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Abstract

Growth models of charged nanoplatelets are investigated with Monte Carlo simula-
tions and simple theory. In a first model, 2-dimensional simulations in the Canonical
Ensemble are used to demonstrate that the growth of a single weakly charged platelet
could be limited by its own internal repulsion. The short range attractive interaction
in the crystal is modeled with a square well potential while the electrostatic inter-
actions are described with a screened Coulomb potential. The qualitative behavior
of this case can also be described by simply balancing the attractive crystal energy
with the screened Coulomb repulsion between the crystal sites. This repulsion is a
free energy term dominated by counterion entropy and of course reduced by added
salt.

For a strongly coupled system, that is with high charge density and divalent
counterions as in calcium silicate hydrate, the main product of cement hydration, the
screened Coulomb approximation becomes inadequate and the growth behavior has
to be described with the full primitive model. In this case, the energetic interactions
become relatively more important and the entropy of the system plays a minor role.
As a consequence, the electrostatic interactions gradually become less of a hindrance
for aggregation and in extreme cases electrostatics actually promote the growth.
This is manifested as an increased aggregation with, for example, increasing surface
charge density.

In the presence of divalent calcium ions and at the high negative surface charge
density typical for calcium silicate hydrate, electrostatic interactions are not a hin-
drance for an infinite growth of the particles. By combining experimental and
simulated data we can show that the limited sized platelets found in cement paste
is due to a very fast nucleation rate compared to the growth rate.
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Introduction

Controlling the size of crystals and particles and more generally understanding the mech-
anisms affecting particle growth is of great importance for many applications - from build-
ing materials to advanced optical devices. The simple equilibrium picture is that once an
aggregate has reach a certain size, the electrostatic repulsion will prevent further growth.
Tolman [1] and later Overbeek [2] have proposed that the limited size of nanoparticles is
an equilibrium result governed by electrostatics interactions. Recently, such a hypothesis
was discussed by Jolivet et al. [3], who showed that the size of oxide nanoparticles could
be tailored by precipitating the solid at varying pH values far from the point of zero
charge, i.e. raising the surface charge at high enough values. Similarly, in protein solution
it has been observed that the aggregation process halts once a certain aggregate size is
reached. This has been explained as a result of internal Coulombic repulsion [4, 5, 6, 7],
or if one prefers a lowered counterion entropy. Following the same idea, Schmit et al.
[8, 9], using a model of charged particles with a short range attraction, described the
competition between gel formation and meso-crystal formation as a result of differences
in counterion entropy loss upon aggregation.

The situation in cement paste is qualitatively different with strong electrostatic in-
teractions due to divalent calcium ions and a high surface charge density [10], which under
equilibrium conditions might lead to an extended growth resulting in very large platelets.
However, the conditions in early cement paste are far from equilibrium and a more likely
scenario is one where the growth is kinetically controlled. During cement hydration, far
from equilibrium, calcium silicate hydrate (C-S-H) nucleates onto the dissolving surface of
tricalcium silicate grains, C3S, [11] and the C-S-H platelets grow until they have reached
a very limited size. The hydration proceeds as long as the supersaturation with respect
to C-S-H is maintained (until C3S is fully consumed) with a continuous germination and
growth of new platelets next to the already existing ones forming a network. The network
grows out into the solution [12, 13] and results in the setting and cohesion of the final
material. The growth of C-S-H particles is both directional and limited and a typical
C-S-H platelet has the approximate dimensions of 50 · 30 · 5 nm [12, 14, 15].

