1D with equilibrium

bond lengths of Req = 2.182 and 1.793, and transition structure bond lengths of Rts = 3.296

and 4.630, respectively. Although these species are thermodynamically unstable with respect

to He+ +H+ and He+ +He2+, they are protected from dissociation by barriers of 0.0209 and

0.2924, respectively. For large R, their dissociation curves behave as 1/R − µHe+/R
2 and

2/R− 2µHe+/R
2, respectively, where µHe+ = 3/4.

All the heavier one-electron diatomics have purely repulsive dissociation curves.

3. Chemical bonding in one-electron diatomics

Fig. 6 shows the electronic density ρ(x) for H1H
+ and He1H

2+ at their equilibrium bond

lengths. Whereas the electron density in a typical 3D bond is greatest at the nuclei and

reaches a minimum near the middle of the bond [98], the electron density in these 1D bonds

vanishes at the nuclei and achieves a maximum in the middle of the bond. The bond in

He1H
2+ is polarized towards the nucleus with the largest charge.

11
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4. Harmonic vibrations

We have computed the harmonic vibrational frequencies of H1H
+, He1H

2+ and He1He
3+

at their equilibrium bond lengths and these are shown in Table IV. The second derivative of

the energy was obtained numerically using the three-point central difference formula and a

stepsize of 10−2 bohr. The frequency of the 1D H1H
+ ion (2470 cm−1) is similar to that of

the 3D ion (2321 cm−1) [101] but this result is probably accidental. Although the barrier in

He1H
2+ is small and its harmonic frequency relatively high (3553 cm−1), the ion probably

supports a vibrational state: the zero-point vibrational energy is only half the barrier height.

B. Two-electron diatomics

The Hamiltonian of a two-electron diatomic ABZA+ZB–2 composed of two nuclei A and B

of charges ZA and ZB located at x = −R/2 and x = +R/2 is

Ĥ = −1

2

(

∂2

∂x21
+

∂2

∂x22

)

− ZA
∣

∣x1 +
R
2

∣

∣

− ZA
∣

∣x2 +
R
2

∣

∣

− ZB
∣

∣x1 − R
2

∣

∣

− ZB
∣

∣x2 − R
2

∣

∣

+
1

|x1 − x2|
. (19)

These systems possess six families of states:

• The Ai,jB
ZA+ZB−2 family;

• The iAB
ZA+ZB−2
j family;

• The iAjB
ZA+ZB−2 and AiB

ZA+ZB−2
j families [95];

• The i,jAB
ZA+ZB−2 and ABZA+ZB−2

i,j families [95];

Some of the properties of four such systems are reported in the lower half of Table IV.

1. H
2

The simplest two-electron diatomic is H2 where ZA = ZB = 1. The 3D version of this

molecule has been widely studied since the first accurate calculation of James and Coolidge

[75] in 1933. The ground state in each family has been calculated using Hylleraas-type

calculations and is represented in Fig. 7. We note that the HF and Hylleraas curves are

almost indistinguishable due to the small correlation energy in these systems (see Table IV).
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As expected, HH1,2 is high in energy due to shielding by the inner electron (see discussion

on the He-like ions in Sec. III B), and dissociates into H+ + H–
1,2. The three other states

dissociate into a pair of H atoms. As in H+
2 , the 1HH1 state is the most stable at small bond

lengths, but is higher in energy than H1H1 when R > 1.5 bohr. The H1H1 state is bound

with an equilibrium bond length of 2.639 bohr and a dissociation energy of 0.1859 Eh. In

comparison, the bond length of the 3D H2 molecule is close to 1.4 bohr and has a similar

dissociation energy (0.1745 Eh) [102]. The harmonic vibrational frequency of H1H1 (2389

cm−1) is significantly lower than the 3D value (4401 cm−1) [101]. The equilibrium bond

lengths and vibrational frequencies of H1H
+ and H1H1 are similar because of the efficient

shielding in 1D. Finally, we note that H1H1 has a non-zero dipole moment and the two H1

fragments experience an attractive dipole-dipole interaction.

For those who are familiar with the traditional covalent two-electron bond in 3D chemistry,

the instability of H1,2H is probably surprising. However, this state is destabilized by two

important effects: (a) the high kinetic energy of the electrons when trapped between nuclei

(see discussion on H+
2 in Sec. IVA) and (b) the 1D exclusion principle, which mandates that

the second electron occupy a higher-energy orbital than the first. For these reasons, 1D

molecules are usually held together by one-electron bonds (sometimes called hemi-bonds).

