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We present our current progress on the combination of explicit electron correlation with the pair natural orbital (PNO) represen-
tation. In particular we show cubic scaling PNO-MP2-F12, PNO-CCSDF12 and PNO-CCSD[F12] implementations. The PNOs
are constructed using a hybrid scheme, where the PNOs are generated in a truncated doubles space, spanned by orbital spe-
cific virtuals obtained using an iterative eigenvector algorithm. We demonstrate the performance of our implementation through
calculations on a series of Glycine chains. The accuracy of the local approximations is assessed using the S66 benchmark set,
and we report for the first time explicitly correlated CCSD results for the whole set and improved estimates for the CCSD/CBS
limits. For several dimers the PNO-CCSD[F12] calculations are more accurate as the current reference values. Additionally, we
present pilot applications of our PNO-CCSD[F12] code to host-guest interactions in a cluster model for zeolite H-ZSM-5 and in
a calix[4]arene water complex.

1 Introduction

Although there has been an enormous development in compu-
tational technology, the investigation of large molecular sys-
tems with accurate wave function based methods is still a ma-
jor challenge for theoretical chemistry. In this context, “large”
refers to molecules with more than hundred atoms, which is
still small in comparison to most proteins and enzymes. Den-
sity functional theory (DFT) is currently the method of choice
for large molecules due to its low computational expense.
However, the accuracy of DFT remains limited, particularly
in the description of dispersion interactions and charge trans-
fer excitations, and there is still no systematic route towards
higher accuracy in the DFT framework. Wavefunction meth-
ods, in contrast, are systematically improvable and our goal is
to develop low-cost, accurate alternatives to DFT to extend the
arsenal of quantum chemical tools.
The applicability of correlated wavefunction methods to larger
molecules is hampered by two problems: the steep scaling of
the computational costs with system size and the slow basis set
convergence of the correlation energy. Even MP2, the simplest
correlated wave function method, scales as O(N5), where N is
a measure for the system size. The “gold standard” of quan-
tum chemistry CCSD(T) scales as O(N7), which severely lim-
its its applicability. The unfavorably high scaling is, however,
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unphysical and arises from the delocalized molecular orbital
(MO) basis of the reference Hartree–Fock (HF) wave func-
tion. The heavy basis set requirements of wave function based
methods, as compared to DFT, also hamper their applicabil-
ity to large systems. This originates from the expansion of
the many-electron wavefunction in Slater determinants built
from one-electron functions (orbitals), which converges rather
slowly in the regions of the electron cusps that are key features
of the short-range correlation hole.
In the literature different approaches have been presented to
address both issues. One route to a reduced scaling algo-
rithm is to exploit the short-range nature of dynamic elec-
tron correlation in order to screen out negligible contributions
and to truncate the wave function expansion. Ochsenfeld and
coworkers have developed linear scaling MP2 implementa-
tions,1,2 using an atomic orbital (AO) formulation of MP2,
based on the work of Almlöf and Häser, together with refined
integral estimates to screen negligible contributions at large
interelectronic separations. An alternative route to linear scal-
ing algorithms is to retain the MO formulation, but to localize
the occupied orbitals through unitary transformation. In this
localized basis, correlation of spatially distant electrons be-
comes negligible and a local virtual basis can be constructed
using only virtuals spatially close to the occupied orbitals. Ex-
citations from occupied to virtual orbitals are then restricted to
these local domains. Several choices for sets of local virtual
orbitals have been proposed: Schütz and Werner3–5 success-
fully developed linear scaling algorithms based on the ansatz
of Saebø and Pulay,6 where non-orthogonal projected atomic
orbitals (PAOs) are used as virtual orbitals. In combination
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with an a priori selection of atom domains for each local or-
bital one obtains a restricted set of virtuals. This PAO ansatz
allows very efficient implementations, but has also a lim-
ited error control, since the PAO domains are predetermined,
which leads to a biased treatment. In 2009 Neese and co-
workers7 have revived Meyer’s pair natural orbitals (PNOs),
where for every pair of electrons i j a basis of non-orthogonal
virtuals is chosen by analyzing model amplitudes. The PNO
representation is much more compact than the PAO represen-
tation and due to the analysis of model amplitudes the repre-
sentation automatically adapts to the molecular system, which
leads to a better error control. In fact the accuracy can be con-
trolled by a single parameter, the PNO threshold TPNO, which
truncates the PNO expansion.7 Helmich and Hättig8 showed
that a PNO representation can also be used in response the-
ory for charge transfer and local excitations, which was prob-
lematic with the PAO approach. Yang et al.9 realized that
Pulay and Saebø’s PAOs and Meyer’s PNOs are two choices
for a tensor factorization of the doubles amplitudes and intro-
duced a third one, orbital specific virtuals (OSVs). In the order
PAOs, OSVs and PNOs the representations become increas-
ingly compact. PAOs are specific for a predetermined domain,
OSVs are specific for an occupied orbital i and PNOs are spe-
cific for a given pair of occupied electrons i j. Later Krause
et al.10 and independently Hättig et al.11 demonstrated that
the OSV and PNO representation can be combined in a hybrid
OSV-PNO approach to construct PNOs with quartic scaling
costs. In this approach first the canonical virtual space is con-
tracted into an OSV basis and than contracted into a PNO ba-
sis. As an improvement Schmitz et al.12 developed a modified
hybrid OSV-PNO algorithm, where the OSVs are generated
iteratively and a shell based local Density fitting (DF) scheme
is applied. In this way the PNO generation scales only cubi-
cal with the system size. Riplinger et al.13 also demonstrated
how to combine the PAO and PNO approach in a hybrid way,
where first virtuals are contracted in a large PAO basis and af-
terwards contracted in a PNO basis.
In addition to reducing the scaling with system size, it is also
beneficial to address the slow basis set convergence. Extrap-
olation techniques are often employed to accelerate basis set
convergence towards the complete basis set (CBS) limit, and
for correlation methods the most prominent form is the two-
point X−3 extrapolation approach of Halkier et. al14. Al-
though the extrapolation strategy delivers satisfactory results,
its does not improve the analytical quality of the underly-
ing wave function. An alternative approach is the use of an
explicitly correlated wave function ansatz in the correlation
treatment, where the standard orbital basis expansion is aug-
mented with pair-functions (geminals) that depend explicitly
on the inter-electronic distance ri j, resulting in a much im-
proved description of the correlation hole. Modern F12 the-
ory, which is an extension of the R12 methods of Kutzelnigg

and Klopper,15–17 is the most widely used explicitly correlated
approach. Typically, a F12 calculation using a basis with car-
dinal number X is as accurate as a conventional calculation us-
ing a basis set with cardinal number X +2, which means that
reliable predictions can be made using DFT size basis sets. In
our view, the combination of the hybrid OSV-PNO approach
with F12 theory is an excellent route to low-scaling methods
for accurate electronic structure predictions.
In this article, we build upon our earlier work, and present a
revised implementation of PNO-MP2-F12 with reduced scal-
ing and first implementations of the explicitly correlated cou-
pled cluster models PNO-CCSD(2)F12 and PNO-CCSD[F12].
The key aspects of our approach is the use of a hybrid OSV-
PNO scheme, with an iterative generation of OSVs and the
use of local density fitting (DF) for 4 index integrals, where
orbital transformations are performed directly from the AO to
the PNO basis. We present results of a series of benchmark
calculations that reveal that our methods are accurate and have
an early break even point with their conventional counterparts.
We also demonstrate the utility of the current code through pi-
lot applications, evaluating the interaction energies between
weekly bound complexes. In particular we calculate interac-
tion energies for the S66 set of weak molecular interaction
of Hobza and co-workers38. Since the current CBS reference
values for the S66 set are used to judge the accuracy of various
methods and to fit empirical factors and corrections like for ex-
ample in Ref.43,44, it is important to investigate the magnitude
of the remaining basis set incompleteness errors further.

