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Abstract

Modern microscopic techniques following the stochastic mo-
tion of labelled tracer particles have uncovered significant de-
viations from the laws of Brownian motion in a variety of
animate and inanimate systems. Such anomalous diffusion
can have different physical origins, which can be identified
from careful data analysis. In particular, single particle track-
ing provides the entire trajectory of the traced particle, which
allows one to evaluate different observables to quantify the
dynamics of the system under observation. We here provide
an extensive overview over different popular anomalous diffu-
sion models and their properties. We pay special attention to
their ergodic properties, highlighting the fact that in several of
these models the long time averaged mean squared displace-
ment shows a distinct disparity to the regular, ensemble aver-
aged mean squared displacement. In these cases, data obtained
from time averages cannot be interpreted by the standard the-
oretical results for the ensemble averages. Here we therefore
provide a comparison of the main properties of the time aver-
aged mean squared displacement and its statistical behaviour
in terms of the scatter of the amplitudes between the time
averages obtained from different trajectories. We especially
demonstrate how anomalous dynamics may be identified for
systems, which, on first sight, appear Brownian. Moreover,
we discuss the ergodicity breaking parameters for the differ-
ent anomalous stochastic processes and showcase the physi-
cal origins for the various behaviours. This Perspective is in-
tended as a guidebook for both experimentalists and theorists
working on systems, that exhibit anomalous diffusion.

a Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm,
Germany; E-mail: rmetzler@uni-potsdam.de
b Physics Department, Tampere University of Technology, Tampere, Finland
c Korean Institute for Advanced Study (KIAS), Seoul, Republik of Korea
d Physics Department and Institute of Nanotechnology and Advanced Mate-
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1 Introduction and historical perspective

It is possible that the movements to be discussed here are
identical with the so-called “Brownian molecular motion”;
however, the information available to me regarding the lat-
ter is so lacking in precision, that I can form no judgment in
the matter. This statement is part of the introduction of Al-
bert Einstein’s first and seminal 1905 paper on the theory of
diffusion1. It refers to the observations reported by Robert
Brown in 1828 of small granules (or Molecules, as I shall
term them) of 1

4000 th to 1
5000 th of an inch extracted from larger

pollen grains. Brown found these particles evidently in mo-
tion2. Brown made meticulously sure that the motion he ob-
served was not the effect of living matter, and he even stud-
ied the motion of such Molecules as of a bruised fragment of
the Sphinx2. In his second, 1906 paper Einstein then quotes
the experimental proof by Gouy3 that indeed the motion per-
petuated by Robert Brown is caused by the irregular thermal
movements of the molecules of the liquid, and thus described
by Einstein’s theory1. As remarked by Marian Smoluchowski
in his equally seminal 1906 article4, Einstein reinvigorated the
interest in Brownian motion. Since then, the interest in the
molecular phenomenon of diffusion is unbroken.

Considering the local concentration difference and the
counteracting flux of microscopic particles with a typical
mean free path, Einstein derived the diffusion equation1∗

∂
∂ t

P(x, t) = K1
∂ 2

∂x2 P(x, t) (1)

with the coefficient of diffusion K1 for the probability density
function (PDF) P(x, t) to find the particle under observation
at position x at time t. This equation is indeed equivalent to
Fick’s second law for the concentration of a chemical sub-
stance originally presented by Adolf Fick from a combination
of the continuity equation and the constitutive equation (Fick’s

∗For convenience, we express mathematical formula in one dimension.
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first law)5. If the particle is released at the origin at time t = 0
in an unbounded space, the solution of the diffusion equation
(1) is the normalised Gaussian PDF

P(x, t) =
1√

4πK1t
exp

(
− x2

4K1t

)
. (2)

Einstein remarks that this solution is that of the fortuitous er-
ror, which was to be expected 1. From the PDF (2) we imme-
diately obtain the variance

〈x2(t)〉=
∫ ∞

−∞
x2P(x, t)dx = 2K1t, (3)

the so-called mean squared displacement (MSD). From the
dynamic equilibrium of suspended particles Einstein (and later
independently Smoluchowski) derived the celebrated relation

K1 =
kBT
mη

=
(R/NA)T

mη
, (4)

between the diffusion coefficient, thermal energy kBT , the
mass m of the observed particle, and the friction coefficient
η of unit 1/sec. In the second equality of Eq. (4) we replaced
the Boltzmann constant kB by the ratio of the gas constant R,
quite precisely known at the time, and Avogadro’s number NA.

Yet another derivation of Brownian motion with the MSD
(3) was published in 1908 by Paul Langevin using the concept
of a stochastic force. The Langevin equation combines New-
ton’s second law with the white Gaussian noise ξ (t) of zero
mean and autocorrelation function 〈ξ (t)ξ (t ′)〉 = 2K1δ (t −
t ′)6,7. In its overdamped form relevant for the single particle
tracking experiments we will refer to below, it reads6,7

dx(t)
dt

= ξ (t), (5)

The Langevin formalism represents a very intuitive physical
picture for Brownian motion. From the Langevin equation (5)
it is easy to get back to the MSD (3). Likely prompted by
discussions with his friend Paul Langevin8, the fundamental
Einstein-Smoluchowski relation (4) led Jean Perrin at the Sor-
bonne in Paris to conduct the first extensive and systematic
measurement of the diffusion of single microscopic particles
to determine Avogadro’s number NA

9.†
While Perrin was confined to short measured trajectories

and the need to use ensemble averages over not perfectly iden-
tical particles, to our best knowledge it was Ivar Nordlund at

† For completeness we mention that theories of Brownian motion appeared ear-
lier than Einstein’s works. In particular, the Dane Thorvald Thiele set up a
theory for independent and normally distributed increments in his 1880 work
on the least squares method 10. Louis Bachelier in Paris applied a stochastic
process to model the dynamics of stock markets in 1900 11. Concurrently with
Einstein, the Melbourne physicist William Sutherland followed similar lines
as Einstein in his 1905 paper on diffusion 12.

Fig. 1 Centennial single particle tracking experiments of Ivar
Nordlund. Top: Nordlund’s experimental setup with the light
source, an infrared absorbing water-filled cylinder, and the
clock-controlled, electromagnetic shutter (on the table to the left)
constituting a stroboscope. Mounted on the separate optical table on
the rack to the right, the object chamber with the mercury droplet, as
well as the objective and the camera are the heart of the experiment:
the camera is connected to an electric motor moving the
photographic plate with constant velocity. Bottom: Example for the
time averaged mean squared displacement versus time (in seconds)
from a single recorded mercury droplet. Images taken from Ref. 13.
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Fig. 2 Example for the recorded motion of a ‘submicroscopic’ mercury droplet using the clock-driven stroboscope and a moving film plate in
the setup shown in Fig. 1. The mass of the droplet could be determined from the droplet radius deduced from the sedimentation speed by use
of Stokes’ formula13. Time is increasing from left to right. The stochastic, Brownian motion around the deterministic sedimentation with
constant velocity can be clearly distinguished. Image taken from Ref.13.

the University of Uppsala in Northern Sweden, who in 1914
came up with the innovative idea to record the motion of indi-
vidual sedimenting mercury droplets on a moving film plate13,
see Fig. 1. Nordlund managed to produce impressively long
individual time series of the droplet position. From separate
analysis of each single trajectory he determined the diffusion
coefficients of the traced droplets. The mass of the droplets
was deduced from the sedimentation speed using Stokes’ for-
mula13. In the sense of the combination of single particle
tracking with the time series analysis of single recorded tra-
jectories first performed by Nordlund, we celebrate this year
the centenary of modern single particle tracking. Nordlund’s
experimental setup, the MSD from a single trajectory, as well
as a sample trajectory are shown in Figs. 1 & 2. Nordlund
advocated in his paper that the principle of the method of mea-
surement consists in the automated recording of the Brownian
displacements of the particles in exactly identical time inter-
vals, free of personal errors13. Perrin’s and Nordlund’s stud-
ies prompted a string of diffusion experiments to determine the
value of NA ever more precisely in the years to come, culmi-
nating in the high precision torsional diffusion experiments by
Eugen Kappler, who in his PhD thesis at the University of Mu-
nich found the remarkable result NA = 60.59× 1022± 1%14.‡
We show the experimental shape of the torsional Brownian
motion measured by Kappler in Fig. 3.

Hundred years after Nordlund’s conception of single parti-
cle tracking by the analysis of individual particle traces, mod-
ern microscopic technology is routinely used by experimen-
talists to record the motion of fluorescently labelled single
molecules or visible submicron tracer particles15–18.§ In these
experiments the recorded time series x(t ′) is evaluated in terms

‡ Immerhin dürfte die Bestimmung der Loschmidtschen Zahl mit dieser Meth-
ode auf ±1 Proz. erreicht sein.—After all, with this method the determina-
tion of the Loschmidt [Avogadro] number should be achieved within ±1 per
cent 14.

§ We note that the concept of motion analysis of synthetic active matter is also
a topic of high current interest 19 .

of the time averaged MSD¶

δ 2(Δ) =
1

t −Δ

∫ t−Δ

0

(
x(t ′+Δ)− x(t ′)

)2
dt ′. (6)

The time series x(t ′) of length t (the measurement time) is thus
evaluated in terms of squared differences of the particle posi-
tion separated by the so-called lag time Δ which defines the
width of the window slid along the time series x(t ′). Typically,
δ 2(Δ) is considered in the limit Δ� t to obtain good statistics.
It is easy to show that for Brownian motion δ 2(Δ) = 2K1Δ as
long as the measurement is sufficiently long. Comparing with
Eq. (3) we observe the equivalence

δ 2(Δ) = 〈x2(Δ)〉 (7)

and therefore call the process ergodic: ensemble averages and
long-time averages are equivalent.

Apart from direct imaging of the motion of a tracer particle
by a microscope, optical tweezers setups can be used to ob-
tain an improved temporal and spatial resolution of a suitable
tracer20. Such single particle tracking can be used to measure
the motion of tracers in quite complex media such as living
biological cells17,18. Alternatively to single particle tracking,
which provides the time series x(t ′) of the particle position, the
diffusion of labelled molecules can be measured by methods
such as fluorescence correlation spectroscopy (FCS)21, fluo-
rescence recovery after photobleaching (FRAP)22, or fluores-
cence (Förster) resonant energy transfer (FRET)17,23. While
these latter methods have many advantages, for instance, that
they can measure the motion of smaller tracers, they have the
intrinsic disadvantage that the quantity they measure is not
the particle position but averages over the position such as the
blinking correlation function of fluorescent particles entering

¶ Usually, for data analysis a discrete version is used in which the integral is
replaced by a sum. We here use the equivalent continuous notation. In what
follows, we denote ensemble averages of an observable O with angular brack-
ets, 〈O〉, and time averages with an overline, O. Note that the definition (6) is
not unique, however, it represents the most standard choice used in literature.
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Fig. 3 Experimental verification of the Gaussian shape by
Kappler14 with original figure caption. The symbols represent nine
different measurements of average duration of 11 hours of the
torsional Brownian motion.

and leaving the illuminated focal spot in FCS. Due to the un-
derlying averaging, these latter methods thus do not provide
the same full information as direct single particle tracking. We
note that the MSD of stochastic systems may also be deter-
mined with techniques such as dynamic light scattering24 or
laser Doppler velocimetry25.

Already in 1926 an exception to the linear time dependence
(3) of the MSD of Brownian motion was analysed by Lewis
Fry Richardson. For the relative diffusion of two tracer par-
ticles in a turbulent flow he observed strongly non-Brownian
behaviour26. He introduced the notion of non-Fickian diffu-
sion and used a diffusion equation with separation dependent
diffusivity ∂q

∂ t = const× ∂
∂ l

[
l4/3 ∂q

∂ l

]
for the PDF q(l, t) of the

relative displacement l to find the power-law MSD 〈l2(t)〉 � t3

with the characteristic cubic scaling. Today anomalous diffu-
sion typically refers to the power-law form‖

〈x2(t)〉 � Kα tα (8)

of the MSD with the anomalous diffusion exponent α and
the generalised diffusion coefficient Kα of physical dimension
cm2/secα . This is the what we refer to in the following, distin-
guishing subdiffusion (0< α < 1) and superdiffusion (α > 1).

The conditions assumed by Einstein in his derivation of
the diffusion equation are (i) the independence of individual
particles, (ii) the existence of a sufficiently small time scale
beyond which individual displacements are statistically inde-
pendent, and (iii) the property that the particle displacements
during this time scale correspond to a typical mean free path
distributed symmetrically in positive or negative directions.
These assumptions, by help of the central limit theorem, a for-
teriori lead to the Gaussian PDF (2) and thus to the diffusion
equation (1). The model described by Einstein may therefore
be viewed as a random walk or drunkard’s walk, a concept in-
troduced in the same year 1905 by Karl Pearson in his famed
letter to Nature30. The connection of the diffusion law to the
random walk process was rendered more precisely by Smolu-
chowski4.

In anomalous diffusion processes, at least one of these fun-
damental assumptions is violated, and the strong convergence
to the Gaussian according to the central limit theorem broken.
In particular, by departing from one or more of the assump-
tions (i)–(iii), we find that there exist many different generali-
sations of the Einstein-Smoluchowski diffusion picture. Here
we examine the properties of several popular and widely used

‖Curiously the very notion anomalous diffusion first appears in literature in
the same year as Richardson’s paper, 1926, but in the context of α rays 27.
Later anomalous diffusion was used to describe the observation that in certain
systems the ‘Oeholm method’ does not return a constant for the diffusivity
as expected if the system were following Fick’s law 28. This paper by Her-
bert Freundlich and Deodata Krüger 28 refer to first measurements in aqueous
solutions of dyestuffs by Herzog and Polotzky 29.
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Fig. 4 Motion of labelled messenger RNA molecules in a living E.coli cell. Left: time averaged MSD of individual trajectories plotted as
function of the lag time Δ of Eq. (6), show pronounced trajectory-to-trajectory scatter. Yet all exhibit approximately the same anomalous
diffusion exponent α ≈ 0.7, with some local variations. In contrast, the control experiment in water (stars) shows normal diffusion with
α = 1. Right: Points of the trajectory of an individual messenger RNA in the E.coli cell, showing that the molecule explores a major fraction
of the bacterium’s volume. (Adapted from Ref. 33.)

anomalous diffusion models which are important for the eval-
uation and physical interpretation of single particle tracking
data. These models are conceptually very different from each
other, their only common ground being the non-Brownian
form (8) of the MSD. We pay particular emphasis on their er-
godic behaviour, that is, whether within the model the ensem-
ble averaged MSD (8) has the same form as the time averaged
MSD (6) or not, an important information for the evaluation
of single particle tracking time series in terms of physical the-
ories, which are usually formulated in terms of ensemble av-
erages. We also check the ageing properties of the processes,
that is, the potential dependence of physical observables such
as the MSD on the time difference between initialisation of the
system and start of the measurement. Both ergodicity break-
ing and ageing of a process are two sides of the same medal
and are intimately connected to the (non-)stationarity proper-
ties31,32.

As we will see, numerous experiments using the above tech-
niques demonstrate the non-Brownian diffusion of tracked bi-
ological cells as well as of tracer particles inside those very
cells. Similarly, anomalous diffusion is often revealed for
the motion of passive particles in complex liquids. One of
the breakthroughs came with the study of Golding and Cox,
who used single particle tracking of labelled messenger RNA
(mRNA) molecules of some 100 nm in size in living bacte-
ria cells to demonstrate that the motion of the molecule is
subdiffusive33, shown in Fig. 4. Even more interesting and
thought-provoking was the fact that the time traces δ 2(Δ) of
individual trajectories showed a massive scatter of amplitudes,
similar to those shown in Fig. 8. The question whether this

behaviour could be due to the intrinsic non-ergodicity of the
anomalous diffusion performed by the mRNA molecules was
in fact one of the ignition points for the research presented
herein. We note that non-ergodicity in the sense discussed in
the following is not restricted to the spatial diffusion of parti-
cles, but similar principles hold for certain processes reveal-
ing non-exponential dynamics, such as the blinking behaviour
of individual quantum dots34 or laser cooling35. To physi-
cally interpret such measurements we need to understand the
time averages of individual times series. As we will see, this
requires information beyond the conventional ensemble aver-
ages for a variety of anomalous diffusion processes.

2 A short navigation chart through this Per-
spective article

The main focus of this Perspective is two-fold. It is meant
as an introduction to the theory of anomalous diffusion pro-
cesses but also as a toolbox for the data analysis of anoma-
lous stochastic dynamics. Consider the experimental results
of single particle tracking experiments on fluorescently la-
belled messenger RNA molecules in a living E.coli bacteria
cell shown in Fig. 4. Despite the fact that individual trajec-
tories explore a large portion of the entire cell volume, the
amplitude and local slope of individual molecule traces, apart
from the common subdiffusive trend, vary massively. Is this
apparent irreproducibility an artefact or the result of the physi-
cal mechanism governing the molecule’s motion? What is the
exact physical origin of the variations in the slope? Will longer
measurement times improve the statistics? Can we interpret
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the time averaged MSD shown here in terms of the ensemble
results known for anomalous diffusion? Such questions will
be pursued in what follows.