Bonding in H+
2 , which is held together by the H+ +H charge-dipole interaction, is roughly

twice as strong as the bonding in H2, which is bound by a much weaker H + H dipole-dipole

interaction. In contrast, in 3D, the H2 bond is roughly twice as strong as that in H+
2 .

We expect that two-electron (or more) bonds exist in neutral species such as 1Li1,2H1

because of favorable dipole-dipole interactions. However, such species are bound despite the

two-electron bond, rather than because of it, and are probably very weakly bound. We will

investigate this further in a forthcoming paper [76].

2. HeH+ and He2+
2

The Hamiltonian for HeH+ and He2+2 are given by (19) for ZA = 1 and ZB = 2, and

ZA = ZB = 2, respectively. Like He1He
3+, He1He

2+
1 is metastable with a large energy barrier

of 0.3051 Eh and a late transition structure with Rts/Req ≈ 2.5. In 3D, the He2+2 dication is

also metastable but with an earlier transition structure (Rts/Req ≈ 1.5) [103–107].

Like the 3D HeH+ molecule [108], the 1D 1He1H
+ and He1H

+
1 ions are bound. The
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dissociation of 1He1H
+ into 1He1 + H+ requires 0.1981 Eh and is much more endothermic

than the dissociation of He1H
+
1 into He+1 +H1, which requires only 0.0174 Eh. Surprisingly,

however, they have similar bond lengths and harmonic frequencies.

3. Chemical bonding in two-electron diatomics

Fig. 8 shows the electronic densities ρ(x) in H1H1, H1He
+
1 , He1H

+
1 and He1He

2+
1 at their

respective equilibrium bond lengths. The bonds in H1H1 and He1He
2+
1 are polar because

of the repulsion by the external electron. In He1H
+
1 , the bond is highly polar because the

repulsion by the external electron and the attraction of the He nucleus push in the same

direction. In H1He
+
1 , the bond is polarized in the opposite direction because the repulsion by

the external electron is dominated by the attraction of the He nucleus.

4. Correlation effects

Table IV reports the MP2, MP3 and exact correlation energies at the equilibrium ge-

ometries of H1H1, 1He1H
+, He1H

+
1 and He1He

2+
1 . All these values are small compared to

their 3D analogs because correlation energy in these 1D systems is entirely due to dispersion.

As a result, correlation effects are pleasingly small and, for example, the HF bond length

in H1H1 differs from the exact value by only 0.003 bohr. This re-emphasizes that the HF

approximation is probably significantly more accurate in 1D than in 3D.

The range of Ec values (−2.434 in H1He
+
1 , −1.771 in He1He

2+
1 , −1.377 in H1H1, −0.671

in He1H
+
1 ) can be rationalized by comparing the distance between the two electrons in each

system (see Fig. 8): shorter distances yield larger correlation energies.

For the diatomics in Table IV, HF theory is again found to be accurate and the MPn series

appears to converge rapidly towards the exact correlation energies. As in the atomic cases

(see Sec. III C), MP2 and MP3 calculations recover a large fraction of the exact correlation

energy.
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C. Chemistry of H
+

3

The 3D H+
3 ion was discovered by Thomson [109] in 1911 and plays a central role in

interstellar chemistry [110–112]. In astrochemistry, the main pathway for its production is

H+
2 +H2 −→ H+

3 +H (20)

and this reaction is highly exothermic (∆U = −0.0639 Eh) [112]. In 3D, the ion has a

triangular structure [113] as first demonstrated by Coulson [114]. (See Ref. 112 for an

interesting historical discussion on H+
3 .) The proton affinity of H2

H2 +H+ −→ H+
3 (21)

is also strongly exothermic (∆U = −0.1613 Eh) [115].

In this Section, we study the 1D analogs of these two reactions, viz.

H1H
+ + 1H1H −→ H1H1H

+ + 1H (22)

H1H1 +H+ −→ H1H1H
+ (23)

In 1D, the equilibrium structure of H1H1H
+ has D∞h symmetry, a bond length of 2.664 bohr,

and an energy of −1.570720 Eh (see Table IV). The correlation energy at this bond length is

only 0.900 mEh. Our calculations predict that reactions (22) and (23) are both exothermic

(∆U = −0.0541 and −0.3848 Eh, respectively) and that reaction (23) is barrierless. It is

interesting that the exothermicities of reactions (20) and (22) are close, and that the proton

affinities (reactions (21) and (23)) are also broadly similar.