2 Theory

2.1 Hybrid OSV-PNO approach in F12 theory

We have previously reported a hybrid OSV-PNO approach
for MP2 theory without explicit correlation, using an itera-
tive generation of OSVs in an O(N3) scaling algorithm.12 We
now extend this technique to F12 theory, where the multiple
sets of PNOs arising from the strong orthogonality projector
require the construction of several different orbital-specific or-
bital sets.11,18 Each set of PNOs, di j

pp̄, and OSVs, dii
pp̃, are

eigenvectors of a corresponding pseudo density Dpq. In the
following, PNOs are denoted with a bar, while OSVs and pre-
PNOs are denoted with a tilde.
The appropriate PNOs for the virtual space (V-PNOs) in F12
theory are those that provide a compact representation of the
double excitations that can not be captured by the geminal ba-
sis. In Ref.11 it has been demonstrated that the eigenvectors
of the pseudo (difference) density, built from difference am-
plitudes yi j

ab, are a suitable choice for this purpose. Using a
spin-orbital formalism,

∆
i j
ab = t i j

ab− ri j
ab , (1)
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where ri j
ab is a short hand notation for 〈ab| f12|ĩ j〉. The tilde in

|ĩ j〉 indicates contraction with the geminal coefficients from
the fixed amplitude (SP) approach19 |ĩ j〉= P̂i j

( 3
8 +

1
8 Ŝi j
)
|i j〉,

where Ŝi j permutes the spatial components and P̂i j is an anti-
symmetrisation operator defined by its action P̂pqXpq = Xpq−
Xqp. In Eq. 1 the second term ri j

ab, approximately removes
from t i j

ab the contributions that can be spanned by the gemi-
nals. PNO-F12 theory requires additional auxiliary PNOs to
express the strong orthogonality projectors AQ and BQ in a
pair specific basis. In Ref18, Tew and Hättig discussed various
choices, which form the basis of our current implementation.
For BQ̂12 the recommendation is unchanged from our earlier
work

BQ̂12 = V̄1V̄
′
2 +V̄

′
1V̄2 +V̄

′
1V̄
′
2 , (2)

where for the sake of notational clarity the pair index i j
is omitted. For AQ̂12, we use approximation A3Q̂12 in
Ref18, which provides the most compact representation of the
occupied-occupied and occupied-virtual product spaces and
the number of auxiliary PNOs per pair quickly becomes in-
dependent of the system size,

A3Q̂12 = 1− ¯̄O1
¯̄O2−V̄1V̄2− Ō1V̄

′′
2 −V̄

′′
1 Ō2 . (3)

This is in contrast to our earlier work18 where the O(N4) con-
struction of the densities and PNOs from the full MO basis
was the dominant expense and the overhead of building ad-
ditional PNO sets was not worthwhile. In the current hybrid
OSV-PNO approach, use of A3Q̂12 is required to eliminate all
O(N4) steps. Above, the symbols V , V

′
, V
′′

and O denote the
virtual, the union of virtual and complementary virtual (CA),
the CA and the occupied space respectively.
For each term in the projectors, different types of auxiliary
PNOs (X-PNOs) are required. The pseudo densities for each
PNO generation are constructed as18

(OPNOs 1) ¯̄Ki j : Di j
KL = ∑

M
ri j

KMri j
LM (4)

(OPNOs 2) K̄i j : Di j
KL = ∑

c′′
ri j

Kc′′r
i j
Lc′′ (5)

(CA-PNOs 1) ā′′i j : Di j
a′′b′′ = ∑

M
ri j

a′′Mri j
b′′M (6)

(CA-PNOs 2) ā′i j : Di j
a′i jb

′
i j
= ∑

c̄i j

ri j
a′i j c̄i j

ri j
b′i j c̄i j

(7)

The orbitals ¯̄Ki j and K̄i j both span the occupied orbital space,
but K̄i j occurs in the projector ŌV̄ ′′, together with the ā′′i j or-
bitals, which span the union of CA and virtual orbitals. This is
accounted for in the PNO construction by using a density com-
puted from integrals with one index in the occupied space and
one in the CA plus virtual space, which is denoted by a double
prime a′′. Also the ā′i j orbitals span the union of CA and vir-
tual orbitals, but include only the virtuals, which are discarded

in the V-PNO representation i.e. they span the subspace of the
union of CA and virtual space that is orthogonal to the selected
V-PNOs. In this way, screened out virtuals are included in an
extended CA space. The V-PNOs and X-PNOs in F12 theory
can be computed in a pair specific pre-PNO basis in a similar
manner to that used for conventional V-PNOs. The pre-PNO
basis for pair i j is constructed by merging orbital-specific aux-
iliary orbital (OSX) sets for i and j. The OSVs and OSXs
are analogues of their PNO counterparts and defined by the
pseudo densities they diagonalize

(OSVs) ãi : Dii
ab = ∑

c
∆

ii
ac∆

ii
bc (8)

(OSOs 1) ˜̄Ki : Dii
KL = ∑

M
rii

KMrii
LM (9)

(OSOs 2) K̃i : Dii
KL = ∑

p′′
rii

K p′′r
ii
Lp′′ (10)

(CAOSVs 1) ˜̃a′′i : Dii
a′′b′′ = ∑

p′′
rii

a′′p′′r
ii
b′′p′′ (11)

(CAOSVs 2) ã′′i : Dii
a′′b′′ = ∑

c′′
rii

a′′c′′r
ii
b′′c′′ , (12)

where a′′, b′′ run over the virtual and CA orbitals, while p′′

runs over the union of HF and CA basis. This large contrac-
tion space is needed to ensure an accurate approximation of
ri j

KL, ri j
Kc′′ and ri j

a′b in the OSX basis.11 The occupation num-
ber thresholds for discarding unimportant X-PNOs and OSXs
in F12 theory have been determined in Ref18 and linked to
the primary V-PNO occupation number threshold such that the
truncation error in the auxiliary sets is always an order of mag-
nitude smaller than the virtual set.

2.1.1 Iterative generation of OSVs and OSXs
As shown in Ref.12 a local density fitting scheme (DF) in com-
bination with an iterative OSV generation that uses a modified
Block-Davidson algorithm can be applied to obtain PNOs with
quadratically scaling costs. In this approach Almlöfs “Laplace
trick”20 is used to factorize the orbital energy denominator by
replacing it in the approximate MP2 doubles amplitudes by
an equivalent Laplace transformed expression, which is eval-
uated numerically using nL grid points and weights ωz. Each
quadrature point is then a factorisable expression, and the ma-
trix vector product σ k

a of the doubles amplitudes t ii
ac with an

arbitrary vector bk
c can be written as

σ
k
a =∑

c
t ii
acbk

c =−
nL

∑
z

ωz ∑
ν

Cz
νa ∑

Qi

(Qi|ν iz)

×∑
Pi

[
(ii)V−1

]
QiPi

∑
µ

(Pi|µiz)∑
c

Cz
µcbk

c .