In contrast to the nano sized platelets of C-S-H, giant, faceted and transparent
single crystals of gypsum as long as 11 meters were recently found in Cueva de los Cristales,
a cave in the Naica mine (Chihuahua, Mexico). It was shown that these crystals were
formed under near-equilibrium conditions, maintained over a long period of time, ensuring
an extremely slow nucleation rate, Rn and a slow growth rate, Rg. Based on classical
nucleation and growth theory, Garcia-Ruiz et al. [16, 17], could show that the induction
time, tind ∝ 1/Rn, for the formation of gypsum nuclei was always above 1000 years. From
the classical theory we obtain,

Rn ∝ exp(
−16πγ3a2

3k3T 3 ln2 S
) (1)

where γ is the surface tension of the crystal, a the molecular volume, k the Boltzmann
constant and T the absolute temperature. Indeed, as Rn depends on the supersaturation
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Figure 1: TEM image of C-S-H (x40 000) obtained from lime and silica. Platelets also aggregate. An
isolated one shows the same size as in the case of C3S hydration. The scale bar in the upper left corner
is 100 nm. (From J. Haas, PhD Thesis, Nov. 2012, Universite de Bourgogne)

S, low values of Rn mean that supersaturation was kept very close to equilibrium during
the crystallization in the cave.

On the contrary, the growth of particles at high supersaturation, far from equilib-
rium, is mostly a non-equilibrium process controlled by kinetics and the final outcome is
a result from a competition between nucleation and growth. The growth rate, Rg, being
defined as [16],

Rg ∝ exp(−
Ael + Anon−el

kT
)(1−

1

S
) (2)

where Ael and Anon−el are the electrostatic and non-electrostatic components of the free
energy barriers to the incorporation of molecules/atoms in the crystal lattice. Under such
conditions, the resulting particles are most often small as a result of a fast nucleation rate
compared to Rg, which consumes most of the feeding ions preventing particle growth. This
is emphasized when the electrostatic barrier is high, see eq.(2), something to expect when
the surface charge density of the nuclei/particles increases. With time, these particles
often undergo changes of structure and morphology and finally grow in size, known as
Ostwald ripening.

In ordinary cement paste (Portland cement), the supersaturation is controlled by
the dissolution of C3S and is typically on a high level, which means that the nucleation
rate is high. At the same time, the surface charge density is very high possibly creating
a significant free energy barrier slowing down the particle growth. Thus, both a large
nucleation rate and a low growth rate act in the same direction resulting in nano sized
C-S-H platelets. No long term growth has been observed in Portland cement. Nota bene,
Portland cement has only existed for about 200 years! However, in a recent study of
ancient Roman seawater concrete, obtained from the Pozzolanic reaction (i.e. mixture of
lime and silica), micron sized C-S-H platelets were found [18].

An alternative to produce C-S-H particles is to grow them on a calcite surface at
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high concentration of meta silicate and pH > 13, where initially small ordered particles
are found on the surface. The ordering is probably facilitated by the calcite surface
acting as a 2-dimensional template. When the concentratated silicate solution is replaced
by various lime solutions at low degree of supersaturation, the C-S-H platelets partially
recrystallize through Ostwald ripening and give rise to large particles. At low pH, i.e.
low lime concentration, they can reach micron size, while at elevated pH, i.e. high lime
concentration, smaller sub-micron sized particles are observed [19].

In this paper, we explore the growth of charged platelets in the weak and strong
coupling regimes, that is weakly charged platelets neutralized by monovalent counterions
and highly charged platelets neutralized by di- or multivalent counterions. A general result
is that the screening by counterions and added salt is much stronger than predicted by
mean field theory and, consequently, lead to particles with a larger equilibrium size than
expected from this theory. In the really extreme cases with high electrostatic coupling,
we even find that electrostatics promote aggregation! We discuss the results from both
equilibrium and non-equilibrium perspectives in light of experimental observations on
C-S-H.

Model Systems

Weakly charged platelet

Figure 2: The final structures from two simulations with no electrostatic interactions and varying
binding energy; eb = 2 left graph and eb = 5 right graph. N = 289 and Rc = 378 Å. A binding energy of
eb = 2 is not enough to maintain a compact cluster but eb = 5 leads to an aggregated structure.