More concretely, this Perspective summarises a large vari-
ety of stochastic processes yielding anomalous diffusion of the
power-law form 〈x2(t)〉 � Kα tα . We mostly focus on subdif-
fusion with 0 < α < 1 but also consider superdiffusion char-
acterised by α > 1 as well as ultraslow diffusion with a log-
arithmic form of 〈x2(t)〉. The fact that we consider this large
range of anomalous diffusion processes is the non-universal
nature of anomalous diffusion itself. Once we leave the realm
of Brownian motion, we lose the confines of the central limit
theorem forcing the processes to converge to the Gaussian be-
haviour predicted by Einstein. For this reason we address the
most common processes effecting anomalous diffusion and
compare their basic properties. The latter are important for
the second purpose of this Perspective, namely, to provide a
toolbox for the analysis of anomalous stochastic time series
x(t). Quite commonly such analyses of time series from exper-
iment or simulations are performed in terms of time averaged
observables, in particular, the time averaged MSD δ 2(Δ). We
point out that the physical interpretation of the obtained be-
haviour of such time averages in terms of the typically avail-
able ensemble approaches may be treacherous: many of the
anomalous diffusion processes discussed herein lead to a dis-
parity between ensemble and time averaged observable, for
instance, between the ensemble and time averaged MSDs

〈x2(Δ)〉 �= lim
t→∞

δ 2(Δ). (9)

Moreover, it turns out that individual results for time averages
such as δ 2(Δ) appear irreproducible, despite long measure-
ment times. Such strange kinetics32 was in fact observed in
a number of experiments mentioned below. Instead of insuf-
ficient statistics, we show that such weakly non-ergodic be-
haviour reflects the physical nature of the exact mechanisms
effecting the observed stochastic dynamics.

The degree of the disparity between time and ensemble av-
eraged observables and their apparent irreproducibility differ
between the anomalous diffusion processes discussed here-
after. For each time series it is important to identify the exact
underlying stochastic process—or combinations thereof—in
order to deduce the correct physical behaviour of the system,
to obtain meaningful values of fitted parameters, and to pre-
dict secondary processes such as rates for diffusion limited
reactions. We therefore discuss the behaviour of time and en-
semble averaged MSDs and other observables for the different
processes. In addition we also address the ageing behaviour
of such processes, that is, the dependence of physical observ-
ables on the time span, that may elapse between the initial
preparation of the system and the start of the measurement.

Conceptually, weak ergodicity breaking was originally in-
troduced by Jean-Philippe Bouchaud for systems, whose

phase space is not separated into mutually inaccessible do-
mains as for strong ergodicity breaking36. Instead Bouchaud
was concerned with systems such as physical glasses in which
the exploration time of the phase space is infinite and thus the
particle occupancy in subdomains becomes non-ergodic in a
single trajectory sense. This is the situation that we will en-
counter in section 3. We will see, however, that the situation is
somewhat more subtle in that also a number of seemingly sim-
ple stochastic processes feature similar weak ergodicity break-
ing.

The reader may approach this Perspective in two ways. One
is to simply read the article sequentially. The second is to
select specific sections after consulting the basic properties of
the various processes listed in Table 1 on page 33. We also
summarise the notation in Table 2 on page 39.

In what follows we first concentrate on continuous time
random walks in section 3, starting from the classical Scher-
Montroll-Weiss picture and then turning to more recent vari-
ants of this model. We then present the properties of the Gaus-
sian models of fractional Brownian motion and the closely
connected fractional Langevin equation in section 4. Section
5 focuses on scaled Brownian motion, while section 6 is de-
voted to heterogeneous diffusion processes. In section 7 we
discuss the stochastic motion on a fractal support, and section
8 covers strong anomalous diffusion processes. Complemen-
tary statistical measurables to analyse recorded data are pre-
sented in section 9, before a general discussion in section 10.
The weakly non-ergodic behaviour of the various processes
discussed in the text are summarised in Table 1 on page 33.
All important symbols are collected in Table 2 on page 39.

3 Continuous time random walks

We begin with the continuous time random walk (CTRW)
model introduced by Montroll, Weiss, and Scher37,38. It be-
came originally recognised for its successful quantitative de-
scription of charge carrier motion in amorphous semiconduc-
tors37. The CTRW model can be viewed as a direct generali-
sation of the Pearson drunkard’s walk: consider a particle, that
starts at the origin. It has to wait for a random waiting (trap-
ping) time τ drawn from the waiting time PDF ψ(τ), before it
makes a jump to left or right. The length of the jump can also
be chosen to be a random variable, δx, distributed in terms of
the PDF λ (δx). After the jump, a new pair of waiting time
and jump length are drawn from the PDFs ψ(τ) and λ (δx).
An important ingredient of the CTRW process is its renewal
character: after each jump the new pair of random variables τ
and δx are fully independent of their previous values. For un-
biased CTRW processes, the jump length distribution is sym-
metric, λ (−δx) = λ (δx) such that 〈δx〉= 0.

We distinguish the sub- and superdiffusive versions of
CTRWs described in the following subsections. These cases
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arise depending on whether the characteristic waiting time

〈τ〉=
∫ ∞

0
τψ(τ)dτ (10)

and the variance of the jump length

〈δx2〉=
∫ ∞

−∞
(δx)2λ (δx)d(δx) (11)

are finite or infinite, respectively. In case of diverging mo-
ments 〈τ〉 or 〈δx2〉 the anomalous character of the resulting
stochastic process is effected due to the Lévy-Khintchine gen-
eralised central limit theorem (Lévy statistics)39–41, accord-
ing to which sums of independent and identically distributed
random variables with diverging moments are stable distribu-
tions, compare also section 8. Simply put, this means the oc-
currence of power-law tails of the waiting time or jump length
PDFs. In particular, we may find non-exponential relaxation
patterns and non-Gaussian spatial distributions42. Apart from
renewal CTRW processes, in this section we also mention two
non-renewal versions of CTRWs.

Let us first briefly consider the case when both 〈τ〉 and
〈δx2〉 are finite. In the diffusion limit this process corre-
sponds to that of regular Brownian motion with MSD (3),
i.e., α = 1 in Eq. (8), where the diffusion constant is de-
fined as K1 = 〈δx2〉/(2〈τ〉) in the limiting sense of a random
walk42,43. Note that apart from the finiteness of the moments
〈τ〉 and 〈δx2〉 the details of the PDFs ψ(τ) and λ (δx) are
irrelevant for the diffusive properties of the CTRW process.
In this case of normal diffusion we also immediately evalu-
ate the integrand in the time averaged MSD (6). Namely, we
know that as long as the lag time Δ is much larger than the
characteristic time 〈τ〉 for a single jump, the average num-
ber of jumps during this time span equals Δ/〈τ〉. Thus, the
kernel [x(t ′ + Δ)− x(t ′)]2 in Eq. (6) on average is given by
〈δx2〉Δ/〈τ〉. With the diffusion constant K1 = 〈δx2〉/(2〈τ〉),
the result is

lim
t→∞

δ 2(Δ) = 2K1Δ. (12)

Identifying the lag time Δ with the regular time t in the MSD
(8), we indeed find the equivalence

〈x2(Δ)〉= lim
t→∞

δ 2(Δ) (13)

between the MSD 〈x2〉 and the time averaged MSD δ 2 which
is expected in an ergodic system32,44–47.

3.1 Subdiffusive continuous time random walks

We first study the case when the jump lengths are suffi-
ciently narrowly distributed such that 〈δx2〉 is finite. For
instance, this could correspond to a Gaussian form for the
PDF λ (δx) or the motion on a lattice of spacing a, with
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Fig. 5 Statistics of the waiting times measured in the motion of
individual labelled potassium channels in the plasma membrane of
living human kidney cells, combining the data of two different
channel configurations, see Ref. 50 for details. The asymptotic
power-law trend of the waiting time distribution in this graph scales
like � τ−1.9. Data courtesy Diego Krapf, Colorado State University.

λ (δx) = 1
2 [δ (δx− a) + δ (δx+ a)], where δ (·) denotes the

Dirac δ -function. Concurrently, successive jumps do not oc-
cur at equal time steps but are assumed to face waiting times
τ , that are distributed in terms of the asymptotic power-law
waiting time PDF

ψ(τ)� τα
0

τ1+α (14)

in the limit τ → ∞ with 0 < α < 1, effecting the divergence of
the typical waiting time 〈τ〉. Here the constant τ0 is a scaling
factor corresponding to some fundamental time scale of the
process.

Power-law distributed waiting times following the asymp-
totic law (14) with 0 < α < 1 are observed directly in vari-
ous systems. These include the diffusion of tracer microbeads
in reconstituted, cross-linked actin networks48, the motion
of functionalised colloidal particles along a complementarily
functionalised surface49, or the stochastic pathway of potas-
sium channels diffusing in the plasma membrane of living
human cells50. Fig. 5 shows the asymptotic power-law be-
haviour of the waiting times in the potassium channel data
from Ref.50. The relatively large value of α ≈ 0.9 is signifi-
cant, as can be seen from the measurement time dependence
in the same system shown in Fig. 7. In a fashion similar to
the above experiments, power-law distributed waiting times
characterise the interruption in the motion of tracer particles in
weakly chaotic flows representing persistent sticking to invari-
ant surfaces (stable islands, Cantori)51, and power-law transi-
tion times are often measured for the on/off times of blinking
quantum dots34. Such information can be retrieved from sin-
gle particle observations32, while for the more common mea-
surements of particle ensembles, only indirect evidence for
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scale-free CTRW dynamics is possible, notably in the seminal
study by Scher and Montroll37. To identify CTRW dynam-
ics or any other stochastic mechanism in a given set of data
without having the possibility to trace individual test particles,
complementary measures need to be applied, see section 9.

In the theory of CTRWs one can readily show that the MSD
with waiting time PDF (14) is subdiffusive and governed by
Eq. (8), where the generalised diffusion constant is defined
via42,43

Kα =
〈δx2〉
2τα

0
. (15)

What is the dynamic equation connected to this CTRW pro-
cess? On the stochastic level, the regular Langevin equation
dx(s)/ds = ξ (s) driven by the white Gaussian noise ξ (s) is
augmented with a second equation subordinating the number
of steps s to the real process time t 52–55. After averaging over
the noise, in the diffusion limit we obtain the fractional diffu-
sion equation42,56

∂
∂ t

P(x, t) = Kα 0D1−α
t

∂ 2

∂x2 P(x, t), (16)

where we introduced the Riemann-Liouville fractional opera-
tor defined by57,58

0D1−α
t P(x, t) =

1
Γ(α)

∂
∂ t

∫ t

0

P(x, t ′)
(t − t ′)1−α dt ′. (17)

In the limit α = 1 we recover the normal diffusion equation
(1). The fractional diffusion equation (16) can equivalently be
formulated in terms of the Caputo operator58. In Eq. (17) we
see that the process is dominated by the slowly decaying mem-
ory given by the integral over the power-law kernel. In the
presence of an external potential, the dynamics is described in
terms of the fractional Fokker-Planck equation42,59. This frac-
tional Fokker-Planck equation fulfils a generalised form of the
Einstein-Stokes relation as well as linear response42,59. We
note that reactions in such a subdiffusive setting are discussed
in Refs.60. An interesting generalisation to evenescent CTRW
subdiffusion was discussed recently61.

As illustrated in Fig. 6, during the evolution of the process
longer and longer waiting times emerge. Due to the lack of a
characteristic time scale of ψ(τ), extreme individual waiting
times τ arise which are of the same order as the measurement
time. In particular, there is no longer a scale 〈τ〉 separating a
single or few jumps from the limit of many jumps. This effects
a disparity between the MSD and the time averaged MSD, the
so-called weak ergodicity breaking31,32,36,63–67

〈x2(Δ)〉 �= lim
t→∞

δ 2(Δ). (18)

More specifically, as this subdiffusive process is no longer
self-averaging such as the normal Brownian motion, to be able

-15

-10

-5

 0

 5

 10

 15

 0  20  40  60  80  100

x(
t)

t / 104

Fig. 6 Trajectory of a subdiffusive CTRW with waiting time PDF
(14) and α = 1/2. In the evolving process longer and longer waiting
times appear, a characteristic of the scale-free underlying law (14) of
this non-stationary process.

to obtain analytical results we introduce the additional averag-
ing 〈

δ 2(Δ)
〉
=

1
N

N

∑
i=1

δ 2
i (Δ) (19)

over sufficiently many (more correctly, N → ∞) individual tra-
jectories. From a data analysis point of view, this procedure
ensures smooth curves for 〈δ 2〉 as function of the lag time Δ.

Using the known fact that for subdiffusive CTRWs the av-
erage number of jumps from t = 0 up to time t scales like
〈n(t)〉 � tα , it is quite straightforward to show that in the limit
Δ � t the result for the time averaged MSD is32,44,63,64〈

δ 2(Δ)
〉
∼ 2Kα

Γ(1+α)

Δ
t1−α . (20)

This is the first example of weak ergodicity breaking that we
analyse in the following. Remarkably, the linear lag time
dependence is different from the tα -scaling of the MSD (8).
Simultaneously, the length of the time series (measurement
time) t occurs explicitly in expression (20). The latter echoes
the ageing dependence of the subdiffusive CTRW process, to
be addressed shortly in more detail: the longer the process
lasts, the smaller the time averaged MSD becomes. Physically,
this corresponds to the above observations that for the scale-
free waiting time distribution (14) longer and longer trapping
times occur, stalling the progress of x(t). The linear form (20)
of the time averaged MSD was shown for the subdiffusive mo-
tion of lipid granules in living yeast cells68, and the ageing de-
pendence δ 2 � 1/t1−α was observed for the motion of insulin
granules in the cytoplasm and of potassium channels in the
plasma membrane of living human cells50,69. For the channel
motion in the plasma membrane the data is shown in Fig. 7.†

† Note that in the latter two examples the time averaged MSD (6) does not scale
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Fig. 7 Dependence of the time averaged MSD on the measurement
time, observed for the motion of potassium channels in the plasma
wall of human kidney cells in Ref. 50. The straight lines show the
scaling δ 2 � 1/t1−α with α = 0.9 deduced from the statistics of
waiting times of this system shown in Fig. 5. The predicted scaling
is nicely fulfilled by the data, corroborating the ageing nature of the
system: the longer the system evolves (given by the times in the
Figure key) the smaller the apparent diffusivity. Data courtesy Diego
Krapf, Colorado State University.

Note that the linearity of the time averaged MSD (20) for sub-
diffusive CTRWs may be deceiving: when such a linear scal-
ing is observed for the time averaged MSD in experiments, it
may easily be concluded that the observed process is normal.
Without testing other quantities, such as the dependence of δ 2

on the measurement time t, such a conclusion may in fact be
wrong. Note that in the limit α = 1 Eq. (20) reduces to the
ergodic Brownian form, independent of t.

Another a priori surprising result is that for confined subd-
iffusive CTRW motion the time averaged MSD does not con-
verge to the thermal plateau. Instead, after engaging with the
confinement it continues to grow in the power-law form45

〈
δ 2(Δ)

〉
∼

(
〈x2〉B −〈x〉2

B

) 2sin(πα)

(1−α)απ

(
Δ
t

)1−α
, (21)

where the prefactor involves the first two moments of the
Boltzmann distribution,

〈xn〉B = Z
−1

∫ ∞

−∞
xn exp

(
−V (x)

kBT

)
dx (22)

of the confining potential V (x). The normalisation fac-
tor is given in terms of the partition function Z =∫ ∞
−∞ exp(−V (x)/[kBT ])dx. Only in the Brownian limit α = 1,

we observe a turnover from the free diffusion behaviour to a
plateau with

〈
δ 2(Δ)

〉
∼ Δ0. In the general case 0 < α < 1 the

linearly as in Eq. (20), as the observed stochastic motion has an additional
noise source 50,69.

10-5
10-4
10-3
10-2
10-1
100
101
102
103

100 101 102 103 104 105

 _
__

_
δ2 (

Δ)

Δ

~Δ

Fig. 8 Sample trajectories of a subdiffusive CTRW with power-law
waiting time PDF (14) for α = 1/2. For 10 individual trajectories of
length 105 (a.u.) we show the time averaged MSD (6). While the
general slope of the time averaged MSD δ 2(Δ) follows the linear lag
time dependence predicted by Eq. (20), local deviations of the slope
are visible. Moreover, the variation (scatter) of the amplitudes
between different time traces is distinct. Both effects are due to the
occurrence of long waiting times between jumps, due to the
scale-free nature of ψ(τ), Eq. (14).

time averaged MSD (21) grows with Δ, however, as long as
Δ � t, the value of

〈
δ 2(Δ)

〉
never exceeds (〈x2〉B −〈x〉2

B).‡

The behaviour (21) was found from simulations in Ref.70 and
experimentally corroborated from optical tweezers tracking
data in Ref.68.

Each individual, sufficiently long time series of this subd-
iffusive CTRW process is characterised by a number of ex-
tremely long waiting times. However, in each realisation dif-
ferent numbers and lengths of such waiting periods occur.
This gives rise to the fact that times averages remain random
even for very long averaging times, and time averaged phys-
ical observables are thus irreproducible45,64,73. This situation
is shown in Fig. 8, where the simulations data show variations
of the slope in individual δ 2 traces as well as a distinct ampli-
tude scatter between different δ 2. Qualitatively these are rem-
iniscent of the observations made in the experiments of Gold-
ing and Cox33.§ Similar amplitude variations are observed in
the aforementioned single particle tracking studies in living
cells50,68,69,71 and in the simulation of associated water in the
vicinity of lipid bilayers72. We quantify this randomness of
the time averaged MSD in terms of the dimensionless vari-

‡ Note that the universal factor 2sin(πα)/[(1−α)απ] varies between 2 (for
the limits α → 0 and α → 1) and 8/π ≈ 2.55 (for α = 1/2).