(13)

The evaluation of arbitrary matrix vector products is needed
for nearly all iterative diagonalization algorithms. In the ex-
pression Pi denotes an auxiliary function in a local DF ba-
sis, (Qi|ν i) are 3 index DF-integrals with one index in the
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occupied and one index in the AO basis, V is defined as
V = (PQ), Cz

µc refers to grid point depended LMO coefficients
Cz

µa = Cµae−εatz and iz to LMOs, which depend on the grid
points |iz〉= ∑ j Ti jeε jtz | j〉. Each of the matrix vector products
in eqs. 13 can be evaluated with operation counts that scale
at most quadratically with the system size. The presented it-
erative OSV generation can be adapted for OSVs and OSXs
in F12 theory. For OSXs with two indices in the same orbital
space (OSOs 1 and CAOSVs 2) one arrives with generalized
dimensions p,q at

σ
k
a =∑

q
rii

pqbk
q =−∑

ν

Cν p ∑
Qi

(Qi| f12|ν i)

×∑
Pi

[
(ii)V−1

f12

]
QiPi

∑
µ

(Pi| f12|µi)∑
q

Cµqbk
q ,

(14)

where now 3 index integrals over the correlation factor and its
metric (for V ) are used. The above expressions are appropri-
ate for the iterative diagonalisation of the amplitudes, which
is equivalent to diagonalising the psuedodensity for OSVs,
OSOs 1 and CAOSVs 2. For OSOs 2 and CAOSVs 1, the
amplitudes are not symmetric and the appropriate expressions
for the iterative diagonalization of the pair density has to be
written as

σ
k
p =∑

q
Dii

pqbk
q =−∑

ν∗
Cν∗p ∑

Qi

(Qi| f12|ν∗i)

×∑
Pi

[
(ii)V−1

f12

]
QiPi

∑
µ ′′
(Pi| f12|µ ′′i)∑

b′′
Cµ ′′b′′

×∑
κ ′′

Cκ ′′b′′∑
Ri

(Ri| f12|κ ′′i)∑
Si

[
(ii)V−1

f12

]
RiSi

×∑
λ ∗
(Si| f12|λ ∗i)∑

q
Cλ ∗qbk

q ,

(15)

where the superscript ∗ is used to denote that the AO basis
(OSOs 1) as well as the AO + CA basis (OSOs 2 and CAOSVs
1+2) is used for different OSXs types. For a fast convergence
in the CAOSVs generation the algorithm is started with the
conventional OSVs of the same LMO augmented by a block
of zeros for the CABS space. For the OSOs 1+2 the same
strategy as in Ref.12 is used as start guess. As for CAOSVs
1+2 the conventional OSVs, which are required for subsidiary
screening steps, are used as start guess for the (F12-)OSV con-
struction.

2.2 pre-PNO generation

The details of our algorithm for constructing the pre-PNOs
from OSVs and the subsequent PNO formation have been
discussed elsewhere.11,12 Here we give a brief overview and
highlight the deviations from our earlier work. After first ob-
taining OSVs and OSXs using the iterative AO-based scheme,
the pair list is truncated using SOS-MP2 pair energy estimates

in the conventional OSV basis, where we now exploit the local
DF scheme.
For all surviving pairs i j a pre-PNO basis is constructed by
merging and orthogonalizing the OSV sets of i and j. Lin-
ear dependencies in this merged basis are removed. During
the pre-PNO generation (non-unitary) transformation matrices
from the OSV/OSX to the pre-PNO basis are constructed and
saved on disk. This avoids the need for saving the pre-PNO
coefficients in the canonical or AO basis. If they are needed
they are constructed on the fly. With a proper algorithm design
this leads to a reduced I/O. The pseudo densities for the PNO
generation are then built in the reduced doubles space spanned
by the pre-PNOs.

2.3 Integral evaluation

All 4-index integrals are built from local density fitting (DF)
3-index intermediates. To reduce the costs for the evaluation
of 3-index precursors, integral screening techniques are intro-
duced, which exploit the short range nature of the operators
f12, f12g12, f 2

12 and f 2
12r2

12. Our screening algorithm follows
the work of Adler et. al,21 but introduces a prescreening step
with a cheaper estimate, which only uses the most diffuse ba-
sis function in the contracted GTO. The bounds for these kinds
of integrals can be found in the supplementary material ??.

2.3.1 4-index integral construction
All 4-index integrals required for the OSV and PNO gener-
ation are built using local DF from 3-index precursors with
an index in the AO basis and one occupied index. The in-
tegrals over f12, f12g12, f 2

12 are positive (or negative) defi-
nite and density fitting proceeds using the natural fit metric.
Manby’s robust density fitting formulation22 is used for the
f 2
12r2

12 integrals since they are not positive or negative definite
in our implementation.23 The procedure for standard DF is
shown in pseudocode 1 and for robust DF in 2. In both cases
the 3-index AO integrals are directly transformed to the pre-
PNO basis. The required pre-PNO coefficients in the AO basis
are obtained by contracting the OSV to pre-PNO transforma-
tion matrices with the AO coefficients for the OSVs. Then a
local DF matrix (i j)V (ô12)

Pi jQi j
is constructed for the operator ô12.

Since the number of pre-PNOs is small compared to the di-
mension of the pair-specific fitting basis sets it is more effi-
cient to solve the linear equations for the local DF intermedi-
ates via Cholesky decomposition of (i j)V (ô12)

Pi jQi j
instead of build-

ing the inverse of this matrix.

2.4 Explicitly correlated PNO-CCSD

Our PNO implementation of the standard CCSD working
equations follows that of Neese et. al24 and we introduce the
same approximations with one exception: we do not neglect
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Algorithm 1 Local DF scheme to build 4-index integrals in a
pre-PNO basis X i j

r̃i j s̃i j
= 〈r̃i j s̃i j|ô12|i j〉

Cµ∗ r̃i j = ∑r Cµ∗rdrr̃i j

Cν× s̃i j = ∑s Cν×sdss̃i j

Get sub-matrix V (ô12)
Pi jQi j

of full matrix V (ô12)
PQ = (P|ô12|Q)

Get 3-index integrals (Qi j|ô12|µ∗i) and (Qi j|ô12|ν× j)

Transform AO-Index to e.g. pre-PNO basis:(
Qi j|ô12|r̃i ji

)
= ∑µ∗

(
Qi j|ô12|µ∗i

)
Cµ∗ r̃i j(

Qi j|ô12|s̃i j j
)
= ∑ν×

(
Qi j|ô12|ν× j

)
Cν× s̃i j

Cholesky decomposition: V (ô12)
Pi jQi j

= ∑Ri j I(ô12)
Pi jRi j

I(ô12)
Qi jRi j

Solve ∑Qi j V
(ô12)
Pi jQi j

BQi j r̃i j i =
(

Pi j
∣∣ ô12|r̃i ji

)
using I(ô12)

Pi jRi j

Calculate 4-index integrals in pre-PNO basis:

X i j
r̃i j s̃i j

= ∑Qi j BQi j r̃i j i (Qi j|ô12|s̃i j j)

Algorithm 2 Local robust DF scheme to build 4-index inte-
grals in a pre-PNO basis X i j

r̃i j s̃i j
= 〈r̃i j s̃i j|ô12|i j〉

Cµ∗ r̃i j = ∑r Cµ∗rdrr̃i j

Cν× s̃i j = ∑s Cν×sdss̃i j

Get sub-matrix V (ĝ12)
Pi jQi j

of full matrix V (ĝ12)
PQ = (P|g12|Q)

Get sub-matrix V (ô12)
Pi jQi j

of full matrix V (ô12)
PQ = (P|ô12|Q)