The model system depicted in Figure 2 is used to study the growth of a single
platelet in two dimensions. Spherical particles, with radius R = 5 Å are allowed to move
on a circular area with radius Rc. The interaction between any two particles i and j, with
separation rij is given by a short-ranged square well potential, with depth eb and width
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w,

βusw(rij) = ∞ rij < 2R

= −eb 2R < rij < 2R + w

= 0 otherwise (3)

This potential has a generic attractive interaction that promotes aggregation, which we
assume to be largely unaffected by other mobile ions. Crystals are likely held together
via a combination of short-ranged electrostatic correlations, dispersion forces and covalent
bonds. In addition, the particles that comprise the platelets experience strong electro-
static repulsion, which in a naive picture should counteract aggregation. This effect is
modeled with a screened Coulomb potential, which also accounts for the ambient elec-
trolyte concentration as well as counterion concentration,

βusc(rij) =
lB exp(−κrij)

rij
rij > 2R (4)

Here, lB = e2/4πǫ0ǫrkBT is the Bjerrum length, equal to 7.13 Å and κ is the inverse
Debye-Hückel screening length, determined by salt and counterion concentration. The
solvent (water) is treated as a dielectric continuum with a relative dielectric permittivity,
ǫr = 78. e is the elementary charge and ǫ0 is the permittivity of vacuum. In the following
we will quote all energies in units of kT.

Highly charged platelet

In the previous section with weakly charged platelets we approximated the presence of
salt and counterions with a Debye-Hückel screening length and the crystal particles were
confined to a plane. In this section all particles are allowed to move in three dimensions
being confined to a spherical cell with radius, Rc, while the platelet can only form in an
equatorial plane of 2 Å thickness. Thus, the square well potential is only acting between
two crystal particles that happen to be within this layer. As in the single platelet model
above, the solvent is treated implicitly using the primitive model. That is, charges are
assumed to be embedded in a structureless dielectric continuum described by the relative
dielectric permittivity and particles i and j interact via a Coulomb potential,

βuel(rij) =
lBzizj
rij

(5)

where zi is the ionic valency of particle i and rij the particle separation. In this way, all
mobile ions are treated explicitly, unlike the implicit treatment of salt and counterions
used in the previous model. In addition to these electrostatic interactions we use the same
attractive square well potential as before, eq.(3). The radius of the crystal particles was
kept fixed at 5 Å unless otherwise mentioned and the radius of counter- and co-ions was
2 Å.
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Figure 3: Simulation snapshot illustrating the setup used for force calculations between one crystal
particle and the edge of a hexagonal platelet. The crystal particle is placed in the plane of the platelet.
Small blue and red sphere represent the ions which are free to move within the cylindrical simulation cell,
while the crystal particle and the platelet are maintained at fixed positions.

Most Monte Carlo simulations were carried out using the standard Metropolis algo-
rithm in the canonical ensemble, i.e., constant number of particles, constant area/volume
and temperature. A number of simulations were also performed with the grand canonical
ensemble, where the salt chemical potential was maintained constant. These simulations
were performed in a cylindrical cell with a frozen hexagonal platelet at its center and with
co- and counterions moving freely within the cell. The size of the platelet, decorated by
sites of varying charge Zsite arranged in a hexagonal pattern, see Figure 3, was varied. In
these simulations the free energy cost to bring a crystal particle from the bulk solution
to the edge of the platelet, βAcontact, was calculated. Note that βAcontact is nothing but
the electrostatic contribution to the free energy barrier to the growth. We have done so
by placing an additional crystal particle in the plane of the platelet at different distances
from the platelet center up to well defined lattice positions on the edge (referred as the
contact point). The force acting on the crystal particle was calculated at each distance
following the procedure described earlier [20]. The free energy of interaction between the
crystal particle and the platelet was finally obtained by integrating the force. Note that
in the following only the free energies at contact, referred as the electrostatic free energy
barrier to the growth, are reported. In addition to the electrostatic interactions, all species
were subjected to a strictly repulsive truncated and shifted Lennard-Jones potential UTrS

LJ ,
instead of a hard core potential as above, to improve the force calculation statistics,

UTrS
LJ (rij) =







ǫLJ

[

(

σij

rij

)12

− 2
(

σij

rij

)6
]