§ As argued in Ref. 64 the fact that the average slope of δ 2(Δ) is smaller than
unity in the data of Ref. 33 may be due to the fact that the motion of the RNA
in the cell is confined.
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able64

ξ =
δ 2(Δ)〈
δ 2(Δ)

〉 . (23)

The associated distribution is64,73

φ(ξ ) =
Γ1/α(1+α)

αξ 1+1/α lα

(
Γ1/α(1+α)

ξ 1/α

)
(24)

for sufficiently long measurement times t. Here lα is a
one-sided, completely asymmetric Lévy stable law with the
Laplace image L {lα(t)} = exp(−uα)74.¶ Note that the
variable ξ is in the denominator of the argument of lα in
Eq. (24), and thus moments 〈ξ n〉 exist. In particular, for
α = 1/2, the distribution of φ(ξ ) is the half Gaussian φ(ξ ) =
(2/π)exp(−ξ 2/π), whose maximum occurs at ξ = 0, i.e., in
very long trajectories the most likely case is that the ampli-
tude δ 2 vanishes. For a fully ergodic process with α = 1 the
distribution has the sharp form φ(ξ ) = δ (ξ − 1), which im-
plies that individual trajectories are completely reproducible
and there is no scatter in the relative amplitude ξ around the
ergodic value ξ = 1. The variance of the amplitude fluctu-
ations of δ 2 is measured in terms of the ergodicity breaking
parameter64,75

EB = lim
t→∞

[
〈ξ 2〉− 〈ξ 〉2

]
=

2Γ2(1+α)

Γ(1+ 2α)
− 1 (25)

which monotonically varies from EB= 1 for α → 0 to EB = 0
for α → 1. The latter mirrors the ergodic behaviour found for
Brownian motion by Nordlund.

How can scale-free forms of the waiting time distribution
(14) come about? Scher and Montroll explained this in terms
of energetic traps in a quenched energy landscape as that
shown in Fig. 9. When the depths of individual energy wells
are exponentially distributed, the motion of a particle on this
landscape is dominated by individual thermal escapes from
these traps characterised by the Kramers/Arrhenius activation,
only to be trapped again in the next well. As the motion of the
particle progresses, it typically encounters ever deeper wells,
effecting the subdiffusive behaviour39. This scenario indeed
gives rise to the waiting time PDF (14)37,76.‖ The correspon-
dence of the Arrhenius-type escape in the energy landscape
to power-law waiting time distributions renders the CTRW an

¶ The Laplace image f (u) of a function f (t) is defined as f (u) = L { f (t)} =∫ ∞
0 f (t)exp(−ut)dt.

‖More precisely, the quenched trap model in one and two dimensions leads to
correlations when the particle revisits traps. The resulting process is thus
different from the annealed subdiffusive CTRW. Such correlations can be
avoided when the process is embedded in three or more dimensions, as now
the random walk is transient. Alternatively, an additional bias as shown in
Fig. 9 can be used to eliminate correlations. The concept of trapping land-
scapes was extensively broadened by Bouchaud to introduce ageing and weak
ergodicity breaking in glasses 39,76.
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x

Fig. 9 Quenched trap model with constant bias39. We show a
realisation of the trapping landscape with exponential distribution
p(E) = T−1

g exp(−E/Tg) of trap depths E, where we set the
Boltzmann constant to unity. The system specific “glass”
temperature Tg (here, Tg = 1) sets the width of p(E). We also
include a unit tilting force. On its way through this landscape, a
random walker successively falls into traps and faces escape times
given by Arrhenius’ law τ � exp(E/T ), where T is the temperature
of the thermostat. Due to the tilt, revisits to a given trap are unlikely,
and the model thus corresponds to an annealed (biased) continuous
time random walk with power-law waiting time PDF (14) with
α = T/Tg. When the system temperature is below Tg, subdiffusion
is effected.
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extremely successful mathematical model for the description
of the mechanisms of anomalous diffusion in a number of im-
portant physical systems.

Alternative sources for the power-law form (14) are
spatial traps. One example is the Havlin-Weiss comb model
originally designed to mimic the spatial trapping of particles
in the dangling ends of a percolation cluster77: a particle
moves along the x axis but can get transiently trapped in
perpendicular one-dimensional channels, a structure similar
to the teeth of the comb. As the returning probability scales
like t−1/2, the effective motion along the x axis is governed
by the waiting time PDF (14) with α = 1/2. This exponent
is indeed observed in typical experiments of tracer dynamics
in subsurface aquifers and may correspond to the trapping of
tracer molecules in thin cracks off the main water artery78.
Further examples of systems leading to a power-law form of
ψ(τ) are dynamic maps79–84 and the sticking of tracer parti-
cles around stable islands of weakly chaotic systems51,85.∗∗

Ageing effects of the subdiffusive CTRW

Power-law distributed waiting times lead to ageing in a wide
variety of systems. Suppose you observe the on/off blinking
of a single, illuminated quantum dot between a light emitting
and a dark state34. While such an experiment will show many
rapid transitions between the on and off states, occasionally
very long on or off periods will appear. Over a sufficiently
long observation period t, the duration of these long events
typically increases with t 34. A similar effect is observed for
the motion of potassium channels in the plasma membrane
of living cells50 or for the diffusion of submicron tracers in
a cross-linked actin mesh48: longer and longer immobilisa-
tion periods occur in the course of the measurement. We
already alluded to this phenomenon in the discussion of the
CTRW trajectory in Fig. 6 and from Fig. 7. Such strongly non-
stationary, out-of-equilibrium behaviour is indeed well known
from glassy systems76,86, a field in which the term ageing was
originally coined. Subdiffusive CTRWs are non-stationary, as
we could see from the explicit dependence of δ

2
on the mea-

surement time t in Eq. (20), and they have been proposed to
capture the observed dynamics in glassy systems87.

What if we start to probe such an ageing system only at
some (ageing) time ta after the system was initially prepared
at time t = 0? As the subdiffusive CTRW evolves, on aver-
age longer and longer waiting time events appear in the tra-
jectory (compare the time trace in Fig. 6). When we start to
observe the particle we will typically find it within one of the
extremely long waiting periods. The occurrence of the first
step in this scenario is no longer determined by the statistics

∗∗ In the latter example of weakly chaotic systems the waiting times interrupt
ballistic phases, so that the overall motion is anomalous with exponent 1 <
α < 2, see section 3.5.

atageing period measurement tt=0

1t

Fig. 10 Schematic for the forward (recurrence) waiting time. A
process governed by the waiting time PDF (14) is started at t = 0.
Events (jumps of a random walker or on/off transitions of a blinking
quantum dot) are symbolised by the blue impulses. When we start to
follow the system’s dynamics after the ageing period at ta, the
forward waiting time until the first jump occurs is t1.

of the waiting time distribution ψ(τ) from Eq. (14) but occurs
at the forward waiting (recurrence) time t1 (see Fig. 10), which
is governed by the PDF73,88–90

h(t1, ta) =
sinπα

π
tα
a

tα
1 (t1 + ta)

. (26)

At longer ageing times (ta � t1), the scaling h(t1, ta) � t−α
1

in terms of t1 of the forward waiting time PDF is thus broader
than that of the original waiting time PDF (14), ψ(τ)� τ−1−α .
Due to the memory of the CTRW process—directly visible in
the fractional diffusion equation (16)—strong ageing persis-
tently affects the time evolution of the process.

The behaviour of the MSD for free, unconfined CTRW mo-
tion in this ageing scenario then exhibits the crossover73,89

〈x2(t)〉a ∼
{

Kα tα−1
a t, ta � t,

Kα tα , ta � t,
(27)

which for strong ageing (ta � t) shows an apparent linear scal-
ing with time t. Only when the process evolves for much
longer than the original ageing time, t � ta, the scaling with t
reflects the subdiffusive nature of the process.

Remarkably, the behaviour of the associated time averaged
MSD

δ 2
a (Δ) =

1
t −Δ

∫ ta+t−Δ

ta

[
x(t ′+Δ)− x(t ′)

]2
dt ′ (28)

is much more transparent in the presence of ageing. Namely,
in the limit Δ � t the result is73〈

δ 2
a (Δ)

〉
∼ Λα(ta/t)

Γ(1+α)
2Kα

Δ
t1−α = Λα(ta/t)

〈
δ 2(Δ)

〉
, (29)

where the right hand side involves the non-aged quantity δ 2.
The physical scaling with the lag time Δ is not affected, and
all information on the ageing enters as the ratio ta/t into the
universal algebraic prefactor

Λ(z) = (1+ z)α − zα . (30)
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Fig. 11 Time averaged mean squared displacement δ 2(Δ) for
individual free CTRW trajectories (full symbols) and the averages
according to Eq. (29) (bold black lines). Left: non-aged system with
mα = 1. Right: aged process, ta = 1011 (a.u.), in which the large
fraction 1−mα ≈ 94% of trajectories is suppressed in the log-log
plot. The parameters are α = 1/2, 〈δx2〉= 1, 〈τ〉= 1, and t = 109.
Compare Ref. 73.

As shown in Ref.73, this ageing depression occurs for other
time averaged physical observables. In contrast to the ensem-
ble average, the scaling with Δ is the same for any ageing time
ta, and thus time averages are in that sense more suitable mea-
surables for aged systems. Finally, we remark that in the limit
of strong ageing ta � t � Δ, we even obtain an equivalence of
the limiting behaviour of the regular MSD and the time aver-
aged MSD73,〈

δ 2
a (Δ)

〉
∼ 2Kα

Γ(1+α)
tα−1
a Δ ∼ 〈x2(Δ)〉a. (31)

Another important lesson to be drawn from ageing renewal
theory73,89 is the fact that in a growing fraction of trajectories
no jump occurs within the observation window from the age-
ing time ta to ta+ t. It was shown in Ref.73 that the probability
to have a nonzero number of steps during this observation win-
dow decays as mα � (t/ta)1−α for strong ageing ta � t. Con-
currently the discrete probability for not moving at all during
the observation grows. Observing a series of individual parti-
cles, one therefore finds a population splitting into mobile and
immobile particles73. This fact is important when one wants
to extract the amplitude—for instance, the anomalous diffu-
sion coefficient Kα —from a given set of time averaged data73.
Notably, also the scatter distribution φ(ξ ) is significantly al-
tered73. The splitting into mobile and immobile fractions may
be underlying experimentally observed population splitting in
molecular biological systems91. Fig. 11 demonstrates for the
same number of simulated trajectories how ageing suppresses
the mobile fraction of particles within the observation window
ta . . . ta + t 73.

Ageing also affects other quantities of the subdiffusive
CTRW process, for instance, the first passage behaviour.
Thus, for unbiased subdiffusion on a semi-infinite domain the
density of first passage times acquires the three distinct scaling

regimes92

℘a(t)�

⎧⎪⎪⎨⎪⎪⎩
tα−1
a t−α , ta � t,

tα
a t−1−α , ta � t � t�,

x0K−1/2
α t−1−α/2, t� � t,

(32)

with the time scale t� � t1+α/2
a K1/2

α /x0 containing the initial
distance x0 between the particle and the absorbing boundary.
As expected, as long as ageing is weak, the scaling of the first
passage time PDF with t features the exponent (−1−α/2)
of the non-aged system42,93,94. However, as ageing becomes
more severe, there exists a competition between the mag-
nitudes of the ageing time ta and the measurement time t,
with the intermediate scaling exponent (−1−α) and the fully
aged exponent (−α). In particular, the intermediate scaling is
steeper than for both the non-aged and the fully aged system.
This observation, in principle, offers the possibility to deter-
mine the age ta of the system from observation of the first pas-
sage behaviour, albeit sufficiently many and long trajectories
are needed to evaluate ℘a(t)92.

We so far discussed the case with 0 < α < 1, when the
characteristic waiting time 〈τ〉 diverges. What happens when
〈τ〉 is finite but the fluctuations around it diverge, i.e., for the
case 1 < α < 2? It can be shown that indeed the process in
many facets is different from the naively expected Brownian
behaviour. Instead, different ageing features characterise the
process95,96. To fully understand the consequences on quan-
tities such as the time averaged MSD δ 2(Δ) or its amplitude
scatter, more work is needed.

3.2 Noisy continuous time random walks

In the subdiffusive CTRW the particle becomes fully immo-
bilised with respect to the co-ordinate x(t) in between succes-
sive jump events (see Fig. 6). For charge carriers in an amor-
phous semiconductor or for tracer particles firmly stuck to
much larger objects or solid surfaces this assumption appears
reasonable. However, imagine a submicron tracer particle in
a cross-linked network consisting of semi-flexible actin fila-
ments48. In this case the particle is stuck in cages for waiting
times distributed like the power-law (14). The actual trajectory
shows distinct fluctuations of approximately constant ampli-
tude around a mean location48. This behaviour stems from
the thermal nature of the system, that is, the cages in the mesh
are typically somewhat larger than the tracer particle and/or
the actin filaments making up the mesh are themselves subject
to thermal agitation, compare the results of recent simulations
of tracer motion in a flexible gel97. In the noisy CTRW the
superimposed noise is combined with the fully immobilised
periods of the native CTRW98. This model is therefore rele-
vant for the quantitative description of the stochastic particle
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Fig. 12 Noisy CTRW process with Ornstein-Uhlenbeck noise with
α = 0.8, for different amplitudes η of the superimposed Gaussian
noise. Increasing η washes out the immobilisation periods of the
pure CTRW process.

motion in a large range of systems. In particular, a detailed
analysis of recorded data in terms of the noisy CTRW may
unveil an underlying power-law waiting time despite the fact
that no clear stalling events feature in the measured trajectory.

In the above scenario of approximately constant amplitude
noise around the horizontal immobilisation periods in the x(t)
diagram, it is a natural choice to add Ornstein-Uhlenbeck
noise in the position space to the native subdiffusive CTRW
process (see Fig. 12). For the MSD this leads to the additive
terms98

〈x2(t)〉= 2Kα

Γ(1+α)
tα +

η2D
k

(
1− e−2kt

)
, (33)

where the first term represents the contribution of the na-
tive CTRW. The second term contains the noise strength η2D
made up of the diffusivity D of physical dimension cm2/sec
and the empirical noise amplitude η . Moreover, k is an inverse
time scale governing the relaxation of the Ornstein-Uhlenbeck
process to stationarity. The Ornstein-Uhlenbeck component
in the MSD (33) after the time scale 1/k becomes merely an
additive constant, whose relative amplitude becomes progres-
sively smaller compared to the first term. The effect on the
trajectory itself is displayed in Fig. 12: for increasing noise
amplitude the stalling periods of the native CTRW become
more and more masked and resemble the experimental trajec-
tories of the submicron tracers in the semi-flexible polymer
network48. The result for the MSD is shown in Fig. 13.

The associated time averaged MSD becomes98〈
δ 2(Δ)

〉
∼ 2Kα

Γ(1+α)

Δ
t1−α +

η2D
k

(
1− e−kΔ

)
, (34)

in absence of ageing (ta = 0). In contrast to the MSD (33),
the time averaged MSD (34) contains the factor tα−1 in the
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Fig. 13 Ensemble averaged (top) and time averaged (bottom)
MSDs for the noisy CTRW process98. In each case we present
results for α = 0.5 and α = 0.8. The trajectory lengths are t = 105,
and the symbols represent an average over 103 trajectories.

first term representing the native CTRW contribution, while
the amplitude of the noise in the second term on the right
hand side is independent of t. While for small noise ampli-
tude η the observable δ 2 will essentially be indistinguishable
from the native CTRW, for larger η we observe a distinct
crossover behaviour for δ 2. Namely, for shorter lag times the
time averaged MSD shows contributions from both the native
CTRW and the Ornstein-Uhlenbeck noise. Writing

〈
δ 2

〉
∼

2DappΔ, for Δ� 1/k we find Dapp ≈Kα tα−1/Γ(1+α)+η2D.
At longer lag times, solely the native CTRW contribution
is visible and Dapp ≈ Kα tα−1/Γ(1 + α). In between these
two regimes, a crossover behaviour is observed, as shown
in Fig. 13. However, when the measurement time t is much
longer than the lag time Δ, the Ornstein-Uhlenbeck term is
dominant. Again the time average has a clear advantage over
the ensemble average, as it reveals additional detail of the be-
haviour.

A different scenario can also be envisaged98. For instance,
when the observer is interested in the motion of a tracer inside
a living cell and the attachment of the cell to the cover slide
in the microscope turns out to be broken, the data will show
the additional Brownian noise stemming from the random cell
motion superimposed to the anomalous motion with respect to
the reference frame of the cell. In that case the MSD reads98

〈x2(t)〉= 2Kα
Γ(1+α)

tα + 2η2Dt, (35)

which exhibits a turnover from the subdiffusive scaling with
tα to the linear Brownian growth � t in the long time limit.
The associated time average is always linear98,〈

δ 2(Δ)
〉
∼ 2Kα

Γ(1+α)

Δ
t1−α + 2η2DΔ. (36)
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n+1n n+2

x

0

Fig. 14 Sketch of the crack propagation model discussed in the text.
The tip of the crack (black zig-zag line) propagates from site n to
n+1 when the vacancy represented by the red circle diffuses to the
origin (x = 0) at point n.

We note that the superposition of Poissonian and non-
Poissonian noise was also discussed in a biologically inspired
reaction rate model99.