Get integrals (Qi j|ô12|µ∗i), (Qi j|ô12|ν× j), (Qi j|g12|µ∗i)

and (Qi j|g12|ν× j) and transform to pre-PNO basis as 1

Cholesky decomposition: V (ĝ12)
Pi jQi j

= ∑Ri j I(ĝ12)
Pi jRi j

I(ĝ12)
Qi jRi j

Solve ∑Qi j V
(ĝ12)
Pi jQi j

GQi j r̃i j i = (Pi j|g12|r̃i ji) using I(ĝ12)
Pi jRi j

Solve ∑Qi j V
(ĝ12)
Pi jQi j

GQi j s̃i j j = (Pi j|g12|s̃i j j) using I(ĝ12)
Pi jRi j

Construct robust DF intermediates:

B(ô12)
Qi j r̃i j i

= (Qi j|ô12|r̃i ji)− 1
2 ∑Pi j V

(ô12)
Qi jPi j

GPi j r̃i j i

B(ô12)
Qi j s̃i j j = (Qi j|ô12|s̃i j j)− 1

2 ∑Pi j V
(ô12)
Qi jPi j

GPi j s̃i j j

Calculate 4-index integrals in pre-PNO basis:

X i j
r̃i j s̃i j

= ∑Qi j B(ô12)
Qi j r̃i j i

B(ô12)
Qi j s̃i j j

the contribution to the doubles residual, which involves the
term ∑k Jkd̄

āc̄ tk
b̄ . The implementation of the terms in the singles

residual is only slightly changed from that reported for PNO-
CC2 in Ref.25,26; we no longer use MO precursors but com-
pute all PNO target integrals directly from integrals in the AO
basis. In the following, we give the details of the additional
terms required for PNO-CCSDF12

27 and PNO-CCSD[F12].28

The choice of intermediates follows that of Ref.28. Several
aspects of our implementation have already been reported and
are not repeated here. In particular, terms common to PNO-
MP2-F12 and PNO-MP3(F12) have been reported in Refs.18

and11. For the PNO-MP2-F12 intermediates, our current im-
plementation differs slightly from Refs.18 and11 in that A3Q̂12
has replaced A2Q̂12 and the AO based local DF algorithms 1
and 2 are used to construct the 4-index integrals in the PNO
basis.

2.4.1 PNO-CCSD(2)F12
In the CCSD(2)F12 approximation the CCSD equations are
solved without F12 contributions, but the energy is evaluated
with a modified Lagrangian, which is obtained from the con-
ventional CCSD Lagrangian plus the most important explic-
itly correlated contributions:27,28

L(2)F12 =ECCSD +∆Eunc
MP2−F12

+2 ∑
ā>b̄,i> j

(
C i j

āb̄ +V i j
āb̄

)
t i j
āb̄

(16)

Here ∆Eunc
MP2−F12 is the explicitly correlated part of the MP2-

F12 energy without coupling to t i j
āb̄. The coupling is in-

cluded via C i j
āb̄ and V i j

āb̄ . The matrix elements C i j
āb̄ =〈

āb̄
∣∣(F̂1 + F̂2

)
BQ̂12 f12(r)|ĩ j〉 is available from PNO-MP2-

F12, while V i j
āb̄ is an additional intermediate, given in terms

of PNOs and X-PNOs as

V i j
āb̄ = vi j

āb̄− ∑
¯̄K> ¯̄L

ri j
¯̄K ¯̄L

g
¯̄K ¯̄L

āb̄ −∑
L̄c̄′′

ri j
c̄′′L̄gc̄′′L

āb̄

−∑
L̄c̄′′

ri j
L̄c̄′′g

L̄c̄′′
āb̄ −∑

c̄>d̄

ri j
c̄d̄gc̄d̄

āb̄ ,
(17)

with the usual definition of intermediates ri j
p̄q̄ = 〈p̄q̄| f12|ĩ j〉,

gr̄s̄
p̄q̄ = 〈p̄q̄||r̄s̄〉 and vi j

p̄q̄ = 〈p̄q̄| f12g12|ĩ j〉. The intermediate
V i j

āb̄ also appears in PNO-MP3(F12) and we refer the reader
to Ref.11 for implementation details.

2.4.2 PNO-CCSD[F12]
For the PNO-CCSD[F12] model the leading additional terms
to the singles and doubles residuals are added to the PNO-
CCSD residuals during the solution of the cluster equations:

Ω
i
a,[F12] = Ω

i
a,CCSD +C i

a +V i
a +U i

a (18)
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Ω
i j
āb̄,[F12] = Ω

i j
āb̄,CCSD +C i j

āb̄ +V i j
āb̄ +U i j

āb̄ (19)

Starting from the PNO-CCSD Lagrangian the expression for
the PNO-CCSD[F12] Lagrangian becomes28

L[F12] =ECCSD +∆Eunc
MP2−F12 +∑

ai
(V i

a +U i
a )t

i
a

+ ∑
ā>b̄,i> j

(
C i j

āb̄ +V i j
āb̄ +U i j

āb̄

)
t i j
āb̄ ,

(20)

where ECCSD is the usual PNO-CCSD energy expression eval-
uated with the amplitudes obtained as solution of eqs 18 and
19. Using V-PNOs and X-PNOs for a size independent strong
orthogonality operator, the intermediates from F12 theory C i

a,
U i

a , V i
a , U i j

āb̄ become

C i
a = ∑

j
∑
ā

di j
aāP̂i j ∑

c̄′
ri j

āc̄′
(
∑
c′

Fjc′d
i j
c′ c̄′
)
, (21)

U i
a =−∑

kl
∑
ā

dkl
aā ∑

d̄′
rkl

ād̄′g
lk
d̄′i , (22)

V i
a = ∑

l
V il

al = ∑
l

[
vil

al− ∑
¯̄K> ¯̄L

ril
¯̄K ¯̄L

g
¯̄K ¯̄L

al −∑
L̄c̄′′

ril
c̄′′L̄gc̄′′L̄

al

−∑
K̄d̄′′

ril
K̄d̄′′g

K̄d̄′′
al −∑

c̄>d̄

ril
c̄d̄gc̄d̄

al

]
,

(23)

and

U i j
āb̄ = P̂āb̄P̂i j ∑

kc̄′

(
Kik

āi j c̄′jk
− Jik

āi j c̄′jk

)
rk j

c̄′k j b̄k j
Sk j,i j

b̄k j b̄i j
, (24)

The terms V i j
āb̄ , U i j

āb̄ and C i j
āb̄ are common to PNO-MP3(F12).

Their implementation has been reported in Ref.11. Implemen-
tation of the additional contributions C i

a, U i
a and V i

a required
only minor changes and generalizations to the existing rou-
tines for PNO-CC2: C i

a needed a generalization of ΩI
ai to

treat a Fock matrix in the CA space and F12 amplitudes in
the V-PNO and CAPNO-2 basis. For U i

a the same strategy
as for ΩH

ai can be used, but with generalization to the V-PNO
and CAPNO-2 index spaces. The intermediate V i

a is more in-
volved. The first term vil

al is precomputed using DF techniques
and the remaining terms are constructed using the following
scheme, where p̄ and q̄ denote generalized PNO spaces (occu-
pied, virtual, CA):

CQiu,q̄ j = ∑
Piu

( jq̄|Piu)
[iuV−1]

PiuQiu
(25)

YQiu,p̄i j = ∑
q̄

ri j
p̄q̄CQiu,q̄ j (26)

ΓQiu,ν∗i = ∑
j∈J (i)

∑
p̄

YQiu,p̄i jCν∗ p̄ (27)

V i
µ+= ∑

Qiu,ν∗
ΓQiu,ν∗i (Qiu|µν

∗) (28)

The index iu indicates the unified DF basis,25 and the star de-
notes that for the contributions of p = c̄′′ and q = L̄, the union
of the AO basis and AO-CABS basis is used.