+ ǫLJ if rij < σij

0 otherwise.
(6)

with ǫLJ = kT and σij = (Ri +Rj)/2 where Ri is the radius of species i.
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Results

Weak coupling regime

We start with a simple analysis of the factors that control the growth of a single platelet.
The free energy of the platelet is a combination of energetic and entropic contributions.
The latter will disfavor aggregation, hence the energy term drives the clustering of particles
and the formation of the platelets. It also provides a lower bound on the cluster free energy
and hence an indication of its relative stability. That is, a stable cluster will always have
a negative energy. We will use the words ”cluster” and ”platelet” as meaning the same
thing, i.e. a collection of negatively charged (crystal) particles in the equatorial plane
connected via the square well potential.

The cluster energy can be estimated from the potential model, eqs.(3) and (4).
Assuming n particles in the cluster, the short-ranged binding energy is approximately
−nEb, where Eb ≈ meb/2 with m being the number of nearest neighbors. We assume
that the range of the square well potential extends only to nearest neighbors. For the
system we investigate, the most stable sphere packing in the plane is hexagonal, hence
we choose m=6. The repulsive electrostatic energy can be estimated by integrating the
screened Coulomb potential over the cluster area. We assume the latter to be circular,
with radius Rclus ≈

√
nR.

Eel =

∫ Rclus

0

dr2πr
lB
πR2

exp(−κr)

r
=

1

lGC

∫ Rclus

0

dr exp(−κr) (7)

where lGC is the Gouy-Chapman length equal to e/2πσlB with σ being the surface charge
density of a platelet. This gives the following electrostatic energy per particle,

Eel =
1

κlGC

[1− exp(−κR
√
n)] = E∞

el [1− exp(−κR
√
n)] (8)

where E∞

el = 1/κlGC is the electrostatic energy (per particle) of an infinite cluster. This
expression only approximately accounts for the truncating effects of the cluster boundary
on the electrostatic potential. The total energy is thus

Etot = n[(E∞

el − Eb)− E∞

el exp(−κR
√
n)] (9)

Minimizing with n, i.e., ∂Etot/∂n = 0, we obtain

(E∞

el − Eb)

E∞

el

= (1 +
κR

√
n

2
) exp(−κR

√
n) (10)

If E∞

el > Eb, then eq.(10) has solutions corresponding to finite n(> 0) and limited clusters
can be stabilized. As Eb → E∞

el the cluster begins to grow uncontrollably, n → ∞. Figure
4a gives the solution to eq.(10) for three different values of eb. The dashed vertical lines,
κ = 1/3eblGC , shows the minimum value of κ for which the cluster growth is limited. That
is, to the right of the dashed lines the crystal size is no longer electrostatically constrained
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in size. Note, that this boundary is only determined by the binding energy and the Gouy-
Chapman length. Simulations of this system were carried out in the Canonical Ensemble,
so the conditions at which electrostatics does not constrain the cluster size are estimated
as those where a single cluster forms in the simulation area. Clearly this estimate becomes
more accurate in the thermodynamic limit. In Figure 4b we show the ”phase diagram”
derived from simulations of 222 particles in a circular simulation cell of radius 200 Å,
together with the predictions based on our simple energy analysis. The theory gives a
surprisingly good prediction of the boundary between finite and infinite clusters. The
discrepancy at small binding energies can be explained by the neglect of the entropy.

Without any electrostatic interactions we observed from simulations that an initial
single cluster disintegrates when eb ≤ 2. Increasing the binding energy to eb = 5, one
obtains a well-condensed single cluster. This cluster does not disintegrate upon intro-
ducing short-ranged electrostatic repulsions, κ = 0.02 Å−1. However, for longer ranged
repulsions, κ = 0.015 Å−1, the single cluster breaks apart into smaller clusters. Figure
5 shows the distribution of cluster sizes in such a simulation - the clusters have a finite
size and an average cluster consists of approximately 20 particles. Using eq.(10) we get
n ≈ 13. The agreement between simulations and the simple model is surprisingly good,
considering the neglect of entropic and surface contributions to the free energy.