3.3 Ultraslow diffusion of continuous time random walks
in an ageing environment

The subdiffusive CTRW process discussed so far is a renewal
process. That is, after each step the waiting time τ is ran-
domly chosen from the same PDF ψ(τ). Physically, this cor-
responds to an annealed environment39. More formally, one
can view this process as if the random walker carried his own
clock around whose random ticks trigger the occurrence of the
jumps. As we discussed above, if we want to describe an aged
subdiffusive CTRW initiated at t = 0 and evolving for the age-
ing time ta, the statistics for the occurrence of the first jump in
an observation beginning at ta is modified. The first jump oc-
curs after the forward waiting time t1, which is distributed with
the probability density function (26). All subsequent waiting
times are then again drawn from the standard law (14).

Here we consider a different scenario, in which each jump
event depends on the present age of the system. Imagine a
toy scenario for a rupture model, in the spirit of Zener’s fa-
mous work on stress relaxation in solids100: a crack in a two-
dimensional material is propagating along the discrete n axis,
as sketched in Fig. 14. The crack is represented by the bold
black zig-zag line. As indicated by the arrow, this crack has
just propagated from site n to n+1. Crack propagation is trig-
gered by the red circles (the ‘vacancies’), that diffuse along
the perpendicular x axis. When the vacancy at site n hit the
x = 0 line the crack tip was allowed to extend to site n+ 1.
To propagate to site n+ 2, the vacancy at n+ 1 has to diffuse
to x = 0, etc. If the vacancies can only diffuse along a finite

interval of length � on the x-axis, they return to x = 0 on time
scales τx � �2. This τx then is the average time for the crack
propagation from one site to the next, and we will find the
crack propagation law 〈n(t)〉 ∼ t/τx.

What happens if the length � becomes very large and the
vacancies can venture far away? As known from the theory of
comb models77, the probability density of return to x = 0 is of
power-law form, proportional to τ−1−1/2. Typically, when the
tip of the crack reaches a new site, the vacancy will be away
from x = 0, and the triggering event for the crack propagation
to the next site then corresponds to the forward waiting time
t1 distributed according to Eq. (26) with α = 1/2. In contrast
to the previously discussed renewal ageing CTRWs, however,
the next propagation step of the crack tip again occurs with the
forward waiting time, characterising the arrival of the next va-
cancy at x = 0, and so forth. In other words, every step occurs
with the forward waiting time t1. The probability that the tip
arrives at an extremely long forward waiting time t1 increases
considerably.†† This fact significantly alters the dynamics of
the process. Formally, this scenario corresponds to a random
walker, which is updated by stationary, site-specific clocks.

If we generalise the CTRW model and consider a process in
which every jump occurs with the waiting time PDF (14) with
general 0 < α < 1, it can be shown that the crack propagation
dynamics is reduced to the much slower logarithmic law101

〈n(t)〉 ∼ ln(t/t0)
μ

, (37)

where μ =−Γ′(α)/Γ(α)−γ in terms of the complete Γ func-
tion and its derivative Γ′, γ = 0.5772 . . . is Euler’s constant,
and t0 is a cutoff time to avoid divergencies at t = 0. The
counting process n(t) is deterministic in the sense that the rel-
ative fluctuations√

〈n2(t)〉− 〈n(t)〉2

〈n(t)〉 �
√

1
μ ln(t/t0)

, (38)

albeit slowly, decrease during the progress of time101. For
α > 2 the process is normal and statistically equivalent to a
Poisson update, which is equivalent to the above scenario with
finite length � for the vacancy diffusion leading to the linear
time dependence 〈n(t)〉 � t. However, similar to our observa-
tions above, the case with a finite characteristic update time
〈τ〉 but diverging variance of waiting times with 1 < α < 2
displays the power-law anomaly 〈n(t)〉 � tα−1 101.

Interestingly, the time average over the time series n(t),〈
n(Δ)

〉
∼ 1

μt
ln
(

t
t0

)
Δ, (39)

†† Remember the fact that for long ageing times the probability density func-
tion (26) of the forward waiting time decays with the power −α and is thus
significantly broader as the regular waiting time density (14).
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is linear in the lag time Δ, in analogy to the result (20) for
the regular renewal subdiffusive CTRW process. The inverse
dependence on the measurement time t with the logarithmic
correction observed here, in a rough way can be viewed as the
α → 0 behaviour of the power-law relation in Eq. (20).

Above we constructed the crack propagation model such
that the motion of the tip is fully biased and each step is di-
rected to higher n values. What if we interpret the update rule
for the counting dynamics n(t) as jumps of a random walk
process in real space? To avoid correlations when the ran-
dom walker revisits the same spatial point and its next update
is governed by the same clock as during the previous visit,
in analogy to the discussion of the quenched trap model we
could include a spatial bias of the random walk. Alternatively,
we could embed the random walk in three dimensions. Due
to the transient nature of this process, revisits are significantly
reduced, and the MSD

〈r2(t)〉 � ln(t/t0) (40)

of the walker is then proportional to 〈n(t)〉, while the corre-
sponding time averaged MSD〈

δ 2(Δ)
〉
� Δ

t
ln(t/t0) (41)

scales like
〈

n(Δ)
〉

. Such a random walk process thus exhibits
weakly non-ergodic behaviour.

The random walk process in an ageing environment corre-
sponds to a non-renewal process in dimension one and two.
In dimension three it is a renewal process, however, here the
waiting time distribution (14) is replaced by the PDF of the
forward (recurrent) waiting time. In other words, due to the
logarithmic nature the process, Eq. (37), can be shown to be
governed by the limiting distribution for the product of in-
dependent random variables, the log-normal distribution101.
This approach may thus be of relevance to a large range of
applications in which this distribution is identified102.

In the regular, renewal subdiffusive CTRW ageing affects
the statistics of the first jump, given in terms of the forward
waiting time t1. All subsequent jumps occur with the regular
waiting time PDF (14). The system remembers the first
step, due to the slowly decaying memory inherent to the
process, seen in the non-local time operator of the associated
fractional diffusion equation (16). Once the process time
exceeds the ageing time significantly, i.e., t � ta, the ageing
effects are no longer visible.‡‡ In the non-renewal scenario
discussed here the system has a high likelihood to encounter
atypically long waiting times at every step and every single
step includes ageing. This causes the massive retardation

‡‡ This is true for the ensemble averaged MSD (27) as well as for the correspond-
ing time averaged MSD. In the latter, the ageing depression Λ(ta/t) converges
to unity, compare Eqs. (28) and (29).

of the motion, giving rise to the emerging logarithmic law.
Such time dependencies occur in a large variety of systems,
inter alia, the crumpling of paper103, compactification of
grains104, or record statistics105. Recently, it was shown that
the long time behaviour of a tracer particle in a single file
system, in which individual particles repel each other and
may stick to a functionalised channel with power-law waiting
times, can indeed be described in terms of the logarithmic
time dependence derived here within the non-renewal ageing
process106.

Other ultraslow diffusion processes

In the theory of stochastic processes, the logarithmic time
evolution has a prominent representative, namely, Sinai dif-
fusion107. In this special case of Temkin’s model108, the ran-
dom walker moves in the quenched energy landscape created
by a seed random walk. Thus, locally the walker experi-
ences a force of the same amplitude, randomly to the left or
the right. The walker can become trapped significantly when
the bias in a number of adjacent sites point in direction of the
walker’s current location. To get to a distance x from its start-
ing point the particle needs to cross an energy barrier of the
typical order

√
x, corresponding to an activation time scale

τ � τ1 exp(c
√

x), where τ1 is a fundamental time scale and c
a dimensional constant. The typical distance covered by the
walker during time t then scales according to the ultraslow,
logarithmic law x2 � ln4(t/τ1)

39, compare also the discussion
in Ref.109. Referring to Ref.110 for further explanations, we
quote the result for the time averaged MSD˜〈

δ 2(Δ)
〉
� 3721

17080
ln4(t)

Δ
t
= ˜〈x2(t)〉549

854
Δ
t
, (42)

where the tilde denotes the disorder average. Interestingly,
also here the time averaged MSD increases linearly with the
lag time and exhibits a strong sensitivity to the measurement
time. A generalisation of the Sinai model with strongly corre-
lated disorder113 and a periodic Sinai model111 were reported
recently. The splitting probability of the Sinai model is deter-
mined in Ref.112.

In terms of a renewal CTRW ultraslow processes can be
established by using a waiting time PDF of the form ψ(t) �
1/(t log1+γ t)110,114–116, which is normalised but does not pos-
sess finite moments of any power 〈τq〉 with q > 0. It produces
an MSD of the form

〈x2(t)〉 � logγ t, (43)

i.e., for γ = 4 the MSD scales identically to that of the Sinai
diffusion. The weakly non-ergodic behaviour of ultraslow
CTRWs is analogous to Eq. (42) for Sinai diffusion, apart from
the general exponent γ and the prefactor,〈

δ 2(Δ)
〉
∼ 〈x2(t)〉× Δ

t
. (44)
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The time averaged MSD, the localisation of the diffusion par-
ticle, as well as the ergodic properties of both Sinai and ul-
traslow CTRW diffusion are analysed in Ref.110, discussing
some of the fundamental differences between time averages
recorded in annealed versus quenched environments.

Finally, ultraslow diffusion can also be effected by iterative
dynamics maps, as shown by Dräger and Klafter116. Instead
of the power-law maps with a single exponent z discussed
in Ref.79, however, ultraslow diffusion emerges when an en-
tire hierarchy of exponents is considered. In very dense two-
dimensional lattice gas systems, ultraslow diffusion emerges,
as well117.

3.4 Correlated continuous time random walks

Another way to break the renewal character of the standard
CTRW process is to introduce correlations between successive
waiting times. Correlations appear naturally in the motion be-
haviour of higher animals or humans, or in the dynamics of
financial markets. They are also present for particles diffus-
ing in quenched disorder, compare the above discussion of the
quenched trap model or Sinai diffusion. It is therefore conse-
quent to consider non-renewal CTRW processes with built-in
correlations. This can be achieved by extension of the sub-
ordination of the physical time to the number of steps of the
process118,119. An alternative approach is the following.

Assume that successive waiting times are correlated in a
way that waiting time τi is given by waiting time τi−1 mod-
ified by a small increment, δτi, that is, τi = τi−1 + δτi. The
increments δτi may be positive or negative. Successive wait-
ing times are thus correlated: a short waiting time is followed
by a similarly short one, and vice versa for a long waiting
time. This approach corresponds in fact to a random walk in
the space of waiting times, and we can write the current wait-
ing τi time as the sum of increments120–122

τi =
∣∣∣δτ1 + δτ2 + . . .+ δτi−1

∣∣∣. (45)

The absolute value occurs here as waiting times always have to
be positive. These increments δτi are then chosen to follow a
given probability distribution. We may, for instance, consider
the symmetric Lévy stable law defined in terms of its Fourier
transform as exp

(−cγ |k|γ
)
. The process can then be shown

to produce a power-law MSD of the form (8) with anomalous
diffusion exponent

α =
γ

1+ γ
, (46)

whose range spans from zero (for γ = 0) to 2/3 (for γ = 2)
and thus leaves a gap to normal diffusion120,121. Brownian
motion with α = 1 in this model can only be restored by com-
pletely breaking the correlations120. In the limit γ = 2 the
mode relaxation is of stretched exponential form, P(k, t) �
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Fig. 15 Trajectory x(t) (top) and individual waiting times (bottom)
in the regular subdiffusive CTRW model with α = 2/3 (left) and the
CTRW model with correlated, Gaussian waiting times256 with γ = 2
(right). Both cases lead to the same MSD (8) with α = 2/3.

exp(−ct1/2), and for the range 0 < α < 2 it is of power-law
shape, � Kα t−α 122.

Fig. 15 compares the CTRW model with correlated waiting
times (45) with the regular subdiffusive CTRW. In the corre-
lated case the gradual increase of the waiting times is distinct
from the occasional very long waiting times of the uncorre-
lated model. Also the trajectories of the two models are very
different: without correlations, the long waiting times effect
distinct immobilisation events, while for the correlated wait-
ing times, the motion appears almost Brownian, albeit with a
gradual increase of the waiting times.

In this process the waiting time on average is an increasing
function and diverges in the limit of many steps. The corre-
lated CTRW process indeed exhibits weakly non-ergodic be-
haviour,122 〈

δ 2(Δ)
〉
� Δ

t1−γ/(1+γ) , (47)

such that the range of the ageing exponent 1− γ/(1+ γ) is
in between 1/3 and one. Moreover the process ages, as shown
via the decaying response of the process to a sinusoidal driving
force122.

Similarly, when the waiting times are exponentially dis-
tributed but the jump lengths correlated the process leads to
the exact form120

〈x2(t)〉= 1
4

K3

(
t(t + 1)(2t+ 1)

)
� K3t3 (48)

of superdiffusive behaviour with the asymptotic cubic
Richardson form26 when the distribution of jump length in-
crements is Gaussian. When the jump length increments are
drawn from a Lévy stable law with index μ , the MSD diverges.
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From fractional oder moments one can derive the scaling rela-
tion x2 ∼ t(1+μ)/μ . For the case μ = 2 the weakly non-ergodic
form of the MSD〈

δ 2(Δ)
〉
=

3K3

4
Δ2t+K3

(
Δ
4
+

3Δ2

4
− Δ3

4

)
∼ 3K3

4
Δ2t (49)

was obtained exactly, and the expansion is valid for Δ � t 120.

3.5 Superdiffusive continuous time random walks and
ultraweak ergodicity breaking

For completeness we also consider superdiffusive renewal
CTRW processes. To that end we note that the introduction of
a waiting time distribution into a standard random walk pro-
cess at most leads to a subdiffusive behaviour when the first
moment of the waiting time PDF ψ(τ) diverges. Superdiffu-
sion cannot be achieved within the approach of a generalised
waiting time concept. There exist, however, two pathways to
extend the CTRW model to superdiffusion.

The first way is to modify the distribution of jump lengths.
All CTRW processes considered so far (apart from the case
of correlated jump lengths in the preceding section) corre-
spond to the motion on a lattice, or in continuous space with
a jump length PDF that possesses a finite variance 〈δx2〉 and
zero mean 〈δx〉. What if we choose a jump length distribu-
tion λ (x), for which the variance 〈δx2〉 diverges? Consider a
Lévy stable form with the asymptotic power-law behaviour
λ (x) � 1/|x|1+μ of the jump lengths with the stable index
0 < μ ≤ 2. When the waiting time PDF has finite moments,
this process was called a Lévy flight by Mandelbrot124. The
divergence of the jump length variance translates into the di-
vergence of the second moment of the PDF P(x, t)125, and
only fractional order moments 〈|x|κ〉 with 0 < κ < μ exist42.
The trajectory of a Lévy flight is fractal (see below) of Haus-
dorff dimension μ . A single trajectory therefore never fully
covers an embedding space whose dimension is larger than
μ . This is particularly relevant in the two-dimensional world,
in which effectively most human and animal motion occurs.
There exist also several works considering the combination of
a diverging characteristic waiting time 〈τ〉 with a Lévy stable
distribution of jump lengths, either in terms of fractional dif-
fusion equations126 or via using subordination arguments127.
Due to its fractality a single Lévy flight trajectory cannot visit
all points in space when the stable index μ is smaller than
the embedding dimension d. Under confinement to a finite
area, Lévy flights are ergodic128, and the convergence to the
ergodic state can be analysed in terms of the apparent fractal
dimension or in terms of the first passage dynamics129. The
divergence of 〈δx2〉 as well as the ensuing non-ergodicity of
Lévy flights can be rectified by a cutoff in the jump length
PDF130 or by dissipative non-linearities131. Such stochastic

processes behave like a Lévy flight until the regularisation of
the jump length PDF comes into effect.

The alternative approach is to introduce a coupling between
jump lengths and waiting times. In subdiffusive CTRWs de-
scribed previously the waiting time and jump length PDFs en-
ter in the multiplicative form ψ(δx,τ) = ψ(τ)λ (δx)43. In-
troducing a functional dependence between waiting times τ
and jump lengths δx, this spatiotemporal coupling preserves
the renewal property of CTRW processes but due to penalis-
ing long jumps—associating them with long waiting times—
yields a finite MSD43,132. The simplest choice is the coupling
ψ(δx,τ) = 1

2 ψ(τ)δ (|δx|− vτ), in which the velocity v is in-
troduced. It bestows a propagating horizon to the process in
the form of two travelling δ peaks with decaying amplitude.
For waiting time PDFs ψ(τ)� τ−1−α with 1 < α < 2, in be-
tween these peaks, a Lévy stable distribution is building up133.
Also Lévy walks are non-ergodic, albeit in a way, that is dif-
ferent from the above discussed non-ergodic behaviour. To see
this, we first recall that for a waiting time PDF of the power-
law form ψ(τ) = τ−1−α their MSD scales134,135

〈x2(t)〉 �
{

v2(1−α)t2, 0 < α < 1
2K3−αt3−α , 1 < α < 2 . (50)

The associated time averaged MSD in the ballistic phase with
0 < α < 1 scales like 〈

δ 2(Δ)
〉
∼ v2Δ2, (51)

with a higher order correction scaling with Δ2(Δ/t)2−α 136,137.
In the enhanced diffusion phase 1 < α < 2 the result is136–138〈

δ 2(Δ)
〉
∼ 2K3−α

α − 1
Δ3−α . (52)

In both the ballistic and enhanced diffusive phases the MSD
differs from the time averaged MSD merely by a factor of
1/|α − 1|. This phenomenon may be referred to as ultra-
weak ergodicity breaking138. Note that an analogous result
was obtained by Zumofen and Klafter for Lévy walks with
stationary and non-stationary initial conditions139, compare
the discussion in Ref.138. To leading order, the time averaged
MSDs (51) and (52) do not exhibit ageing in the sense that
the measurement time t does not appear explicitly, in contrast
to the corresponding forms for the subdiffusive CTRW pro-
cesses discussed above. Further physical properties of Lévy
walks, in particular, the amplitude scatter of the time averaged
MSD, are studied in Refs.138,140. Additional recent studies of
Lévy walks analyse their response to an external bias and the
power spectral properties136–138,140.