D. Hydrogen nanowire

Despite the fact that equi-spaced infinite H chain in 3D suffers from a Peierls instability

[116], this system has attracted considerable interest due to its strong correlation character

and metal-insulator transition [117–121]. We have therefore used periodic HF calculations

[122, 123] to compute the energy per atom of an infinite chain of equi-spaced 1D H atoms

separated by a distance R. Motivated by our results for 1D H+
2 , H2 and H+

3 , we have studied
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the state in which one electron is trapped between each pair of nuclei, i.e. · · ·H1H1H1H1· · · .
We have expanded the HF orbital in the unit cell (x ∈ [−R/2, R/2]) as a linear combination

of K even polynomials (3). We find that, near the minimum-energy structure, K = 4 suffices

to achieve convergence of the HF energy to within one microhartree and the resulting bond

length is Req = 2.795, which is slightly longer than the values in H+
2 , H2 and H+

3 . The

corresponding energy is −0.710457 which yields a binding energy of 0.2105 per bond. In

comparison, the binding energy in H2 is roughly 80% of this value. This explains the

particular stability of the equally-spaced H∞ chain in 1D.

V. CONCLUDING REMARKS

We have studied the electronic structure of 1D chemical systems in which all nuclei and

electrons are constrained to remain on a line. We have used the full Coulomb operator and

our numerical results are strikingly different from those of previous studies [23, 24] in which

a softened operator was used. We have explored atoms with up to 10 electrons, one- and

two-electron diatomics, the chemistry of H+
3 and an infinite chain of H atoms.

We find that, whereas atoms with odd numbers of electrons have non-vanishing dipole

moments and are reactive, atoms with even numbers of electrons have zero dipole moments

and are inert. Based on these results, we have concluded that the 1D version of the periodic

table has only two groups: alkali metals and noble gases.

Our study of one- and two-electron diatomics has revealed that atoms in 1D are bound

together by strong one-electron bonds. The Coulombic forces within such bonds can be

accurately modelled by simple classical electrostatics, primarily as charge-dipole and dipole-

dipole interactions. This leads to a variety of unexpected results, such as the discovery that

the bond in H+
2 is much stronger than the bond in H2.
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Appendix A: Some exact wavefunctions for H
+

2

The Schrödinger equation of a one-electron homonuclear diatomic molecule AZ−1
2 of nuclear

charge Z in its state A1A
Z−1 is

−1

2

d2ψ(x)

dx2
−

(

Z

R/2 + x
+

Z

R/2− x

)

ψ(x) = E ψ(x). (A1)

The equation can be solved for E = 0, yielding

ψn(x) = (1− z2)











xF
(

−n−1
2
, n+4

2
, 2, 1− z2

)

, n odd,

F
(

−n
2
, n+3

2
, 2, 1− z2

)

, n even,
(A2)

where F (a, b, c, x) is the Gauss hypergeometric function [77], z = 2x/R and

R =
(n+ 1)(n+ 2)

2Z
. (A3)

For example, H+
2 with bond length R = 1 has the wavefunction ψ0(x) = (1− 2x)(1 + 2x).
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FIG. 1. Orbital basis functions in a triatomic molecule ABC

TABLE I. Total energies (in Eh), correlation energies (in mEh), HOMO-LUMO gaps (in Eh) and

radii (in a.u.) of the 1D helium-like ions

Total energy Correlation energy HF property

Ion −Eexact −EHF −EMP2
c −EMP3

c −Ec −Esoft
c Gap

√

〈x2〉
1H

–
1 0.646 584 0.643 050 1.713 2.530 3.534 39 0.170 2.296

1He1 3.245 944 3.242 922 2.063 2.688 3.022 14 1.265 0.985

1Li
+
1 7.845 792 7.842 889 2.235 2.733 2.903 8 3.200 0.628

1Be
2+
1 14.445 725 14.442 873 2.335 2.747 2.851 6 5.874 0.460

1B
3+
1 23.045 686 23.042 864 2.401 2.751 2.822 9.294 0.364

1C
4+
1 33.645 661 33.642 859 2.447 2.752 2.802 13.463 0.301

1N
5+
1 46.245 644 46.242 855 2.481 2.751 2.789 18.382 0.256

1O
6+
1 60.845 631 60.842 852 2.508 2.749 2.779 24.050 0.223

1F
7+
1 77.445 621 77.442 849 2.529 2.748 2.772 30.468 0.198

1Ne
8+
1 96.045 613 96.042 847 2.546 2.746 2.766 37.635 0.177
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TABLE II. Total energies (in Eh), correlation energies (in mEh), HOMO-LUMO gaps (in Eh),