0 0.02 0.04 0.06 0.08 0.1
κ (Å

−1
)

0

50

100

150

n

a

eb=2
eb=3
eb=4

0 0.05 0.1 0.15 0.2
κ (Å

−1
)

0

2

4

6

8

10

e b

b

inf. cluster
lim. cluster

Figure 4: a) Solutions to eq.(10) for different binding energies as a function of electrostatic screening
in terms of the Debye-Hückel inverse screening length. The dashed lines show the boundary at which
the crystals start to grow infinitely. b) The black solid line shows the function eb = 1/κlGC describing
the boundary between infinite and finite growth, from eq.(10). The symbols show the corresponding MC
results obtained for a system with N = 222 and Rc = 200 Å.

Strong coupling regime

In this regime the simulations are carried out using the full primitive model where both
crystal particles and counterions are explicitly described and are moving freely in a sphere.
The size distribution of platelets is usually bimodal, see Figure 6. That is there is one(!)

8

Page 8 of 17Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



0 10 20 30 40 50

n

P
(n

)

Figure 5: The final configuration from a simulation with κ = 0.015 Å−1, N = 289, Rc = 378 Å and
eb = 5 - left graph - and the corresponding probability distribution for cluster size n.

large platelet and a few free ”crystal particles”. This means that a quantity like the
average platelet size becomes less informative and we have instead calculated the average
size of the largest platelet, < Nmax >.

Figure 6: Snapshot from a MC simulation of 60 crystal particles (red spheres) and 30 divalent counte-
rions (blue spheres). Rc = 150 Å and eb = 4.

The importance of counterion entropy can be seen in Figure 7 where the cluster
size is shown as a function of cell radius. When the cell radius increases, the platelet
disintegrates and with Rcell > 250 the crystal has essentially disappeared. The concen-
tration of divalent counterions with N = 120 and Rc = 200 Å is about 6 mM. One can
note the qualitative difference between mono- and divalent counterions and that higher
valency counterions promote the growth.

All simulations are performed within the Canonical Ensemble and in order to let
the system grow we have to explicitly add particles. Figure 8 shows how the relative

9

Page 9 of 17 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



0 50 100 150 200 250
Rcell (Å)

0

40

80

120

<
N

m
ax

>

Z=1
Z=2

Figure 7: Average number of crystal particles in the largest cluster(=platelet) in a system with divalent
counterions as a function of cell radius - N = 120, eb = 4 and saltfree system.

cluster size, < Nmax > /N , varies with number of crystal particles at constant density
(3-dimensional), 3N/4πR3

cell. The variation is modest and one can note that the relative
cluster size grows slowly with system size. One can once again note that the counterion
entropy plays an important role, since with monovalent counterions there is no crystal
growth. In same way, by reducing the surface charge density one can facilitate platelet
growth. What we also find, in contradiction to the weakly coupled system studied with
the screened Coulomb approximation, is that no finite sized platelets are formed. Either
all particles aggregate and form the platelet or they completely disperse.

0 100 200 300 400 500

N

0
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m
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Z
site

=−1; Z=2

Z
site

=−1; Z=1

Z
site

=−0.5; Z=2

Figure 8: Fraction of crystal particles in the largest cluster(=platelet) as a function of number of crystal
particles, N . Constant density, eb = 5 and saltfree simulation.

Figure 9 shows the effect of increasing the surface charge density by increasing
the crystal site charge while maintaining its size. This gives a formal area/unit charge
ranging from 130 to 16 Å2/e - the latter value being a bit too high expected for C-
S-H. With divalent counterions we find a decreasing platelet size with increasing surface
charge density and the platelets stop growing when Zsite > 2. By increasing the counterion
valency to four, we find a qualitatively different behavior. Here the growth initially follows
the divalent case, but for sufficiently high surface charge we see a positive slope, that is
electrostatics promote aggregate formation.
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No salt; Z=4

Figure 9: Number of crystal particles in the largest cluster(=platelet) as a function of crystal particles
charge, Zsite. The number of crystal particles, N = 120. Black solid curve with filled circles: divalent
counterions, eb = 5, Rc = 150 Å and no salt; Red dashed curve with open circles: Z = 2, eb = 5, Rc = 150
Å and 20 mM of 2:1 salt, green dot-dashed curve with open squares: Z = 4, eb = 4 and Rc has been
varied in order to maintain the same counterion concentration, no added salt.