Lévy flights and walks are used as statistical models in
many fields, for example, to quantify blind search processes
of animals for sparse food141–143. In the science of movement
ecology, the so-called Lévy foraging hypothesis has become
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widely accepted141. Recently this model was qualified for hu-
man motion behaviour and when different search criteria and
external forcing are considered144. These stochastic processes
also describe the propagation of visible light in disordered op-
tical media145 and the dynamics of quantum dots34. In opti-
cal lattices the divergence of the position of single ions were
shown to follow Lévy statistics146. For more details compare
also section 7.

4 Fractional Brownian and Langevin motion

Next to the CTRW model, fractional Brownian motion (FBM)
and the motion governed by the fractional Langevin equation
(FLE) represent the second major stochastic models for the
description of anomalous diffusion processes both in presence
and absence of external potentials. Physically, these types of
motion arise when we observe the effective motion of a single
tracer particle in a coupled many-body system such as a single
file of excluded volume particles, see below.

4.1 Fractional Brownian motion

We believe FBMs do provide useful models for a host of
natural time series and wish therefore to present their curi-
ous properties to scientists, engineers and statisticians, ar-
gue Mandelbrot and van Ness in their defining work on
FBM147. The motivation for this study and Mandelbrot’s ear-
lier work148 were Hurst’s laws for the discharge of the Nile
and other rivers149. In the Russian literature Kolmogorov in-
troduced an analogous process already in 1940150 which was
then analysed further by Yaglom151. Mathematically, FBM
indeed has curious properties147, as it is not a semimartin-
gale and cannot be interpreted in terms of a random walk pro-
cess152,153. Despite the many studies on FBM and its wide
application in various fields of science, engineering, and be-
yond, many fundamental properties of FBM remain elusive,
such as the first passage properties154,155. At the same time
FBM is distinguished by the fact that it is the only self-similar
Gaussian process with stationary increments147. Note that for
notational consistency in the following we use the anomalous
diffusion exponent α in the formulation of the fractional Gaus-
sian noise which is related to the Hurst exponent H commonly
used in the FBM literature via α = 2H.

Mandelbrot and van Ness define FBM in terms of the
stochastic integral147

x(t) =
1

Γ([1+α]/2)

[∫ t

0
(t − t ′)(α−1)/2dB(t ′)

+

∫ 0

−∞

(
(t − t ′)(α−1)/2 − (−t ′)(α−1)/2

)
dB(t)

]
, (53)

where B(t) is ordinary Brownian motion. A more intuitive

representation uses the Langevin equation

dx(t)
dt

= ξfGn(t), (54)

which is fuelled by the fractional Gaussian noise ξfGn(t). The
latter has a standard normal distribution for any t > 0 but is
power-law correlated,†

〈ξfGn(t1)ξfGn(t2)〉= α(α − 1)K∗
α |t1 − t2|α−2 (55)

for t1, t2 > 0 and t1 �= t2. The physical dimension of ξfGn(t)
is thus [ξfGn] = cm× sec−1. Due to the factor (α − 1) the
fractional Gaussian noise is persistent or positively correlated
for the case 1 < α < 2, and it is antipersistent or negatively
correlated for 0 < α < 1. The PDF for free FBM is given by
the Gaussian

P(x, t) =
1√

4πK∗
αtα exp

(
− x2

4K∗
αtα

)
. (56)

The position autocorrelation of FBM is

〈x(t1)x(t2)〉= K∗
α

(
tα
1 + tα

2 −|t1 − t2|α
)
, (57)

and reduces to the MSD (8) for t = t1 = t2. From this quantity
we can obtain the time averaged MSD156〈

δ 2(Δ)
〉
= 2K∗

α Δα = 〈x2(Δ)〉, (58)

showing that FBM is ergodic in the sense that is equivalent to
the MSD (8). As the process is self-averaging, for sufficiently
long measurement times we even obtain the single trajectory
equality, formally,

lim
t→∞

δ 2(Δ) = 2K∗
α Δα . (59)

demonstrated in Refs.156,157. As shown in Ref.156, ergodic-
ity is reached algebraically slowly, a property shared with that
of regular Brownian motion (see also section 4.3). For finite
trajectory length t the scatter distribution of the relative am-
plitude ξ = δ 2(Δ)/〈δ 2(Δ)〉 can be approximated by the Gaus-
sian158

φ(ξ )≈
√

t −Δ
4πτ∗

× exp
(
− (ξ − 1)2(t −Δ)

4τ∗

)
, (60)

where τ∗ is a binning time scale. Fig. 16 shows the repro-
ducibility of unconfined FBM. Note that the scatter for larger
lag times Δ → t is due to insufficient statistics of the time av-
erage.

† One could also write

〈ξfGn(t1)ξfGn(t2)〉= αK∗
α |t1 − t2|α−2 +2αK∗

α |t1 − t2|α−1δ (t1 − t2),

to include the case t1 = t2 explicitly.
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Fig. 16 Time averaged MSD δ 2(Δ) as function of the lag time Δ for
FBM with α = 0.5. Individual trajectories provide reproducible
results, no significant scatter of the amplitude between different
δ 2(Δ) arises, and the anomalous scaling δ 2(Δ)� Δ1/2 is fulfilled.

4.2 Fractional Langevin equation motion

The FLE for the position co-ordinate x(t) of a particle with
mass m is written as157,159–161

m
d2x(t)

dt2 =−γ∗
∫ t

0
(t − t ′)α−2

(
dx(t ′)

dt ′

)
dt ′+η∗ξfGn(t),

(61)
where γ∗ is a friction coefficient of physical dimension [γ∗] =
g× sec−α and ξfGn(t) represents the fractional Gaussian noise
(55) with 1 < α < 2.

The FLE (61) is a special form of the Hänggi-Kubo gener-
alised Langevin equation160,162,163 driven by noise, which is
not white but correlated. In contrast to the δ -correlated white
noise encountered in the Langevin equation (5), that is, the
correlation function of the noise at time t explicitly depends on
past times t ′ < t with a given weight function. Concurrently,
the friction term becomes a convolution integral such that the
noise kernel balances the non-local noise to fulfil the gener-
alised fluctuation dissipation relation160,162,163. Such equa-
tions with memory arise in the Mori-Zwanzig projection oper-
ator framework164. The FLE corresponds to the special case
for which the noise autocorrelation is given by the power-law
decay of the fractional Gaussian noise ξfGn(t). The friction
kernel is then equally of power-law form.

The Kubo generalised fluctuation dissipation relation fixes
the noise amplitude in the form

η∗ =

√
γ∗kBT

α(α − 1)K∗
α
. (62)

Typically, in single particle tracking experiments one observes
the overdamped motion of the tracer. Such overdamped mo-

tion corresponds to neglecting the inertia term in Eq. (61), pro-
ducing the overdamped FLE

γ∗
∫ t

0
(t − t ′)α−2

(
dx(t ′)

dt ′

)
dt ′ = η∗ξfGn(t). (63)

The convolution integral can be replaced with the Caputo time
fractional derivative‡

d2−αx(t)
dt2−α =

1
Γ(α − 1)

∫ t

0
(t − t ′)α−2

(
dx(t ′)

dt ′

)
dt ′, (64)

which then constitutes the fractional Langevin equation159

m
d2x(t)

dt2 =−γ∗Γ(α − 1)
d2−αx(t)

dt2−α +η∗ξfGn(t), (65)

or the corresponding overdamped FLE. Note that due to the
coupling of the friction kernel and the fractional Gaussian
noise via the fluctuation dissipation relation a large instanta-
neous value of the noise couples to a high effective friction.
For this reason fractional Gaussian noise with 1 < α < 2 ef-
fects subdiffusion behaviour, as shown in Eqs. (66) and (68).
The fact that the friction increases with how strongly we push
a substance is indeed an everyday experience when we deal
with viscoelastic substances such as toothpaste, honey, or liq-
uid concrete165. Poking gently with our finger into toothpaste,
it yields like a liquid. If we hit it hard or jump onto the tooth-
paste tube, the response is that of a very highly elastic sub-
stance, causing the tube to explode.

The MSD described by the underdamped FLE becomes166

〈x2(Δ)〉= lim
t→∞

δ 2(Δ) =
2kBTΔ2

m
Eα ,3

(
−Γ(α − 1)

γ∗

m
Δα

)
,

(66)
and is thus ergodic. From the series expansions around z = 0
and ∞ of the generalised Mittag-Leffler function

Eρ ,δ (z) =
∞

∑
n=0

zn

Γ(δ +ρn)
=−

∞

∑
n=1

z−n

Γ(δ −ρn)
(67)

we thus obtain the limiting behaviours

〈x2(t)〉 ∼
{

kBTt2/m, t � [m/γ∗]1/α

2kBT (Γ(α − 1)γ∗)−1t2−α , t � [m/γ∗]1/α

(68)
of short time ballistic motion167, that eventually crosses over
to the overdamped subdiffusion with exponent 2−α for 1 <
α < 2. In this regime, that is, the motion is subdiffusive for
persistent noise.

The FLE can be shown to govern the effective dynam-
ics of a tagged particle in a single file168 or the motion

‡ Or, alternatively, with the Riemann-Liouville fractional operator (17), if only
the initial values are included properly 42 .
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of a monomer in a long polymer chain169. The FLE was
used to model the internal dynamics of proteins170. It oc-
curs naturally for the description of particle motion in a vis-
coelastic environment157, and is related to generalised elas-
tic models171 as well as hydrodynamic interactions172,173.
FLE-governed motion was also identified from the motion
of individual lipid molecules from large scale simulations of
lipid membranes174,175. Viscoelasticity controlled subdiffu-
sion was reported for the motion of messenger RNA molecules
and chromosomal loci in living E. coli cells71,176,177. In
Ref.68, the long time motion of lipid granules in living yeast
cells was shown to cross over from non-ergodic CTRW mo-
tion to viscoelastic-type subdiffusion, consistent with obser-
vations in a different strain of yeast cells20. In complex
fluids, viscoelastic subdiffusion was, inter alia, revealed in
Refs.178,179. Based on microrheology data of endosomes in
living cells180, stochastic models for active transport in the
molecularly crowded cytosol of living cells were recently dis-
cussed. These include the viscoelastic nature of crowded flu-
ids178 in terms of the FLE, and it can be shown that depending
on the size of the cargo or the biochemical turnover rate of the
motor molecule, normal (〈x(t)〉 � t) or anomalous (〈x(t)〉 � tα

with 0 < α < 1) transport can be effected181. We finally note
that the FLE exhibits dynamic transitions with different criti-
cal exponents of the driving fractional Gaussian noise for free
and forced motion182.

4.3 Transient non-ergodicity and transient ageing

While we saw that asymptotically the unconfined motion of
both FBM and FLE motion is fully ergodic, we mention the
following caveat lector for these processes in the confines of
an harmonic external potential V (x) = 1

2mω2x2 of strength
ω2 > 0, such that the dimension of ω is 1/sec.

Namely, consider the subtle difference in the equilibration
behaviour between the MSD for FBM166,183,

〈x2(t)〉 ∼ 〈x2〉st − 2
ω2 α(α − 1)K∗

αtα−2e−ωt , (69)

which features an exponential relaxation to the stationary
value 〈x2〉st, and the time averaged analogue166

δ 2(Δ)∼ 2〈x2〉st − K∗
α Γ(1+α)

ωα e−ωΔ − 2α(α − 1)K∗
α

ω2Δ2−α . (70)

The relaxation dynamics of the time averaged MSD δ 2(Δ) is
algebraically slow. Note that the stationary value166,184

〈x2〉st =
K�

α
ωα Γ(1+α) (71)

for FBM explicitly depends on the exponent α as the noise
is external and thus not coupled to the friction constant, i.e.,
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Fig. 17 Comparison of the time averaged MSD 〈δ 2(Δ)〉 from 10
individual trajectories for beads of d = 0.96 μm size, in 1 weight %
worm-like micellar solution compared to the control data in pure
water179. Two different fitting curves to the results are depicted: the
full solid line represents the exponential relaxation pattern
fex(Δ) = 2〈x2〉th(1−C1e−C2Δ), while the dashed line represents the
power-law relaxation behaviour fpo(Δ) = 2〈x2〉th(1−C3/ΔC4),
where Ci are fit parameters. For the data shown here the arbitrary
units on the ordinate are converted to nm2 by multiplication with
≈ 8×103 179.

no fluctuation dissipation relation is fulfilled here. Moreover
the factor of two in front of the stationary value 〈x2〉st appears
in the time averaged MSD (70) due to the very definition (6)
involving two times the MSD at times t ′+Δ and t ′ and a de-
caying cross-terms166.

A behaviour similar to that of Eq. (71) is observed for FLE
motion. Here, however, the noise is internal, i.e., the fluctua-
tion dissipation theorem is fulfilled. Thus, the thermal value

〈x2〉th =
kBT
mω2 (72)

is reached for any α . The power-law relaxation for the
time averaged MSD in a viscoelastic environment was indeed
observed experimentally by optical tweezers single particle
tracking in wormlike micellar solution179, as shown in Fig. 17.

What about ageing, the dependence of some physical ob-
servable on the time span ta between initial preparation of the
system at t = 0 and start of the measurement (see Fig. 10)?
For regular Brownian motion physical observables are inde-
pendent of the ageing time ta. In the following cases for the
FBM/FLE models, however, we find transient ageing. For
both FBM and FLE motion the time averaged MSD splits into
two additive terms185,〈

δ 2(Δ)
〉
= fst(Δ)+ fage(Δ;ta, t). (73)
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The stationary term fst depends solely on the lag time Δ, while
the ageing term fage is an explicit function of t and ta. As long
as the initial velocity distribution is not thermal, fage � 1/t
for long t. For free FLE motion at sufficiently long Δ, the
stationary term is subdiffusive, fst � Δ2−α . When additionally
we are in the strong ageing regime ta � t, the scaling

fage � t−2α
a (74)

is derived185. For confined FLE motion, the ageing term now
features the power-law dependence185,

fage � t2α−6
a . (75)

For confined FBM, however, the ageing term decays exponen-
tially185,

fage ∼ x2
0 exp(−2kta). (76)

Thus, the ageing behaviour for FBM is negligible, while for
strongly aged FLE motion the transient ageing may be ob-
servable under specific conditions.

5 Scaled Brownian motion

A popular model for the description of anomalous diffusion
is that of scaled Brownian motion (SBM), which is based
on the time-dependent diffusivity K(t)186–188. The associated
Langevin equation with the white Gaussian noise ξ (t) of unit
intensity, 〈ξ (t)ξ (t ′)〉= δ (t− t ′), and zero mean then becomes

dx(t)
dt

=
√

2K(t)× ξ (t). (77)

For the power-law form

K(t) = αK�
α tα−1 (78)

of the diffusion coefficient the MSD of the process is given
by Eq. (8) with Kα = Γ(1+α)K�

α . Note that while the phys-
ical dimension of K(t) is cm2/sec, that of the constant K�

α is
cm2/secα . In SBM the scaling exponent is allowed to vary in
the range 0<α < 2, so that the process describes subdiffusion
as well as sub-ballistic superdiffusion.

The associated time averaged MSD can be calculated ex-
actly, yielding188,189

〈
δ 2(Δ)

〉
=

2K�
α t1+α

(α + 1)(t−Δ)

[
1−

(
Δ
t

)1+α
−
(

1− Δ
t

)1+α
]
.

(79)
In the limit Δ � t, we obtain the linear lag time depen-
dence189,190 〈

δ 2(Δ)
〉
∼ 2K�

α
Δ

t1−α , (80)

familiar from subdiffusive CTRW processes, Eq. (20). How-
ever, expression (80) for SBM is valid in the whole range

 2.5

 2.6

 2.7

 2.8

 4.8  4.9  5lo
g 1

0 
<x

2 (Δ
)>

,  
lo

g 1
0 

<δ- 2
(Δ

)>

log10 Δ

α=1/2

 4.8  4.9  5
 7.5

 7.6

 7.7

 7.8

log10 Δ

α=3/2

Fig. 18 Convergence of the time averaged MSD
〈

δ 2(Δ)
〉

(blue
line) to the MSD 〈x2(t)〉 (orange line) when the lag time Δ
approaches the process time t = 105. 189

0 < α < 2. When the lag time Δ approaches the measurement
time t, the limiting form189〈

δ 2(Δ)
〉
∼ 2K�

α tα − αK�
α

t1−α (t −Δ)+
α(α − 1)K�

α
3t2−α (t −Δ)2

(81)
describes a cusp around Δ= t: as shown in Fig. 18 the time av-
eraged MSD (81) converges to the value of the MSD 〈x2(t)〉.
However, while the disparity 〈x2(Δ)〉 �= δ 2(Δ) between the
MSD and its time averaged analogue renders SBM weakly
non-ergodic in the sense defined above, the amplitude scatter
of δ 2(Δ) around the trajectory-to-trajectory average

〈
δ 2(Δ)

〉
measured in terms of the dimensionless variable ξ is approx-
imately of Gaussian form with a relatively narrow width. For
sufficiently long trajectories, that is, the randomness in single
trajectories of SBM is deterministically decreased with time
and the process becomes practically reproducible189. SBM
therefore belongs to a non-ergodicity class, that is fundamen-
tally different from subdiffusive CTRW, for which the ran-
domness of time averages is present no matter how long the
process is followed.