3 Computational details

All calculations were performed using a development version
of the TURBOMOLE package.29 For canonical DF-MP2-F12
and CCSD[F12] calculations the ricc228,30,31 module was em-
ployed, whereas the local development program pnoccsd was
used for PNO-MP2-F12 and PNO-CCSD[F12] calculations.
For the orbital basis the cc-pVDZ-F12,32 cc-pVDZ, aug-cc-
pVDZ and aug-cc-pVTZ33 were chosen, which will be abbre-
viated as DZ-F12, DZ, aDZ and aTZ. For DF and RI, the ap-
propriate auxiliary basis sets were taken from Refs.34 and35.
In one case we also used the aug-cc-pwCVDZ basis36 in com-
bination with the auxiliary basis from Ref.37 for the DF and
RI, which will be abbreviated as wCDZ.

4 Results and discussion

4.1 Impact of the integral screening

Integral screening was tested using a set of molecules
composed of an adenine-thymine base pair, cyclohexane,
dibutylphenol, norbornane, (Gly)1, (Gly)2, (Gly)4 and a
(GaAs)4 cluster as an example for an inorganic molecule with
occupied d-shells. For these molecules, four sets of PNO-
MP2-F12 calculations were performed to determine the er-
rors due to F12 screening ∆F12 compared to standard Schwarz
screening ∆con. ∆F12 was computed as the difference between
energies with and without F12 screening, but with default lev-
els of Schwarz screening. ∆con was computed as the difference
between energies evaluated using the default threshold for the
convergence of the density to 10−7 and the tighter threshold
of 10−13, and with no F12 screening. The default threshold
for F12 screening is the same as that for Schwarz screening.
The results are shown in Table 1 and reveal that the error due
to the Schwarz screening is in most cases one order of mag-
nitude larger as the error due to the F12 screening. There are
some exceptions where this trend flips, but nevertheless the
errors due to the screening are at least in the range of 10−6%
and therefore negligible at this level of convergence for the
one-electron density, i.e. the HF-SCF wavefunction.

4.2 Performance of PNO-MP2-F12, PNO-CCSD(2)F12
and PNO-CCSD[F12]

The performance of our PNO-MP2-F12 implementation in
comparison to the canonical DF-MP2-F12 implementation

6 | 1–13
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Table 1 Error in the total correlation energy due to F12 screening ∆F12 and Schwarz screening ∆con in µ Eh and % in different basis sets. For
the Schwarz (and F12-) screening T def.

schwarz was used as threshold, while for the reference with (numerical) inactive screening T tight
schwarz was

applied.

molecules basis T def.
schwarz T tight

schwarz ∆F12 µ Eh ∆F12 (%) ∆con µ Eh ∆con (%)
Adenine-Thymine DZ-F12 1.6 ·10−12 1.6 ·10−18 −1.55 ·10−2 4.042 ·10−7 1.54 ·10−2 −4.02 ·10−7

Cyclohexane DZ-F12 3.7 ·10−12 3.7 ·10−18 2.90 ·10−3 −2.53 ·10−7 −1.15 ·10−2 1.00 ·10−6

Dibutylphenol DZ-F12 1.6 ·10−12 1.6 ·10−18 9.70 ·10−3 −3.39 ·10−7 −7.09 ·10−2 2.48 ·10−6

Norbornane DZ-F12 3.3 ·10−12 3.3 ·10−18 4.70 ·10−3 −3.57 ·10−7 −2.81 ·10−2 2.13 ·10−6

(Gly)1 aTZ 2.8 ·10−12 2.8 ·10−18 9.00 ·10−4 −6.67 ·10−8 −2.04 ·10−2 1.51 ·10−6

(Gly)2 aTZ 1.6 ·10−12 1.6 ·10−18 2.05 ·10−2 −8.72 ·10−7 −7.04 ·10−2 2.99 ·10−6

(Gly)1 DZ-F12 5.4 ·10−12 5.4 ·10−18 6.34 ·10−2 −4.76 ·10−6 1.90 ·10−3 −1.43 ·10−7

(Gly)2 DZ-F12 3.1 ·10−12 3.1 ·10−18 1.40 ·10−3 −6.05 ·10−8 −9.20 ·10−3 3.97 ·10−7

(Gly)4 aTZ 8.6 ·10−13 8.6 ·10−19 −1.33 ·10−2 3.04 ·10−7 −2.20 ·10−3 5.03 ·10−8

(GaAs)4 wCDZ 2.8 ·10−12 2.8 ·10−18 −9.40 ·10−3 1.92 ·10−7 −2.18 ·10−2 4.46 ·10−7

presented in Ref.23 and the previous quartic scaling PNO-
MP2-F12 method is tested on glycine chains (Gly)n with
n = 1,2,4,8,16,32 in the DZ-F12 basis. In Fig. 1 the wall
time is plotted on a logarithmic scale against the number of
orbital basis functions for TPNO = 10−7. Only for (Gly)1 the
canonical implementation outperforms the cubic PNO-MP2-
F12 code. Afterwards the benefit of the new implementation
is substantial. The break even point with the quartic scaling
version reported in Ref.11 is a bit later, but with (Gly)4 still
at a reasonable system size. Table 2 shows power laws of
the form 10b ·Nn

bas, which are fitted to the wall clock time.
The exponent n shows the effective scaling of the implemen-
tations and reveals an effective sub-cubic scaling for the new
code, but it is fair to mention that also the effective scaling of
the old code is a bit below quartic scaling in the studied size
regime. Nevertheless the scaling of the new implementation is
significantly reduced in comparison to the previous one, which
opens up new possibilities. For PNO-CCSD[F12] and PNO-

Table 2 Fitted power laws for the wall clock time for the canonical
DF-MP2-F12 implementation and the cubic and quartic scaling
PNO-MP2-F12 implementation.

TPNO O(N3) O(N4) DF-MP2-F12
10−6 10−2.89N2.42

bas 10−5.43N3.37
bas 10−6.47N3.93

bas

10−7 10−2.81N2.44
bas 10−5.48N3.41

bas 10−6.47N3.93
bas

10−8 10−2.81N2.47
bas 10−5.59N3.48

bas 10−6.47N3.93
bas

CCSD(2)F12 analogous calculations were carried out and com-
pared to the canonical CCSD[F12] and CCSD implementa-
tions in the TURBOMOLE package. Figure 2 show the tim-
ings of these methods using a TPNO of 10−7 and the DZ-F12
basis. Figure 2 reveals that even for (Gly)1 PNO-CCSD[F12]
and PNO-CCSD(2)F12 are faster than both canonical CCSD
and CCSD[F12]. The benefits of the PNO approximation are
really substantial and in combination with the enhanced basis
set convergence PNO-CCSD[F12] it is extremely promising

195 342 636 1224 2400 4800
Number of basis functions
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W
a
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ti
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it-OSV-PNO-MP2-F12

OSV-PNO-MP2-F12

DF-MP2-F12

Fig. 1 Wall time (s) for calculations on glycine chains (Gly)n with
n = 1,2,4,8,16,32 in the DZ-F12 basis set using canonical
DF-MP2-F12 and PNO-MP2-F12 with a quartic and cubic
algorithm. The PNO threshold is TPNO = 10−7.

as a fast and accurate computational approach. The curves
for PNO-CCSD[F12] and PNO-CCSD(2)F12 are very close.
CCSD(2)F12 is slightly faster for a given basis set and trun-
cation threshold, but a better measure of performance is the
cost-accuracy ratio, which is discussed in the next section. The
results of power law fits to the wall clock time are shown in Ta-
ble 3. Cubic scaling is not quite reached within the sequence
of increasingly larger glycine chains from (Gly)1 to (Gly)8 in
the DZ-F12 basis, but it is observed in the smaller DZ basis
within this sequence with a fitted power law of 10−1.95N2.55

bas .
It is likely that cubic scaling would be observed also for the
DZ-F12 basis if (Gly)16 were included in the fit.