Adding salt means that the simulations take a bit longer to converge and conse-
quently the study has been limited in this respect. The salt effect is as expected - see
Figure 9, that is the counterion entropy plays a smaller role and the cluster grows with
increasing salt concentration.

Another way to study platelet growth, and in particular non-equilibrium effects,
is by calculating the potential of mean force between a platelet and a crystal particle.
We have done that for a cylindrical cell with a hexagonal platelet at its center and with
co- and counterions moving freely within the cell. The results are shown in Figure 10
and 11. In Figure 10, the electrostatic free energy cost of adding a negatively charged
crystal particle to the platelet edge is shown as a function of platelet size for divalent and
monovalent counterions. The free energy cost reaches an asymptotic value for relatively
small particle size for divalent counterions; but not for monovalent ones. In addition,
much higher free energy barriers are found in the case of monovalent counterions, in
good agreement with the growth simulations, Figures 7 and 8. Figure 11 shows how the
electrostatic free energy barrier varies as a function of platelet charge density. The charge
density is varied by maintaining a fixed particle size, N = 127, but increasing the negative
charge of each site, Zsite. For sufficiently large counterion valency (Z > 2), the free energy
has a non monotonic behavior similar to the curve shown in Figure 9.

Figure 11 shows how the electrostatic free energy at contact varies as a function
of platelet charge density. The latter is varied by maintaining a fixed particle site, but
increasing the negative charge of it. The same physical effects can also be found in Figures
8 and 9.

Discussion

In the case of a 1:1 salt, our simulations on the growth of platelets at the level of the
screened Coulomb potential confirm the hypothesis first inferred by Tolam and Overbeek
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Figure 10: The free energy of interaction between a crystal particle and a hexagonal platelet of varying
size at three different valencies of the crystal particle, Zsite. a) The counterions are divalent and the
system is in equilibrium with a salt reservoir containing 20 mM of a 2:1 salt. b) The same as a) but with
monovalent counterions and no salt. Note the different energy scale!
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Figure 11: The free energy of interaction between a crystal particle and a hexagonal platelet (N=127)
of varying charge density for four different valencies of the counterion in a saltfree system. The crystal
particle is placed in a fixed site at the edge of the platelet.

and later observed experimentally on spherical particles[3], that electrostatics can stabilize
particles at the nanometer scale. This can be seen in Figure 10b but maybe even better
in Figure 11, where the free energy barrier for monovalent counterions is found to reach
few tens of kT and to increase almost linearly with the platelet charge. Contrary to the
divalent counterion case, we were not able to find a saturation in the free energy barrier
while varying the particle charge, Zsite.

In the case of multivalent counterions, however, the picture is completely different.
Indeed, already for divalent counterions the electrostatic free energy barrier to the growth
is significantly reduced as compared to the case of monovalent counterions - see Figure 10
and 11. In salt free conditions, it is reduced from ≈ 15 kT to less than 5 kT when Zsite

= 4. What is more, for Z > 2 and sufficiently large platelet charge densities βAel is even
found to become negative. In other words, in these latter cases electrostatics actually
promote the growth - see Figure 11. These observations can be understood from the fact
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that the importance of counterion entropy decreases with increasing valency - the number
of particles is less.