Equipping the Langevin equation (77) for SBM with an ad-
ditional external potential force F(x), one can derive the as-
sociated Fokker-Planck equation. For the special case of a
confining harmonic potential V (x) = 1

2 mω2x2 we find189

∂
∂ t

P(x, t) =
∂
∂x

(
ω̄x+K(t)

∂
∂x

)
P(x, t), (82)

where ω̄ = ω2/η includes the friction coefficient η of dimen-
sion 1/sec. In the limit of unconfined motion, ω = 0, the
resulting dynamic equation was used by Batchelor191 to de-
scribe the relative diffusion in turbulence as a complementary
approach to Richardson’s mentioned above (see also section
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6). The force-free propagator encoded by Eq. (82) is exactly
that of free FBM, Eq. (56), despite the fundamental difference
between the two processes. However, in the presence of the
confinement, ω > 0, we obtain the MSD

〈x2(t)〉= 2K�
α tαe−2ω̄tM(α,1+α,2ω̄t) (83)

in terms of the Kummer function M(a,b,z)192. The limiting
behaviour at short times t � 1/ω̄ is that of free anomalous
diffusion, 〈x2(t)〉= 2K�

αtα , i.e., when the particle starts in the
vertex of the potential it initially moves force-free. At long
times, we observe that the motion does not become stationary
but the MSD exhibits the scaling law189

〈x2(t)〉 ∼ αK�
α

ω̄
tα−1. (84)

The motion is thus influenced by the effective strength ω of the
potential. However, as the diffusion coefficient is explicitly
time dependent, this implies that the system is characterised
by a time dependent temperature, see also the discussion of
Fuliński188. Alternatively, one could view this as an effect of
a time dependent mobility. Clearly this corresponds to a far
from thermal equilibrium state.

For its interesting behaviour, we mention the associated
time averaged MSD in the harmonic confinement. In the limit
Δ � t we find the result189〈

δ 2(Δ)
〉
∼ K�

α
ω̄

[
tα −Δα

t −Δ
+(t −Δ)α−1

(
1− 2e−ω̄Δ

)]
, (85)

where we observe an apparent plateau at Δ � 1/ω̄,〈
δ 2(Δ)

〉
∼ 2K�

α
ω̄

tα−1, (86)

as demonstrated in Fig. 19, in which we compare the full ana-
lytic solution (83) for the MSD and the exact form for the time
averaged MSD with results from simulations. In a way, the be-
haviour is opposite to that of subdiffusive CTRWs, for which
we observe the thermal plateau for the MSD and a continuing
power-law growth for the time averaged MSD45, confirmed
by experiment68. Experiments observing the apparent plateau
(86) for the time averaged MSD of SBM may misinterpret this
for a sign of confinement, contradicting the result (83).

In view of these results SBM represents a very simple
model for sub- and superdiffusive anomalous diffusion. How-
ever, its physicality is somewhat questionable for most exper-
imental settings, in which the system is connected to a heat
bath, or when the system is stationary. Its non-ergodic proper-
ties are certainly interesting, and may be used to model active
processes in the superdiffusive range 1 < α < 2.

6 Heterogeneous diffusion processes

Single particle tracking experiments usually employ relatively
large tracers. The above mentioned granules and artificial trac-
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Fig. 19 MSD 〈x2(t)〉 (orange symbols) and time averaged MSD
〈δ 2(Δ)〉 (blue symbols) of SBM with α = 0.5 (top) and α = 1.5
(bottom). In each case we consider the potential strengths
ω2 = 0.01 (circles) and ω2 = 0.1 (squares). The full lines represent
Eq. (83) and the numerical evaluation of the exact result for the time
averaged MSD189. The convergence of the corresponding ensemble
and time averages at Δ = t = 105 can be shown numerically, in
analogy to Fig. 18 for the unconfined motion.
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ers are all in the range of several hundreds of nanometres in
size48–50,68,69,179,193,194. Considerably smaller tracer proteins
were recently employed to sample much larger subvolumes of
living cells, producing cell-wide mobility maps. The result
shows significant and systematic variations of the position-
dependent cytoplasmic K(x) with growing distance from the
nucleus195. Similar approaches using space-dependent diffu-
sivities are routinely used in various fields, for instance, in
the mathematical modelling of tracer dispersion in subsurface
hydrology196. We also recall Richardson’s approach to the
description of his measurements of the relative dispersion of
two tracer particles in a turbulent flow, in terms of a diffusivity
depending on the relative tracer position26, mentioned in the
Introduction.

Diffusion processes with position-dependent diffusivity
K(x), are described by a simple Markovian Langevin equation
with multiplicative noise197

dx(t)
dt

=
√

2K(x)× ξ (t), (87)

where ξ (t) represents white Gaussian noise. In the
Stratonovich sense, the diffusion equation for this heteroge-
neous diffusion process (HDP) has the symmetric form

∂
∂ t

P(x, t) =
∂
∂x

(√
K(x)

∂
∂x

[√
K(x)P(x, t)

])
. (88)

A diffusing particle tends to accumulate in regions of low dif-
fusivity. The HDP is fundamentally different from the CTRW
approach: standard CTRWs are running off in an annealed en-
vironment and thus constitute renewal processes. HDPs repre-
sent a deterministic (in contrast to random) quenched environ-
ment. The particle, that is, has the same diffusivity K(x) each
time it returns to the point x. Interestingly, despite the differ-
ent nature of HDPs they share some common features such
as weak ergodicity breaking with renewal CTRW processes.
Even when the space dependence of the diffusivity becomes
annealed, many of these effects are preserved198.

Let us first consider the power-law forms

K(x) = K0

{ |x|β + |xoff|β , β > 0

1/(|x|−β + |xoff|−β ), β < 0

∼ K0|x|β (89)

for the diffusivity. The amplitude K0 has physical dimension
cm2−β/sec. The offset xoff in Eq. (89) is introduced to avoid
either divergencies of K(x) (β < 0) or stalling (β > 0) of the
particle around x = 0 in the simulations. In the analytical cal-
culations we use the bare scaling form K(x) ∼ K0|x|β . The
HDP based on the diffusivity (89) and δ -initial condition at
the origin has the MSD197

〈x2(t)〉= Γ(α + 1/2)
π1/2

(
2
α

)2α
(K0t)α (90)
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Fig. 20 Ensemble and time averaged MSDs for sub- and
superdiffusive HDP processes with power-law diffusivity (89), for
t = 105, and K0 = 0.01. Note that in the simulations, to avoid
divergence (subdiffusion) or stalling (superdiffusion) at x = 0, we
respectively use the forms K(x) = K0/(x2 +1) and
K(x) = K0(|x|+1). Thin red lines represent individual traces δ 2(Δ),
thick blue lines refer to the MSD 〈x2(t)〉 and the trajectory average
〈δ 2(Δ)〉. The expected results (90) and (93) are shown by dashed
lines.

shown in Fig. 20. It is thus of the generic power-law form (8)
with the anomalous diffusion exponent α given in terms of the
scaling exponent β from Eq. (89) as197

α =
2

2−β
, (91)

such that we observe superdiffusion in the range 2 > β > 0
and subdiffusion for β < 0. We note that when β approaches
the critical value β = 2, the anomalous diffusion exponent α
diverges. In that case the MSD assumes an exponential time
dependence. The PDF of the HDP with power-law diffusivity
(89) is given by the exponential197

P(x, t) =
|x|−β/2
√

4πK0t
exp

(
− |x|2−β

(2−β )2K0t

)
. (92)

In the subdiffusive range, β < 0, this PDF is of compressed
Gaussian shape and exhibits a dip to zero at the origin, that is,
it is bimodal. For superdiffusion with 2 > β > 0, the PDF is a
stretched Gaussian and has a non-differentiable cusp at x = 0.
This is opposite to the behaviour observed for subdiffusive and
superdiffusive fractional diffusion equations42,199,200.

For the HDP with the diffusion coefficient (89) we obtain
the weakly non-ergodic behaviour197

〈
δ 2(Δ)

〉
=

(
Δ
t

)1−α 〈
x2(Δ)

〉
=

Γ(α + 1/2)
π1/2

(
2
α

)2α
Kα

0
Δ

t1−α .

(93)
Fig. 20 shows the MSD (8) and the mean time averaged MSD
(93) for a sub- and superdiffusive case. The linear scaling of
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Fig. 21 MSD 〈x2(t)〉 (thick blue curves), time averaged MSDs δ 2(Δ) (thin red curves), and trajectory average
〈

δ 2(Δ)
〉

(thick blue curves)

for confined HDPs with power-law diffusivity (89) and different exponents β 201. All curves converge to the plateau value (96). For each
exponent β we show N = 300 time averaged traces of length t = 105 in the interval {−L,L}.
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〈δ 2(Δ)〉 is nicely fulfilled, and individual realisations δ 2(Δ)
show pronounced amplitude scatter around this mean. The
initial deviation of 〈x2(Δ)〉 from the expected behaviour is due
to the offset xoff used in the simulations197. The fluctuations
of δ 2(Δ) around the mean 〈δ 2(Δ)〉 can be fitted by a Gamma
distribution for both sub- and superdiffusive HDPs197. In con-
trast to subdiffusive CTRW processes the amplitude scatter
distribution φ(ξ ) decays to zero at ξ = 0, that is, the pro-
cess never leads to complete stalling during the observation
time window. Concurrently, the ageing behaviour of HDPs
with power-law form of K(x) was numerically shown to show
good agreement with the form (30) of the ageing depression
of the CTRW approach201. From a data analysis point of view
the similar behaviour of various quantities requires some care
not to confuse HDPs from CTRW processes.

We note that different forms for the position dependent dif-
fusivity K(x) such as an exponential and logarithmic depen-
dence were studied in Ref.202. The exponential case with
K(x) = (K0/2)exp(−2x/x�), where x� sets the length scale,
leads to the MSD202

〈x2(t)〉 ∼ (x�)2

4
log2[(x�)−2K0t] (94)

which belongs to the range of ultraslow processes discussed
earlier. The associated time averaged MSD becomes202

〈
δ 2(Δ)

〉
∼ 2π(x�)2

(
Δ
t

)1/2
(95)

and exhibits an interesting square root scaling in the lag time
Δ for initially highly mobile particles, with initial position x0
on the negative semi-axis. For intermediate x0, however, a
profound splitting of the tracer populations is observed, ex-
hibiting Δ1/2 and Δ1 scaling forms of the time averaged MSD,
respectively for highly mobile and rather trapped fractions of
particles in the ensemble. This fact is reminiscent of the pop-
ulation splitting effect observed for CTRW processes, section
2.1. For more details see Ref.202. The fluctuations in the HDP
model were analysed in more detail in Ref.197, and a two-
dimensional analysis paraphrasing the mobility experiments
in living cells in Ref.195 was presented recently203.

In Fig. 21 we demonstrate how under confinement the en-
semble and time averaged MSDs converge to the plateau value〈

x2〉
st ∼

〈
δ 2

〉
st
/2 ≈ α−ν L2/3 (96)

where ν ≈ 0.6 and 2L is the length of the interval with reflect-
ing boundaries201. The convergence to the plateau for both
ensemble and time averaged MSDs (with the aforementioned
factor of two for the time average) sets the HDP process apart
from the subdiffusive CTRW, in which no long time plateau
occurs for δ 2(Δ).

-4
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-2

-1

 0

 1

 0  10  20  30  40  50

x(
t)

t / 104

Fig. 22 Trajectory in the heterogeneous diffusivity domain model of
Ref. 198. While on short scales the process appears Brownian (inset)
on the larger scale distinct stalling events are reminiscent of
scale-free CTRW dynamics. Data for the figure courtesy John
Lapeyre.

Finally, Fig. 22 shows the result for a typical trajectory in
the recent study of Ref.198, in which a random walker trav-
els on a landscape with randomly switching local diffusivity.
As can be seen from the graph, on finer scales the motion ap-
pears more like normal diffusion, due to the broad distribution
of K(x) magnitudes, on a coarser resolution the trajectory ap-
pears similar to that of a subdiffusive CTRW with diverging
characteristic time scale shown in Fig. 6. It will be interesting
to compare these results to the behaviour of stochastic HDPs
in annealed and quenched environments204.

7 Fractals

Finally we come to the third major model for anomalous diffu-
sion, namely, the transport on a fractal support. Like fractional
Brownian motion and Lévy flights, fractals were popularised
by Mandelbrot, in whose book The fractal geometry of na-
ture he came up with the epitomised phrase Clouds are not
spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight
line124. Instead, Mandelbrot argues, many natural phenomena
are statistical fractals, i.e., objects which, in a statistical sense,
do not have a scale and thus one cannot judge at what reso-
lution a picture of the object was taken. Or, in other words,
their length (or area, etc.) depends on the applied scale in a
measurement, as in the celebrated coastline of Britain para-
dox: with a smaller yardstick finer details can be measured
and the length of the coastline is larger than when we apply
a larger yardstick. Mandelbrot accredits the discovery of this
effect to Lewis Fry Richardson205,206.
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Fig. 23 Sierpińsi gasket. An equilateral triangle is constructed
iteratively such that the edges of three congruent triangles make up
the edges of a triangle twice their size. The centre of this larger
triangle remains empty. Here we show the fourth generation of the
Sierpińsi gasket.

We distinguish mathematical fractals with their strict build-
ing rules and exact self-similarity from statistical fractals, for
which self-similarity is present only in a certain average sense.
Let us briefly address these two concepts. First, mathemat-
ical fractals are constructed by iteration. For instance, see
the Sierpińsi gasket in Fig. 23. An equilateral triangle is di-
vided into four equilateral triangles and the central one re-
moved. This subdivision rule is repeated, ideally an infi-
nite amount of times. From the iteration scheme: scale the
original triangle down by a factor of 2 and keep three of
the resulting four objects, we obtain the similarity dimension
log3/ log2 ≈ 1.585, which gives the same result as the formal
Hausdorff approach124,207. We would obtain the same result
if we had started by arranging three copies of the original tri-
angle into an object with twice the original edge length. The
Sierpińsi gasket is more space filling than a line but does not
fully fill an area. In particular, we see that the generated ob-
ject contains empty triangles on all scales. To come from one
given sector to another, a random walker on such a geometry
needs to first locate and then traverse narrow causeways, as
sketched in Fig. 24. This considerably slows down the parti-
cle propagation in the embedding space.

As said, natural objects are not exact mathematical fractals.
However, for example, the coastlines of Britain or Norway are
statistical fractals: while their shape does not repeat exactly
on a smaller scale, their overall length fulfils a scaling law
L(ε) � ε1−d f , where ε is the length of the yard stick applied
to measure the coastline124,149,208,209. If the coastline were a

Fig. 24 A random walk on part of a Sierpińsi gasket. Each time the
walker wants to reach a sector of the gasket across one of the larger
holes, it needs to traverse a narrow causeway.

perfect line with d f = 1, its length L would be independent of
the length ε of the yard stick (resolution) applied for the mea-
surement. However, within a certain upper length scale—of
the order of the extension of the country—and a lower length
scale—e.g., the finest features appearing on a map—the frac-
tal dimension of coastlines typically differs from unity. Thus,
while the South African coastline with d f = 1.02 is almost a
perfect line, the West coast of Britain has d f = 1.25, and is
thus significantly more ramified. For finer measurement res-
olutions (shorter yard stick length ε) the measured length in-
creases, while coarser measurements (longer yard stick length
ε) lead to shorter apparent L. For general fractals with a fractal
dimension d f embedded in a d-dimensional space, it is often
useful to think in terms of the mass of the fractal object, which,
on average, grows like M(R) � Rdf as function of the radius
R. As by necessity d f < d, the mass density therefore shrinks
with R as Rdf −d , as fractals are characterised by ‘holes’ on all
scales (compare the Sierpińsi gasket in Fig. 23).

An important approach to the description of porous or
crowded media is the percolation model. In site percolation
each point on a lattice is occupied with probability p and re-
mains empty with probability 1− p. At the critical occupation
probability p = pc (pc ≈ 0.59 . . . in two210 and pc ≈ 0.31 . . .
in three211 dimensions for a square and cubic lattice, respec-
tively) the correlation length of the system diverges and an
infinite cluster is formed. The percolation cluster then has
a fractal dimension d f = 91/48 ≈ 1.896 . . . in two212 and
d f ≈ 2.52 . . . in three dimensions213. A random walker placed
on the fractal, incipient infinite cluster allowed to move be-
tween nearest neighbour occupied sites performs anomalous
diffusion with an anomalous diffusion exponent α = 2/dw re-
lated to the walk exponent dw, which is larger than d f

214,215.
According to the Alexander Orbach conjecture dw = 3

2d f
215,

which is close to experimentally observed values, compare
Ref.216. Note that when the averaged motion of random walk-
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Fig. 25 Percolation cluster at criticality on a 250×250 square
lattice. Occupied sites appear blue. Data provided by Y. Meroz,
corresponding to those used in Ref. 218.

ers placed on all clusters, a different scaling exponent charac-
terises the MSD, for more details see Ref.217.