dipole moments 〈x〉 and radii
√

〈x2〉 (in a.u.) of 1D atoms and ions

Energy Correlation energy HF property

Ion −Eexact −EHF −EMP2
c −EMP3

c −Ec Gap 〈x〉
√

〈x2〉
H+ 0 0 0 0 0 — 0 0

H1 0.500 000 0.500 000 0 0 0 0.373 1.500 1.732

1H
–
1 0.646 584 0.643 050 1.715 2.530 3.534 0.168 0 2.296

He+1 2.000 000 2.000 000 0 0 0 0.776 0.750 0.866

1He1 3.245 944 3.242 922 2.063 2.688 3.022 1.264 0 0.985

1He
−
1,2 Autoionizes

1Li
+
1 7.845 792 7.842 889 2.235 2.733 2.903 3.200 0 0.628

1Li1,2 8.011 9 8.007 756 3.36 4.03 4.1 0.119 1.483 2.836

1,2Li
−
1,2 8.059 016 3.92 4.75 0.062 0 4.219

1Be
+
1,2 15.041 1 15.035 639 4.77 5.48 5.5 0.220 0.829 1.599

1,2Be1,2 15.415 912 6.68 7.69 0.386 0 2.111

1,2Be
−
1−3 Autoionizes

1,2B
+
1,2 25.281 504 8.75 9.80 0.897 0 1.437

1,2B1−3 25.357 510 9.7 10.9 0.056 1.881 4.655

1−3B
−
1−3 25.380 955 9.97 11.33 0.036 0 7.042

1,2C
+
1−3 37.918 751 12.8 14.3 0.104 1.070 2.726

1−3C1−3 38.090 383 14.6 16.5 0.176 0 3.684

1−3C
−
1−4 Autoionizes

1−3N
+
1−3 53.528 203 18.7 20.9 0.400 0 2.557

1−3N1−4 53.569 533 19.1 21.5 0.031 2.423 7.139

1−4N
−
1−4 53.582 040 19.3 21.7 0.030 0 11.094

1−3O
+
1−4 71.836 884 23.8 26.6 0.059 1.382 4.267

1−4O1−4 71.929 302 24.9 28.1 0.098 0 5.806

1−4O
−
1−5 Autoionizes

1−4F
+
1−4 93.125 365 30.5 34.2 0.217 0 4.048

1−4F1−5 93.149 851 30.7 34.5 0.020 2.939 10.041

1−5F
−
1−5 93.157 319 31 35 0.037 0 15.538

1−4Ne
+
1−5 117.256 746 36.3 40.9 0.037 1.745 6.246

1−5Ne1−5 117.312 529 37 42 0.067 0 8.586

1−5Ne
−
1−6 Autoionizes
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!1

(a) H

!2

(b) He

!3

(c) Li

!4

(d) Be

!5

(e) B

!6

(f) C

FIG. 2. HF ground state orbitals of the H, He, Li, Be, B and C atoms. The positions of the nucleus

are represented by the black dots while the most likely position of the electrons are represented by

red dots.

TABLE III. Ionization energy and electron affinity (in eV) of 1D atoms

Ionization energy Electron affinity

Atom A −→ A+ + e– A+ e– −→ A–

HF MP2 MP3 HF MP2 MP3

H 13.606 13.606 13.606 3.893 3.939 3.961

He 33.822 33.878 33.895 0 0 0

Li 4.486 4.517 4.522 1.395 1.410 1.414

Be 10.348 10.400 10.408 0 0 0

B 2.068 2.09 2.098 0.643 0.651 0.655

C 4.670 4.719 4.733 0 0 0

N 1.125 1.14 1.14 0.340 0.35 0.35

O 2.515 2.54 2.56 0 0 0

F 0.666 0.67 0.67 0.203 0.21 0.2

Ne 1.518 1.5 1.5 0 0 0
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FIG. 4. Potential energy curves of the H1H
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FIG. 5. Potential energy curves of the A1B
ZA+ZB−1 states of several one-electron diatomics
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FIG. 6. Electronic density ρ(x) in H1H
+ and He1H

2+ at their equilibrium bond lengths
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FIG. 7. Potential energy curves of the H1H1, 1HH1, H1,2H and HH1,2 states of H2
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FIG. 8. Electronic density ρ(x) in H1H1, H1He
+
1 , He1H

+
1 and He1He

2+
1 at their equilibrium bond

lengths
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