4.3 S66 benchmarks

To measure the accuracy of our PNO-MP2-F12, PNO-
CCSD(2)F12 and PNO-CCSD[F12] implementations we used
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CCSD[F12]

Fig. 2 Wall time (s) for calculations on glycine chains (Gly)n with
n = 1,2,4,8 in the DZ-F12 basis set using canonical CCSD,
CCSD[F12], PNO-CCSD[F12] and PNO-CCSD(2)F12 with
TPNO = 10−7.

Table 3 Fitted power laws for the canonical CCSD[F12]
implementation and the cubic scaling PNO-CCSD[F12] and
PNO-CCSD(2)F12 implementation.

TPNO PNO-CCSD[F12] PNO-CCSD(2)F12 CCSD[F12]
10−6 10−3.93N3.06

bas 10−3.96N3.05
bas 10−8.67N5.26

bas

10−7 10−3.89N3.10
bas 10−4.12N3.18

bas 10−8.67N5.26
bas

10−8 10−3.94N3.18
bas 10−4.00N3.20

bas 10−8.67N5.26
bas

the S66 set38 and performed calculations in the aDZ and aTZ
basis sets. For aDZ it was feasible to carry out canonical refer-
ence calculations for the whole set, while for aTZ only the S22
subset were computed using the canonical code. These refer-
ence data enable us to demonstrate that the PNO truncation er-
ror is very small and we use the PNO-CCSD[F12]/aTZ level of
theory to improve upon previous estimates for the CCSD/CBS
limits of the S66 set,38 which are given in the supporting ma-
terial ??. To the best of our knowledge this is the first time that
calculations for the whole S66 set have been performed using
F12 theory. The largest previous calculation we have found
are CCSD(T)-F12b39 on the subset of the S66 molecules, us-
ing the incremental scheme.40

4.3.1 Analysis of the accuracy
In the first analysis we focus on the relative error in the corre-
lation energy caused by the PNO approximation

∆rel =
EPNO

c −Ecan.
c

Ecan.
c

×100 , (29)

which is listed in Tables 4, 5 and 6 for different thresholds
for PNO-MP2-F12, PNO-CCSD(2)F12 and PNO-CCSD[F12]
respectively. In our analysis we included the dimer as well
as the monomer structures with and without counterpoise
correction. Additionally Figure 3 shows the distribution of
∆rel in the aDZ and aTZ basis for PNO-CCSD[F12]. It is
clear from this graphic that the behaviour for these two basis
sets is very similar and the errors converge rapidly to zero
as the truncation threshold is tightened. The PNO-MP2-F12
and PNO-CCSD[F12] methods show very similar relative
errors, which indicates that the approximations used for the
higher-order terms in the CCSD amplitude equations are not a
significant source of error, and that our previous conclusions
for the accuracy of PNO-MP2-F12 and PNO-MP3(F12)11,41

are transferable to PNO-CCSD[F12].
In contrast, the relative errors of PNO-CCSD(2)F12 are 1.5-4
times larger than for PNO-CCSD[F12] and the PNO trunca-
tion clearly leads to inaccurate doubles amplitudes. This can
be explained: in our approach the V-PNOs are chosen to span
the doubles space complementary to the F12 contribution, but
the PNO-CCSD(2)F12 method requires V-PNOs that span the
conventional doubles amplitude space, because it proceeds
by first solving the conventional CCSD amplitudes without
coupling to F12. Due to the non-linearity of the CCSD
equations, the amplitudes obtained by solving standard CCSD
in the space of F12 optimised V-PNOs differ substantially
from those obtained when including the F12 terms in the
amplitude equations (as for CCSD[F12]). These deviations
are not accounted for in the non-iterative F12 correction terms
in CCSD(2)F12. We have performed PNO-CCSD(2)F12 calcu-
lations using conventional V-PNOs and indeed the truncation
errors are then close to those observed for PNO-MP2-F12 and
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PNO-CCSD[F12]. However, the number of V-PNOs retained
is then much larger than when using the difference density
approach making these PNO-CCSD(2)F12 calculations much
more expensive and uncompetitive with PNO-CCSD[F12].
Having established that the truncation error for total energies
reduces with tighter truncation thresholds, we now turn to
the more important task of examining the truncation error for
energy differences, and characterising its magnitude relative
to the inherent basis set incompleteness error (BSIE) for the
canonical calculation. In Figure 4 we present, for the S22
set, the mean absolute deviation between the PNO-MP2-F12,
PNO-CCSD(2)F12 and CCSD[F12] interaction energies and
their CBS limit values. Curves from both aDZ and aTZ
calculations are shown with TPNO decreasing from 10−5 to
10−9. The CBS limits were computed by extrapolating the
canonical aDZ and aTZ values for each method using the
optimized extrapolation scheme (with optimized exponents)
of Hill et al.42 The mean BSIEs for the canonical aDZ and
aTZ calculations are indicated by horizontal lines and these
estimates differ only slightly from those previously computed
at the MP2.5(F12) level of theory11. Figure 4 highlights that
tightening the TPNO threshold beyond 10−8 for the aDZ basis
and 10−9 for the aTZ basis does not significantly improve
accuracy since the basis set is almost exhausted, it only
increases costs. In Figure 5 we present a bar chart of the
absolute PNO errors to the canonical limit in the aTZ basis.
For all thresholds the errors are largest for PNO-MP2-F12.
Both figures 4 and 5 highlight that although the convergence
of the PNO-CCSD(2)F12 method for total energies with PNO
truncation is erratic, the BSIE errors of the interaction ener-
gies are nevertheless similar to PNO-CCSD[F12], indicating
a high level of error cancellation.