Fig. 25 shows the critical percolation cluster on a square lat-
tice used for random walk simulations in Ref.218. The results
for both the two-dimensional MSD 〈r2(t)〉 and time averaged
MSD δ 2 for the motion on the infinite cluster are shown in
Fig. 26. Both overlap perfectly, corroborating the ergodicity of
this anomalous diffusion process. The straight line in Fig. 26
indicates the expected slope to guide the eye. In Ref.219, the
non-Gaussian nature of the diffusion on the critical percola-
tion cluster is analysed. Fractal percolation clusters are often
used for simulations of free diffusive processes220 as well as
facilitated diffusion processes221 in the crowded cytoplasm of
living biological cells. A fractal support was also diagnosed to
be superimposed onto the subdiffusive CTRW motion for the
diffusion of potassium channels in the plasma membrane of
living human cells in Ref.50. It is important to note that when
we consider the motion on all clusters the motion is a forteriori
no longer ergodic: a walker moving on a finite, disconnected
cluster cannot explore the entire phase space217.

While the increments of random walk processes on fractal
structures are stationary31 and the infinite percolation clus-
ter simulations of Ref.218 indicate that diffusion on fractals
is ergodic, this point needs further investigation, in particu-
lar, for different types of fractals; compare also the discussion
in Refs.222. A second open question is what happens in the
presence of a topological bias, for instance, a bias away from
the backbones208 of a diffusion cluster. In that case at least
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Fig. 26 MSD (thicker red curve) and time averaged MSD (thinner
yellow curve) of a random walk on the infinite critical percolation
cluster shown in Fig. 25. Both MSD and time averaged MSD
perfectly overlap, i.e., diffusion on a fractal is stationary and
ergodic. The straight black line shows the expected slope α = 0.697
to guide the eye. Data provided by Y. Meroz, corresponding to those
used in Ref. 218.

transient non-ergodicity would be expected.

8 Strong anomalous diffusion and infinite den-
sities

So far we have focused our attention on the ensemble averaged
MSD 〈x2(t)〉 and the corresponding time average δ 2. More
generally, one may characterise stochastic processes by their
fractional moments 〈|x(t)|q〉 with q ≥ 0. Strong anomalous
diffusion deals with processes, which in the long time limit
satisfy223

〈|x(t)|q〉 ∼ tqν(q), (97)

where ν(q) is not a constant. For Brownian motion ν(q) =
1/2 and for FBM ν(q)=α/2 so these processes do not exhibit
strong anomalous diffusion. For unbiased Gaussian processes
like FBM the MSD characterises the width of the PDF P(x, t)
when the particles start at the origin x = 0. For this reason,
from the starting days of the Gaussian central limit theorem
the variance of stochastic process has attracted special atten-
tion. Experimentally, information on 〈|x(t)|q〉 is used to sup-
port or dispute the Gaussian nature of an underlying diffusion
process or, more generally, the mono-scaling assumption of a
set of data (see below). When dealing with complex transport
of particles, for example tracer particles in living cells when
periods of active motion contribute to the motion, the spec-
trum of exponents qν(q) may in fact exhibit non-Gaussian and
strong-anomalous statistics224.

Recent experimental studies on the active transport of
polystyrene beads in living cells, exhibit a particular type of
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strong anomalous diffusion. The data analysis exhibits piece-
wise linear behaviour with

qν(q) =

{
μq, q < qc

aq− b, q > qc
(98)

with the positive constants qc, μ , a, and b. Such a behaviour
is sometimes called bi-fractal scaling, as the simplest case
of multi-fractal behaviour. More importantly this bi-linear
behaviour is widespread and found in many models of non-
linear dynamics223,225–229, transport in optical lattices230,231,
models of transport in disordered Lévy glasses232–234, and
other stochastic models88,235,236. The parameters qc, μ , a,
and b are non-universal and hence give specific information
on the underlying model or process. As emphasised by Vulpi-
ani and coworkers223 strong anomalous diffusion implies the
breakdown of mono-scaling theories which predict P(x, t) ∼
t−ν f (x/tν ) in terms of a scaling function f (·). For exam-
ple, FBM, FLE, sub-diffusive decoupled CTRW, and frac-
tional diffusion equations42,56 do not predict the piecewise bi-
linear scaling (98) of the moments, in other words these pop-
ular stochastic models considered above cannot describe the
active transport found in Ref.224. In experiments a � 0.8 (see
discussion below).

Roughly speaking, the piecewise linear scaling of the spec-
trum qν(q) implies that lower order moments q < qc still fol-
low a diffusive, possibly anomalous process if μ �= 1, while the
linear increase of the spectrum qν(q) ∼ q for q � 1 implies
a ballistic scaling, since if x scales like t, 〈|x|q〉 scales with
tq. This implies that the process is actually a mixture of both
a diffusive process x ∝ tμ and a ballistic element x ∝ t, and
hence characterising the process as an anomalous diffusion
process is in some sense misleading. In particular, we should
not universally accept the special role of the second moment,
beyond the fact that it indicates certain deviations from nor-
mal behaviour. A typical situation occurs when P(x, t) for
small x scales diffusively (ν = 1/2), however, for certain large
x the scaling becomes ballistic (ν = 1). Here we focus on
one stochastic model of strong anomalous diffusion, the Lévy
walk model mentioned in section 3.5. For more details on the
mathematical treatment of the following, see Ref.237.

Lévy walks represent a widely applicable model describ-
ing superdiffusion51,81,238–244. In its simplest one dimensional
version, a particle starts at the origin at time t = 0, and travels
with velocity v1, drawn from the PDF F(v). The duration of
the travelling event is τ1 which is drawn from the PDF ψ(τ).
The position of the particle at time τ1 is x = v1τ1. The pro-
cess is then renewed, until time t is reached: a new velocity v2
and waiting time τ2 are independently drawn from F(v) and
ψ(τ), and this process is repeated. The position of the particle
is then simply x(t) =

∫ t
0 v(t)dt. If the PDF ψ(τ) of the flight

duration is exponential and the velocity distribution Gaussian

with zero mean, we recover the famous Drude model245. Er-
godic properties of Lévy walks were analysed in Refs.136–138,
see also section 2.5.

We assume that the velocity PDF is symmetric—F(v) =
F(−v), such that 〈v〉= 0—and that all moments of F(v) are fi-
nite, for instance, a Gaussian PDF. The main ingredient of the
stochastic model are the power-law distributed waiting times
(14). These can be justified from first principle models or
from observations, at least in some systems, compare the dis-
cussions in Refs.39,51,241. We here limit our discussion to the
case 1 < α < 2 which in turn implies that the average sojourn
time 〈τ〉 is finite, however, its variance diverges. Rather gen-
erally, it is easy to understand that the MSD is bounded by
〈x2(t)〉 ≤ 〈v2〉t2. Roughly speaking, the ith jump in the pro-
cess is given by δxi = viτi, and due to the assumed power-law
PDF of waiting times the PDF of this increment is a symmet-
ric distribution (due to the symmetry of the distribution of v)
with long tails

λ (δx) ∝ |δx|−1−α . (99)

The typical number of jumps in the process is N � t/〈τ〉.
Hence a hand-waving argument yields the PDF of the posi-
tion of the particle using the generalised central limit theorem.
Namely, x � ∑N=t/〈τ〉

i=1 δxi with the variance of δxi being infi-
nite, such that we expect that the PDF of particles is given by
(in dimensionless units)

P(x, t)� 1
t1/α Lα ,0

( x
t1/α

)
. (100)

Here Lα ,0(x) is the symmetric Lévy distribution, whose
Fourier pair is exp(−|k|α), such that the case α = 2 corre-
sponds to a Gaussian process. Taken seriously, this central
limit theorem implies

〈|x|q〉 ∼
{

tq/α , q < α

∞, q > α.
(101)

These hand-waving arguments provide the correct scaling of
the lower order moments, however, the results for higher order
moments, including the second moment, are obviously wrong:
the particle cannot travel faster than ballistic motion.† Our ar-
gument is flawed since we have neglected the correlation be-
tween the jump sized and time in the problem. A more precise
mathematical analysis leads to the result237

〈|x|q〉 ∼
{

tq/α , q < α

tq+1−α , q > α
(102)

In terms of the parameters introduced in Eq. (98), we thus
identify μ = 1/α , qc = α , a = 1, and b = α − 1. We see that

† As we required all moments of the velocity distribution F(v) to be finite, we
have a kind of light cone beyond which the particle cannot be found.
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the process exhibits strong anomalous diffusion223,237,246, the
MSD exhibits enhanced diffusion 〈x2〉 ∼ t3−α which is faster
than normal but slower than ballistic, 1 < 3− α < 2. The
lower order moments q < α exhibit Lévy scaling, i.e., what
we call anomalous diffusive scaling. In contrast, the higher
order moments are ballistic in the sense that if q � 1 we have
qν(q) = q+ 1−α → q, the ballistic scaling. The power law
tail of the Lévy PDF is cut off at x � t since particles can-
not travel faster then the typical velocity permits, compare
Ref.133. This Lévy walk picture thus cures the divergence of
the moments beyond q = α of the original Lévy flight.

The fact that experimentally224 one finds a= 0.8 and there-
fore qν(q) ∼ 0.8q and not qν(q) ∼ q, shows that purely bal-
listic motion between turning points is not a sufficient model
to describe the measured behaviour. At least on the stochastic
level this may imply that non-linear relations between jump
size and waiting times are important. The experimental find-
ing of non-ballistic scaling of large-q moments (in experiment
the largest q was 8), is an indication for the insights one can
achieve by analysis of time dependence of moments.

8.1 Infinite Densities

At the heart of the mathematical theory of diffusive phenom-
ena stand the Gauss and Lévy central limit theorems. A piece-
wise linear scaling of the moments in our example implies that
the Lévy central limit theorem is a valid approximation at the
central part of the PDF of particles but not in the tails. The fact
that we have only two scaling behaviours of the moments may
suggest that in addition the the central limit theorem there ex-
ists another general method to describe the fluctuations. Such
a theory was recently obtained237 and the problem related to
infinite densities. These are a class of non-normalised densi-
ties, that have only recently attracted attention from physicists.

According to Eq. (102) the moments 〈|x|q〉 with q < α are
given by the Lévy density. The higher order moments with
q > α are also calculated from a density denoted ID(·)237,

〈|x|q〉 ∼ tq+1−α
∫ ∞

−∞
|v|qID (v)dv. (103)

ID(v) is called an infinite density, in the sense that it yields
the moments 〈|x|q〉 with q > α but at the same time is not
normalised, ∫ ∞

−∞
ID(v)dv = ∞ (104)

(see below for the physical meaning of v). The density ID(·)
is complimentary to the Lévy density. The infinite respec-
tive Lévy densities fail to provide statistical information on
the moments q < α or q > α , but are useful for q > α re-
spective q < α . The identity of the observable of interest is
thus crucial, e.g., 〈x2(t)〉 versus 〈|x(t)|〉, in the sense that not
only they yield different scaling behaviours with time (strong

anomalous diffusion) but they are calculated from two differ-
ent scaling functions. More specifically, the infinite density
has the small v behaviour237

ID (v)∼ |v|−(1+α), (105)

which is non-integrable and hence non-normalisable. Note
that this non-integrability is cured when we calculate, for ex-
ample, the second moment, since v2v−1−α is integrable close
to v → 0. This is the reason why this function can give infor-
mation on the higher order moments q > α .

However, is the infinite density merely a mathematical con-
struction with which we obtain statistical information on the
moments of the process, or does it actually contain informa-
tion on the particle PDF? Since

∫ ∞
−∞ P(x, t)dx = 1 at all times,

one may wonder why a non-normalised solution emerges?
The infinite density and the density P(x, t) are related accord-
ing to237

ID(v)∼ tαP(x, t) (106)

where v = x/t =
∫ t

0 v(t ′)dt ′/t is the time averaged velocity.
Since

∫ ∞
−∞ tαP(x, t)dx = tα → ∞, the integral over the infinite

density diverges when t → ∞. Importantly, Eq. (106) implies
that if we plot the density of particles (normalised to unity,
with an initial condition at the origin) according to tαP(x, t)
versus x/t and and t1/αP(x, t) versus x/t1/α , the data in both
cases will collapse onto a master curve. In the first way of
plotting this curve will be the infinite density, and thus we can
estimate this density from numerical or experimental data. In
the second plot we get the well known Lévy density237. This
dual scaling is obviously related to the bi-linear behaviour of
the spectrum qν(q). Since the latter is very common we be-
lieve that infinite densities also have some general validity. In
mathematics, infinite densities, briefly discussed here, are a
subject of research for many years, in the context of infinite
ergodic theory247–249. This branch of pure mathematics is in
fact related to the phenomenon of weak ergodicity breaking
discussed here250.

For the Lévy walk model one can obtain explicit formu-
lae for the infinite density in terms of the parameters of the
model237. It was shown that this density depends on three
measurables: F(v), α , and the anomalous diffusion constant
which characterises the width of the Lévy density237. In that
sense the infinite density yields statistical information not con-
tained in the central limit theorem, namely it contains more
fingerprints of the underlying process: the velocity distribu-
tion (which can, in principle, be measured independently).
The small v behaviour of ID(v) is not sensitive to the shape
of F(v) (provided it is symmetric) and in that sense it is uni-
versal. For example, for a Gaussian F(v), the infinite density
is plotted in Fig. 27. We believe that further work on infinite
densities is required since only recently these have attracted
some attention in statistical physics83,230,251–254
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Fig. 27 Infinite density for a Gaussian velocity distribution F(v).
Notice the divergence of the density at the origin. This divergence is
non-integrable, hence these functions are non-normalisable. Still,
they describe the statistical properties of physical particles237.

9 Measurables

Normal and anomalous diffusion are key to many biological
signalling processes and a vast number of biochemical reac-
tions in cells, or to the spreading dynamics in inanimate com-
plex systems. To be able to analyse diffusion measurement
in a physical meaningful way and to make predictions for
secondary processes such as reaction rates or signalling cas-
cades, it is absolutely necessary to know the exact nature of the
stochastic process driving the particle motion. For instance,
the first passage behaviour is vastly different between the pro-
cesses reviewed here. In this section we describe some exper-
imentally relevant observables whose complementary charac-
ter enables one to attain a fair degree of certainty that a given
set of data are based on a concrete stochastic process. Analy-
ses based on the application of different measures are, for in-
stance, presented in Refs.44,50,68,69,175,176,255–260. As demon-
strated in literature50,68,69,72, we note that there is a priori no
good reason to assume that in a complex systems a single
one of the above processes is sufficient to adequately describe
all the observed dynamic features: sometimes it is necessary
to combine at least two of the processes, that may influence
the particle motion simultaneously or at different time scales.
When passive diffusion is combined with intermittent active
motion additional challenges to the data analysis arise261.

MSD

The MSD is unarguably the most common way to analyse
stochastic data. Depending on the kind of measurement the
quantity to evaluate is the MSD 〈x2(t)〉 or the time averaged
MSD δ 2(Δ). The latter is the typical approach to the analy-

sis of the time series obtained from single particle tracking.
If the time averaged MSD exhibits anomalous scaling of the
form δ 2(Δ) � Δα and δ 2(Δ) = 〈x2(Δ)〉 we are dealing with
an (asymptotically) ergodic process, and when we want to use
the data to identify the underlying stochastic process we can
already eliminate CTRW motion and diffusion processes with
time or space dependent diffusivity as sole contributions. To
be more specific, additional complementary measures need to
be evaluated.

Scatter of time averages

The statistics of the scatter of the amplitude δ 2(Δ) of the
time averaged MSD for a set of individual trajectories at a
given lag time Δ is a useful indicator for the classification
of the anomalous diffusion process. We quantify this scat-
ter by the distribution φ(ξ ) of the dimensionless amplitude
ξ = δ 2(Δ)/

〈
δ 2(Δ)

〉
and by its variance, the ergodicity break-

ing parameter EB = 〈ξ 2〉− 〈ξ 〉2 introduced earlier. As a gen-
eral trend the fluctuations increase for any type of motion
when the lag time is taken too large in comparison to the
measurement time t. We note that due to the very definition
(6) of the time averaged MSD the plateau value observed for
some of the processes under confinement is twice the value of
the MSD. When the lag time approaches t, the time averaged
MSD δ 2 shows a cusp to the thermal value 〈x2〉th, as shown
explicitly for the SBM model in Ref.189.