Table 4 Average ∆̄rel, standard deviation ∆STD and maximal ∆max
relative error in total correlation energy for PNO-MP2-F12 in the
aDZ and aTZ basis.

aDZ aDZ aDZ aTZ aTZ aTZ
TPNO ∆̄rel ∆STD ∆max ∆̄rel ∆STD ∆max

10−5 1.551 0.465 2.280 1.740 0.450 2.651
10−6 0.483 0.152 0.714 0.560 0.167 0.890
10−7 0.158 0.050 0.234 0.163 0.056 0.277
10−8 0.052 0.016 0.086 0.047 0.021 0.089
10−9 0.020 0.006 0.040 0.013 0.006 0.027

4.3.2 Improved CCSD/CBS limits for the S66 set
For the S66 set, Hobza and co-workers use the following
scheme to estimate the energy from a post-MP2 method
MCOR at the basis set limit:38

E(MCOR/CBS) =E(HF)+Ecorr(MP2/CBS)
+∆MCOR ,

(30)

Table 5 Average ∆̄rel, standard deviation ∆STD and maximal ∆max
relative error in total correlation energy for PNO-CCSD(2)F12 in the
aDZ and aTZ basis.

aDZ aDZ aDZ aTZ aTZ aTZ
TPNO ∆̄rel ∆STD ∆max ∆̄rel ∆STD ∆max

10−5 1.955 0.363 2.447 2.806 0.309 3.493
10−6 0.683 0.183 0.943 1.180 0.145 1.526
10−7 0.255 0.073 0.369 0.528 0.054 0.652
10−8 0.099 0.024 0.024 0.175 0.030 0.240
10−9 0.037 0.006 0.051 0.059 0.016 0.089

Table 6 Average ∆̄rel, standard deviation ∆STD and maximal ∆max
relative error in total correlation energy for PNO-CCSD[F12] in the
aDZ and aTZ basis.

aDZ aDZ aDZ aTZ aTZ aTZ
TPNO ∆̄rel ∆STD ∆max ∆̄rel ∆STD ∆max

10−5 1.260 0.326 1.746 1.386 0.302 2.548
10−6 0.395 0.112 0.577 0.441 0.120 0.682
10−7 0.118 0.180 0.035 0.129 0.036 0.212
10−8 0.039 0.012 0.071 0.039 0.014 0.069
10−9 0.016 0.006 0.040 0.015 0.004 0.026

0.5 0.0 0.5 1.0 1.5 2.0
rel. error (%)
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Fig. 3 Distribution of error in the total correlation energy for
PNO-CCSD[F12] for different basis sets aXZ (X=D,T).
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Table 7 Contribution of the CCSD correlation energy to the whole interaction energy in kcal/mol for PNO-CCSD[F12] in the aDZ and aTZ
basis, the extrapolation ∆E lim

int from aDZ and aTZ and the S66 reference in kcal/mol.

Dimer aDZ aTZ aQZ Lit. (∆E lim
int -aTZ) (∆E lim

int -Lit.)
02 Water-MeOH -1.537 -1.591 -1.622 -1.632 -0.031 0.010

11 MeNH2-Peptide -3.192 -3.245 -3.273 -3.403 -0.030 0.130
12 MeNH2-Water -2.258 -2.325 -2.361 -2.389 -0.038 0.028
13 Peptide-MeOH -2.491 -2.548 -2.578 -2.631 -0.032 0.053

26 Uracil-Uracil π-π -7.894 -7.950 -7.985 -8.495 -0.035 0.510
27 Benzene-Pyridine π-π -5.579 -5.581 -5.584 -5.952 -0.003 0.368
28 Benzene-Uracil π-π -7.171 -7.199 -7.219 -7.718 -0.019 0.500
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Fig. 4 Remaining PNO truncation error and BSIE for different PNO
thresholds. The BSIE limit is sketched with grey lines (dashed
MP2-F12, solid CCSD[F12], dotted CCSD(2)F12

).
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Fig. 5 MAE of the PNO truncation error for the counterpoise
corrected interaction energies in the S22 subset using the aTZ basis.

where E(HF) is the Hartree-Fock energy in the aQZ basis,
Ecorr(MP2/CBS) the extrapolated MP2 CBS limit using Hel-
gaker’s extrapolation14 with the aTZ and aQZ basis and a
higher order correction ∆MCOR = E(MCOR)−E(MP2) in
the aDZ basis. The PNO representation lifts the basis set lim-
itations. aTZ basis sets can be used for the MCOR=CCSD
part, and the combination with F12 theory delivers energies of
almost quintuple-ζ quality. The PNO-CCSD[F12] and PNO-
CCSD(2)F12 calculations in the aTZ basis, reported in the pre-
vious section, are used here to obtain improved CCSD/CBS
estimates for the entire S66 set. Such PNO-CCSD-F12 cal-
culations are both simpler than Hobza’s composite approach,
and closer to the CCSD/CBS limit.
Comparing our PNO-MP2-F12/aTZ correlation energies, us-
ing a TPNO of 10−8, with Hobza’s reference MP2 CBS
limits Ecorr(MP2/CBS), we find a good agreement with a
RMSD of 0.08 kcal/mol. Comparing our PNO-CCSD[F12]
and PNO-CCSD(2)F12 correlation energies with Hobza’s
Ecorr(CCSD/CBS) values, we find larger deviations (RMSD
of 0.22 and 0.18 kcal/mol, respectively). Many of the com-
plexes beyond the S22 subset show larger deviations. In the
block S24 - S29 we see for instance deviations up to 0.5
kcal/mol. These relatively large deviations occur mainly for
examples with large singles contributions, where the correla-
tion energy is often overestimated due to missing interference
effects in the composite scheme. In Table 7 we give some
numerical examples for both good agreement and larger dif-
ferences. To verify that we reached convergence we extra-
polated from the aDZ and aTZ results to the CBS limit. Al-
though the extrapolation scheme of Hill et. al assumes a rel-
ative slow convergence, the RMSD between the aTZ results
and the extrapolated CBS limits is with 0.035 kcal/mol much
smaller than the RMSD between the extrapolated CBS lim-
its and previous results from literature, which is with 0.20
kcal/mol substantial. Our new CBS/limits are given in the
supplementary material. There we combined the correlation
energy with the HF energy in the aTZ basis plus the CABS
correction EHF+CABS

aT Z and with the HF energy in the aQZ ba-
sis EHF

aQZ . When going from EHF+CABS
aT Z to EHF

aQZ there is only
a negligible change in energy. The mean absolute deviation
between the two data sets is 0.005 kcal/mol and the maxi-
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Table 8 Counterpoise corrected ECP
int and uncorrected Eint binding

energies for the 4T cluster using a TPNO = 10−8

basis ECP
int (kcal/mol) Eint (kcal/mol)

aDZ -20.10 -22.02
aTZ -20.41 -21.15
aQZ -20.53 -20.70

mal and minimal absolute deviation is 0.021 and 4.78 · 10−4

kcal/mol respectively. Calculating the HF energy in the aQZ
basis here only increases the computational costs, but not the
accuracy. For a measure of the BSIE we give the difference
of PNO-CCSD[F12] and PNO-CCSD(2)F12 in the aTZ basis.
In a complete basis and a complete PNO set this difference
should vanish. For the test set we get a mean absolute devia-
tion of both methods of 0.052 kcal/mol. The differences are
mainly very small, but there are also indications that for some
dimers calculations in larger basis sets could be interesting.
The Uracil-Uracil π-π (No. 26) is such an example, where the
difference is -0.244 kcal/mol. The new results show where the
current CCSD/CBS and also CCSD(T)/CBS reference limits
have to be improved. In the supplementary material we give a
list of all dimers, where we observe a absolute deviation larger
than 0.2 kcal/mol and the new benchmark data for the full S66
test set.

4.4 Large scale application

4.4.1 Large basis set
The PNO-CCSD[F12] model was applied to some medium
sized systems. One of these systems is a cluster model for
zeolite H-ZSM-5 described by Svelle et al. in Ref.45, where
the model was denoted as ”4T” cluster. In the current study
the interaction energy of a methanol molecule with the 4T
cluster was calculated on the PNO-CCSD[F12]/aDZ, PNO-
CCSD[F12]/aTZ and PNO-CCSD[F12]/aQZ level of theory.
Canonical CCSD[F12] calculations using the very large and
accurate aQZ basis are not feasible in a reasonable amount of
time. The aQZ dimer calculation, which was the most expen-
sive part, took 3 days on a machine with two 2.93 GHz Intel
Xenon X5670 CPUs and 48 GiB RAM, using 6 threads and a
partially OpenMP parallelized code.
The counterpoise corrected and uncorrected interaction ener-
gies are listed in Table 8. For the aQZ basis the results with
and without counterpoise correction are very close, which is
a strong indication that the results are close to the CBS limit.
The counterpoise corrected values for aTZ and aQZ are very
close, as expected from the enhanced basis set convergence
with explicit electron correlation. From the results we can
conclude that the CCSD/CBS limit (at the given geometry)
is 20.6±0.1 kcal/mol.

4.5 Large molecular system

As another example we chose a water calix[4]arene complex
(C4A-H2O), shown in Figure 6, and calculated the counter-
poise corrected interaction energy at the PNO-MP2-F12/aDZ
and PNO-CCSD[F12]/aDZ level. This cluster has already
been studied by Hontama et al.46 and we thank the authors
for providing us with their DF-MP2/aDZ optimized structure.
For this complex we calculated the binding energy as

Eint =EC4A-H2O
C4A-H2O (C4A-H2O)

−EC4A
C4A (C4A)−EH2O

H2O (H2O) ,
(31)

where the superscripts denote the basis and the subscript the
geometry and the molecule is given in parentheses. We addi-
tionally computed the counterpoise corrected interaction ener-
gies as

ECP
int =EC4A-H2O

C4A-H2O (C4A-H2O)−EC4A-H2O
C4A-H2O (C4A)

−EC4A-H2O
C4A-H2O (H2O)+EH2O

relax +EC4A
relax ,

(32)

including the relaxation EH2O
relax and EC4A

relax due to the change in
geometry

EH2O
relax = EH2O

C4A-H2O(H2O)−EH2O
H2O (H2O) (33)

EC4A
relax = EC4A

C4A-H2O(C4A)−EC4A
C4A (C4A) (34)

Our results, together with the values of Hontama et al.,46 are
listed in Table 9. The comparison shows a near perfect agree-
ment of our uncorrected PNO-MP2-F12/aDZ results with the
uncorrected DF-MP2/aQZ value of Hontama et al., which un-
derlines the expected enhancement in basis set convergence.
Counterpoise corrected reference calculations in the aQZ ba-
sis are not available, but we expect a similar agreement.
The binding energies vary greatly with the level of theory ap-
plied. The PNO-CCSD[F12] binding energy is 46% lower
than the PNO-MP2-F12 value, and the SCS-PNO-MP2-F12
result is close to PNO-CCSD[F12] – both 30% lower than
PNO-MP2-F12, which is consistent with the usual overesti-
mation of dispersion interactions by MP2 theory.
Further investigation of the complex using the TPSS-D3/aTZ
level of theory revealed an additional minimum, Figure 7,
where one hydrogen bond of the host opens to form a hydro-
gen bond with the guest. Computed interaction energies are
listed in Table 10. Due to the large change in geometry, we
only give here the counterpoise corrected interaction energies
including the relaxation since the uncorrected values are not
meaningful. The host guest interaction in the TPSS-D3 opti-
mized structure is stronger due to the presence of the hydrogen
bond and is predicted to be stable even at the RHF level of the-
ory.
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(a) Optimized complex (b) Structural formula of the host

Fig. 6 Structure of the calix[4]arene water complex. Hydrogen
bonds are indicated using red dashed lines.

Table 9 Counterpoise corrected ECP
int and uncorrected Eint binding

energies for the endo calix[4]arene water complex using a
TPNO = 10−7. The DF-MP2 results are from Ref.46.

method Eint (kcal/mol) ECP
int (kcal/mol)

PNO-MP2-F12/aDZ -8.50 -7.73
PNO-CCSD[F12]/aDZ -5.00 -4.14

SCS-PNO-MP2-F12/aDZ -5.70 -4.95
RHF 2.27 4.26

DF-MP2/aTZ -10.29 -7.97
DF-MP2/aQZ -8.94 -

Fig. 7 Structure of the calix[4]arene water complex optimized on
the TPSS-D3/aTZ level of theory. Hydrogen bonds are indicated
using red dashed lines.

Table 10 Counterpoise corrected ECP
int and uncorrected Eint binding

energies for the TPSS-D3 optimized endo calix[4]arene water
complex in the aDZ basis using a TPNO = 10−7.

method ECP
int (kcal/mol)

PNO-MP2-F12/aDZ -13.72
PNO-CCSD[F12]/aDZ -10.72

SCS-PNO-MP2-F12/aDZ -11.05
RHF -3.79

5 Conclusion and outlook

We have presented low scaling PNO-MP2-F12, PNO-
CCSD(2)F12 and PNO-CCSD[F12] implementations with
early break even points to their canonical counterparts. For
this purpose we extended our hybrid OSV-PNO approach with
an iterative generation of OSVs to F12 theory, which required
minor changes in the existing algorithm for the PNO genera-
tion. The terms for the singles residuals are based on our PNO-
CC225,26 implementation and extended to the F12 contribu-
tions in CCSD[F12]. For the conventional contributions to the
doubles residuals we followed Neese et. al,24 and for the F12
contributions we could use the previously implemented in-
termediates from PNO-MP3(F12).11 Furthermore we adapted
the integral evaluation to exploit the short range nature of the
operators f12, f12g12, f 2

12 and f12r12, screening small contri-
butions.
We find that for the iterative CCSD[F12] approximation to
CCSD-F12 the PNO truncation errors with the very compact
set of F12-PNOs converge as fast as for MP2-F12, while for
the perturbative CCSD(2)F12 approximation the larger set of
conventional PNOs has to be used to maintain this conver-
gence.
The accuracy of the implemented methods is demonstrated us-
ing calculations on the S66 set of weakly bound complexes
with the aDZ and aTZ basis sets. The PNO error smoothly de-
creases with the PNO truncation threshold TPNO and our best
calculations for the S66 set are closer to the CBS limit than
previous reference values. An advantage of the PNO methods
is that they reduce the need for complicated composite extrap-
olation schemes. The improvement in accuracy arises because
larger basis sets can be used in the reduced scaling implemen-
tation. In this manner we were also able to calculate the inter-
action energy of a methanol in a model for zeolite H-ZSM-5 in
the aQZ basis, which is not feasible with canonical implemen-
tations in practical time. Our calculations on a calix[4]arene
water complex demonstrate that PNO-CCSD[F12] is a prac-
tical tool for the evaluation of interaction energies in large
van der Waals complexes, and we find that MP2 overesti-
mates the binding energy for this complex by nearly a factor of
two. Our investigations on this complex revealed another min-
imum with a significantly stronger host-guest interaction than
that of the previously studied structure. The success of low-
scaling PNO-CC-F12 methods for modeling weak interactions
is enormously encouraging. Since host-guest interactions are
present in various fields from biochemistry to inorganic chem-
istry, with many industrial applications such as the storage of
small molecules, we see great potential in PNO-CC-F12 meth-
ods to contribute to a better understanding of such processes.

12 | 1–13

Page 12 of 13Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



6 Acknowledgement

We thank S. Xantheas for providing the structure of
the calix[4]arene water complex. Financial support by
the Deutsche Forschungsgemeinschaft through grant no.
HA/2588/7 is gratefully acknowledged.

References
1 D. S. Lambrecht, B. Doser and C. Ochsenfeld, J. Chem. Phys., 2005, 123,

184102.
2 B. Doser, D. S. Lambrecht and C. Ochsenfeld, Phys. Chem. Chem. Phys.,

2008, 10, 3335–3344.
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