For Brownian motion the PDF φ(ξ ) converges to the sharp
form φ(ξ )→ δ (ξ − 1) around the ergodic value ξ = 1 in the
long time limit t → ∞. At finite t this δ -peak broadens. Indi-
vidual trajectories exhibit erratic fluctuations of δ 2 as Δ → t.
The ergodicity breaking parameter tends to zero with the ratio
Δ/t in the form EB = 4

3 Δ/t.
For subdiffusive CTRW motion the trajectory-to-trajectory

fluctuations are asymptotic, that is, the ergodicity breaking
parameter has the finite limiting value (25) varying with α
between unity and zero. As in this process the fluctuations
are statistically given by the number of jumps performed dur-
ing its time evolution73, the PDF φ(ξ ) remains unchanged
when the process becomes confined. The distribution φ(ξ )
has a finite value at ξ = 0 for any given Δ, a strong charac-
teristic of the weakly non-ergodic CTRW motion. For aged
CTRW processes φ(ξ ) has a discrete immobile contribution
proportional to δ (ξ ) and a continuum part whose distribution
is qualitatively similar to the non-aged process, albeit there
occurs a redistribution of this continuous part to larger ξ val-
ues73. The PDF φ(ξ ) for noisy CTRW processes with su-
perimposed Ornstein-Uhlenbeck or Brownian noise narrows
down for increasing noise strength98. Finally, we note that
subdiffusive CTRW processes with a cutoff of the power-law
waiting time distribution exhibit an MSD with all features of
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the process with diverging waiting time scale roughly up to
the cutoff time, however, due to the lack of extreme waiting
events the scatter distribution φ(ξ ) appears significantly more
ergodic68, compare also the discussion in Ref.262,263.

For FBM and FLE motion the scatter distribution at suf-
ficiently short lag times is Gaussian and becomes somewhat
asymmetric but preserves the property φ(0) = 0 for larger
Δ158. The ergodicity breaking parameter tends to zero with the
ratio Δ/t 156. For the transiently non-ergodic behaviour under
confinement see Ref.166,179. In general, the scatter distribu-
tion and the ergodicity breaking parameter of both processes
are relatively similar to those of regular Brownian motion.

SBM was shown to be a weakly non-ergodic process but
its ergodicity breaking parameter tends to zero with the ratio
Δ/t 189,190. The PDF φ(ξ ) is approximately bell-shaped albeit
wider than for the corresponding FBM with identical anoma-
lous diffusion exponent α .

For HDPs the form of the PDF φ(ξ ) follows an asymmet-
ric Rayleigh-like or generalised Gamma distribution197. The
width of φ(ξ ) for HDPs with power-law form (89) grows from
the minimal Brownian value attained for the scaling exponent
β = 0 of K(x) and diverges at the critical point β → 2. For
confined HDPs the width of φ(ξ ) decreases drastically for all
β values, often reaching only a minute scatter. The ergodicity
breaking parameter tends to zero as 1/t for fixed Δ201.

We note that in some cases, in lieu of the ergodicity break-
ing parameter defined above—which represents a sufficient
condition for (non-)ergodicity—oneuses the parameter E B =〈

δ 2(Δ)
〉
/
〈
x2(Δ)

〉138, representing a necessary condition for
ergodicity.

First passage time statistics

When sufficient statistics are available one may use the first
passage time statistics to distinguish different kinds of anoma-
lous diffusion processes. In single particle tracking experi-
ments the first passage can simply be measured as the mo-
ments in time when the tracer passes a certain distance from
its original point of release. As shown in Ref.264 the scaling
of the mean first passage time obtained from a statistical num-
ber of repeats of such an experiment with the distance from
the origin may be a good indicator for the underlying diffu-
sion process. Moreover, the PDF of first passage times can be
a good indicator, especially for confined systems. While sub-
diffusive CTRW processes with their scale-free waiting times
still exhibit a power-law decay under confinement42,94, other
processes have an exponential form of the first passage PDF.
For semi-open intervals, we note that the dependence of the
scaling exponent for the first passage PDF on the stochas-
tic process may either be increasing or decreasing‡ with the

‡ Notably, this occurs for FBM 154,155.

anomalous diffusion exponent α , and could thus also serve as
an indicator when α is varied.

Mean maximal excursions and higher order moments

Apart from the regular PDF P(x, t) a stochastic process may
be characterised by another, related quantity, the PDF of the
maximal excursion. This PDF measures the likelihood that at
some time t after its initial release at the origin, the particle
has not travelled farther than the distance x256,265. This dis-
tribution may be reconstructed from the measured single par-
ticle traces, and then higher order moments calculated from
the data. For CTRW and FBM the scaling behaviour of the
second moment of the mean maximal excursion as well as the
fourth moments are known. It can be shown that the ratios of
the regular moments 〈x4〉/〈x2〉2 and the corresponding quan-
tities of the mean maximal excursions obey certain inequali-
ties256. The behaviour of the other processes with respect to
this method remain to be analysed. However, we mention that
the method of the mean maximal excursion has a clear advan-
tage over the regular PDF as the mean maximal excursion dy-
namics is less dispersed and the associated moments therefore
more reliable for finite data sets256.

Distribution of local diffusivity

An interesting tool to analyse single particle tracking data is to
measure the distribution of the local anomalous diffusion coef-
ficient as function of the (lag) time from the ratio of the MSD
(time averaged MSD) versus the (lag) time to some positive
power. These distributions for a weakly non-ergodic process
are different according to whether the MSD or the time aver-
aged MSD are evaluated. A detailed discussion for Brown-
ian processes with spatially varying diffusivity and for CTRW
processes can be found in Refs.266,267. This method still needs
to be analysed for the other anomalous stochastic processes
considered herein.

Non-Gaussianity measure

Similar to the ergodicity breaking parameter EB, the non-
Gaussianity measure G involves higher order moments. In
terms of the experimentally relevant time averaged MSD we
define the non-Gaussianity as217

G(Δ) =
d

d+ 2
×

〈
δ 4(Δ)

〉
〈

δ 2(Δ)
〉2 − 1, (107)

in dimension d, where the fourth time averaged moment is
defined via

δ 4(Δ) =
1

t −Δ

∫ t−Δ

0

(
x(t ′+Δ)− x(t ′)

)4
dt ′. (108)
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For Brownian motion G = 0, while this parameter deviates
from zero for progressively non-Brownian diffusion. The
value of G provides a sensitive measure for the type of dif-
fusion process under consideration. For instance, based on G
measurements for diffusion of fluorescent nanobeads in com-
plex crowded fluids, the Gaussian FBM-like process was re-
cently proposed as suitable mathematical model rather than
CTRW process268.

The p-variation method

The p-variation method is based on the evaluation of the pth
power of a partial sum of increments of a given stochastic pro-
cess177,269. It was applied as a measure to distinguish the non-
Gaussian subdiffusive CTRW from the Gaussian FBM pro-
cess177,269. An attractive feature of the p-variation test is its
applicability to both unbounded and confined systems, even
when based on a single sufficiently long experimental trace.
When the recorded time traces are affected by a highly noisy
environment, the p-variation test may become inconclusive98.

Velocity auto correlation

The experimentally accessible correlation of increments along
some time trace x(t) can be probed in terms of the covari-
ance44

C(ε)
ν (τ) = ε−2

〈(
x(τ + ε)− x(τ))(x(ε)− x(0)

)〉
. (109)

Although it is based on increments of the position rather than
on the real velocity of the particle, the quantity (109) is of-
ten referred to as the velocity auto-correlation function of
the process x(t). For free, unconfined CTRW processes this
function drops to zero algebraically as C(ε)

ν (τ) ∼ 1− (τ/ε)α

and vanishes at τ > ε due to the independence of succes-
sive steps44. With this property CTRW motion is easily dis-
tinguishable from unconfined FBM, the latter being charac-
terised by a crossover to negative values (a signature of the
antipersistence) and a power-law recovery back to zero. The
autocorrelation can be successfully used to analyse the nature
of an anomalous diffusion processes166,197. However, for con-
fined motion also the CTRW process exhibits some form of
antipersistence due to the reflections at the boundaries or the
rising flanks of the confining potential. In that case the be-
haviour of the function C(ε)

ν (τ) becomes empirically indistin-
guishable between confined CTRW and FBM44.

10 Discussion and conclusions

Brownian diffusion with its Gaussian propagator has an ap-
pealing beauty in its universality. No matter what the exact
details of the underlying process are, the limiting behaviour is

completely determined by the MSD and its linear growth with
time. Concurrently, it is ergodic, so all quantities measured
as time averages of sufficiently long single trajectories can be
safely interpreted in terms of the readily available ensemble
averages. At the same time one could also perceive Brown-
ian diffusion as somewhat too restrictive: many experimental
observation are much richer and cannot be explained by the
Gaussian propagator emanating from the central limit theo-
rem. We note that while it may be true that apparent anoma-
lous diffusion may in fact be due to transient crossovers of
Brownian motion in confined geometries270–274 the opposite
may also be true: some diffusion processes filed under Brow-
nian motion may in reality be anomalous64. One of the rea-
sons may be the weakly non-ergodic behaviour discussed in
this review.

Especially since more refined measurement techniques such
as space resolved fluorescence recovery after photobleaching
measurements and, in particular, high resolution single parti-
cle tracking have become available, anomalous diffusion has
been widely observed. Most importantly, information be-
yond the time scaling of the MSD can be extracted from the
data. These observations demonstrate that in different sys-
tems anomalous diffusion has different diffusive, first pas-
sage, and ergodic characteristics. In particular, disparities be-
tween ensemble and time averaged observables have been re-
ported. Accommodating the features of anomalous diffusion
and non-ergodicity poses the challenge to come up with a plu-
ralistic range of stochastic models for the description of non-
Brownian diffusion processes.

We here summarised the state of the art in the study of the
properties of the most popular anomalous diffusion processes.
In view of their importance in the analysis of experimental or
simulations data we paid specific attention to the time and en-
semble averaged MSDs. For ergodic processes both quantities
are identical for sufficiently long measurements and ensem-
bles. In the opposite case, when time and ensemble averaged
MSDs are asymptotically disparate, we speak of a weakly
non-ergodic process. The rich range of behaviours are listed
in Table 1. In the sense of the ensemble averaged MSD, the
considered models span from cubic time scaling down to ul-
traslow, logarithmic time evolution. Considering the lag time
dependence of the time averaged MSD, the variation is much
narrower, from quadratic scaling to a square root dependence.
In most weakly non-ergodic cases a linear lag time depen-
dence is observed and may be falsely interpreted as normal
diffusion.

From a statistical physics point of view the variety of be-
haviours listed in Table 1 poses a number of questions, in
particular, for a classification scheme of anomalous diffusion
processes with respect to their (non-)ergodic behaviour and
how fundamental mathematical concepts have to be gener-
alised, for instance, the Khinchin theorem45. Moreover, it is
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Process WEB 〈x2(t)〉
〈

δ 2(Δ)
〉

Eqs. Refs.

Correlated jump lengths Yes � t3 � Δ2t (48) & (49) 120

Lévy walk, 0 < α < 1 Yes � A(α)t2 � A(α)
1−α Δ2 (50) & (51) 136,137

Lévy walk, 1 < α < 2 Yes � A�(α)t3−α � A�(α)
α−1 Δ3−α (50) & (52) 83,136,138

Lévy flight Yes = ∞ [〈|x|q〉2/q � t2/α ] � Δt2/α−1 129,137,275 †

FBM 0 < α < 2 No � tα � Δα (58) 156,166,176,276

Brownian motion No � t � Δ (3) & (12) 44,277,278

FLE motion 0 < α < 1 No � tα � Δα (66) 156,166,176

Fractal environment No � t2/dw � Δ2/dw 50,218

HDP K(x) = K0|x|β Yes � t2/(2−β ) � Δt2/(2−β )−1 (90), (91) & (93) 197,203

Correlated waiting times Yes � tγ/(1+γ) � Δtγ/(1+γ)−1 (8), (46) & (47) 120–122

Subdiffusive CTRW Yes � tα � Δtα−1 (8) & (20) 44,63,64

Confined subdiffusive CTRW Yes � t0 � (Δ/t)1−α (21) 45,68,70

Quenched trap/patch models Yes � tα � Δtα−1 198,279 ¶

Ageing CTRW Yes �

⎧⎪⎨⎪⎩ t/t1−α
a , t � ta,

t, t � ta
� Λα(ta/t)Δtα−1 (27) & (29) 73

Scaled Brownian motion Yes � tα � Δtα−1 (8) & (80) 189,190

Ultraslow CTRW Yes � logα(t) � logα(t)Δ/t (43) & (44)
110

Sinai (quenched) Yes � log4(t) � log4(t)Δ/t (42)

CTRW in ageing environment Yes � log(t) � log(t)Δ/t (40) & (41) 101

HDP K(x) = (K0/2)e−2x/x� Yes � log2(t) � (Δ/t)1/2 (94) & (95) 202

Table 1 Different stochastic processes and their (non-)ergodic behaviour. In column WEB, we first classify the processes as weakly
non-ergodic (Yes) or ergodic (No). We list the scaling of the MSD 〈x2(t)〉 and the time averaged MSD

〈
δ 2(Δ)

〉
. Their disparity

〈x2(Δ)〉 �=
〈

δ 2(Δ)
〉

signifies weak ergodicity breaking. Note the very similar behaviour of ensemble versus time averaged MSD of several of
these processes.
† For Lévy flights the MSD diverges, however, we can define the rescaled fractional moment 〈|x|q〉2/q � t2/α with 0 < q < α < 2.
¶ For the quenched trap and patch models the relation between the exponent α defined in the MSD and the long-tailed waiting time PDF is not
the same as in subdiffusive CTRWs, at least for one dimension.
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of principle interest whether we can construct new processes,
that break the linear lag time scaling of δ 2. At the same time
there are still a number of open questions concerning the pro-
cesses reviewed here, for instance, the exact form of the ergod-
icity breaking parameter EB beyond the CTRW case. Another
question is to come up with additional methods to diagnose
the underlying stochastic process from a given, limited set of
data from experiments or computer simulations. In particu-
lar, Bayesian inference methods are expected to be developed
further. The latter should also work well when the observed
process in fact represents a blend of different stochastic pro-
cesses.

It will also be of interest to extend the study of the ergodic
behaviour and the features of ageing from the stochastic pro-
cesses considered here to more specific systems. The latter
include, for instance, the Lorentz gas model with its rich be-
haviour of crossovers and density effects280, the motion in
periodically structured environments such as elastic gels97,
or the folding dynamics of proteins170,281. Other interesting
current question concern the understanding from a stochas-
tic point of view of Fickian yet non-Gaussian diffusion pro-
cesses282–284, compare also the discussion in Ref.285. Finally
we mention that similar concepts as those summarised here
could be relevant for active transport processes. From a more
practical point of view, the discussion of the question as to
what extent anomalous diffusion may impact biological func-
tion has just begun32,33,217,221,286–288.
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CTRW: Continuous time random walk
FBM: Fractional Brownian motion
FLE: Fractional Langevin equation
HDP: Heterogeneous diffusion process

MSD: Mean squared displacement
PDF: Probability density function
SBM: Scaled Brownian motion
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39.
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Quantity/Functions Detailed Description Units used
x Particle position cm
m Particle mass g
t Running time or trajectory length sec
ta, τ , t1 Ageing, waiting/trapping, and recurrent (forward waiting) time sec
Δ Lag time sec
ξ (t), ξfGn(t) White and fractional Gaussian noise cm/sec
B(t) =

∫ t
0 ξ (t ′)dt ′ Standard Brownian motion cm

P(x, t) Probability density function (PDF) 1/cm〈
x2(t)

〉
(Ensemble) mean squared displacement (MSD) cm2

α , H = α/2 Anomalous diffusion exponent and Hurst exponent 1
δ 2(Δ), δ 2

a (Δ) Time averaged MSD and aged variant cm2〈
δ 2(Δ)

〉
= N−1 ∑N

i=1 δ 2
i (Δ) Time averaged MSD averaged over an ensemble of trajectories cm2

Λα(ta/t) = δ 2
a (Δ)/δ 2(Δ) Ratio of aged and non-aged time averaged MSDs 1

φ(ξ ), ξ = δ 2(Δ)/〈δ 2(Δ)〉 Amplitude variation distribution of the dimensionless quantity ξ 1
EB(Δ)=

〈
ξ 2(Δ)

〉− 1 Ergodicity breaking parameter 1
E B =

〈
x2〉/〈δ 2

〉
Auxiliary ergodic parameter 1

G(Δ) Non-Gaussianity parameter 1
ψ(τ), λ (δx) Waiting time and jump length distributions 1/sec, 1/cm
μ Stable index for jump-lengths of Lévy flights 1
v Velocity of Lévy walks cm/sec
Dapp Apparent diffusivity cm2/sec
Kα Generalized diffusion coefficient cm2/secα

K0 Basal diffusion coefficient for HDPs, K(x)∼ K0|x|β cm2−β /sec
K(t) Time dependent diffusivity for SBM, K(t) = αK�

α tα−1 cm2/sec
K∗

α Generalized diffusivity for FBM cm2/secα

mα Fraction of mobile traces for CTRW 1
T , Tg Absolute and glass temperature K
V (x), kBT External potential and thermal energy erg
ω Strength of external harmonic potential V (x) = mω2x2/2 1/sec
d, d f , dw Spatial, fractal, and walk dimensions 1
R, NA Gas constant and Avogadro’s number J/(mol K), 1/mol
η Friction coefficient 1/sec
η�, γ� Noise amplitude and generalised friction coefficient in FLE g/sec, g/secα

1/k Relaxation time to stationary solutions sec
n(t) and N(t) Counting process and number of jumps 1
℘(t)a Probability density of first passage times 1/sec
0D1−α

t Riemann-Liouville fractional derivative secα−1

L { f (t)} Laplace transformation of the function f (t)
Γ(y) Gamma function
lα(x) Lα ,0(x) One-sided and symmetric Lévy-stable law
ID (v) Infinite density of time averaged velocity v
Eρ ,δ (z), M(a,b,z) Mittag-Leffler and Kummer function
γ ≈ 0.5772 Euler constant

Table 2 Mathematical notation and physical dimension used in the text.
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