A practical case of interest is the calcium-silicate-hydrate (C-S-H) found in cement.
A particular puzzling question is why the hydrate particles are most often observed to
be very limited in size? As already mentioned in the introduction, C-S-H nucleates and
grows in supersaturated solutions rich in calcium most often around pH≈ 13. Under
these conditions the C-S-H surface, which is covered with titrating silanol groups, reaches
extremely high negative charge densities, of the order of 0.7 C/m2[21]. Although high in
absolute value, our simulations indicate that the electrostatic interactions alone can not
stop the growth of C-S-H. Indeed, the corresponding free energy barriers to the growth
are rather limited, at most not higher than ≈ 5 kT (see Figure 10) Even more so, when
considering that usual binding energies for crystals typically are between 10 to 100 kT.
This means that the nanometric C-S-H particles observed from hydration of C3S, from
the Pozzolanic reaction or from the reaction in sodium metasilicate/lime solutions do not
have their true equilibrium size. Actually, micrometer sized C-S-H platelets were recently
observed in 2000 years old Roman concrete [18], and have also been shown to grow on
calcite monocrystal [22, 23]. We show below that these observations can consistently be
explained within classical growth theory (CGT) and from the fact that nucleation is faster
than the growth.
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Figure 12: Initial rates of growth calculated from simulations (solid lines) and experimental nucleation
rates(dashed lines) of C-S-H versus particle size at high and low surface charge densities (corresponding
to high and low calcium hydroxide concentrations). A low calcium concentration corresponds to a low
charge density, σ, and a high degree of supersaturation, S, and vice versa. The rates are presented as
dimensionless quantities - see text for more details. a) In the case of heterogeneous nucleation on calcite
and b) on C2S.

Garrault et al. [11] have studied the nucleation of C-S-H and shown that the CGT
is applicable. They measured the time to form the first nuclei and found the following
homogeneous nucleation rate,

Rn ∝ exp(−∆A∗/kT ) ≈ exp(−32/[lnS]2) (11)

They also found that the free energy barrier, ∆A∗, for heterogeneous nucleation of C-S-H
on calcite and on di-calcium-silicate, C2S, is ten respectively one hundred times lower
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than the corresponding free energy barrier for homogeneous nucleation. From these data
and eq.(11) we can estimate the heterogeneous nucleation rates presented in Figure 12.
The nucleation rate on tri-calcium-silicate, C3S, is too fast to be accurately determined,
indicating that ∆A∗

C3S is even lower than ∆A∗

C2S. Based on the simulated free energies
we have calculated the growth rates for increasing (C-S-H) particle size for low and high
lime concentration and compared to the experimentally determined rates of heterogeneous
nucleation/growth on calcite and C2S at the beginning of the hydration reaction, when
the first C-S-H particles form (see Figure 12). For the calculation of the rates, the exper-
imentally determined initial degrees of supersaturation [11], i.e. at the beginning of the
C-S-H precipitation, were used. Note that the supersaturation degree depends on the re-
active phase used (here calcite and C2S)[11]. The simulated growth rates were determined
from Eq.(2) using the electrostatic free energy barrier calculated from MC simulations,
see Figure 10, with Zs = −2 and Zs = −8 for low and high Ca(OH)2 concentrations, re-
spectively. These site valencies are equivalent to negative charge densities of 0.19 and 0.74
C/m2 in agreement with the experimental titration curve for C-S-H[21]. The non elec-
trostatic free energy barrier to the growth is neglected and as a consequence, the growth
rate is probably overestimated. Figure 12 shows that the growth rate, at the beginning
of the hydration reaction, becomes rapidly negligible compared to the nucleation rate as
the C-S-H platelets grow in size in response to the sharp increase of the electrostatic free
energy with the particle size, see Figure 10. This is all the more true in the case of C2S,
Figure 12, and of C3S, not shown, for which the nucleation rates are considerably higher.
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Figure 13: Nucleation and limiting growth rates of C-S-H versus degree of supersaturation, S, at high
surface charge density (≈ at high Ca(OH)2 concentrations) for heterogeneous nucleation and growth on
calcite and C2S. The rates are presented as dimensionless quantities - see text for more details.

As the hydration of C2S and C3S proceeds, the supersaturation decreases and
reaches a constant value, corresponding to a steady state where the ions produced from
the dissolution of the anhydrous phase are all consumed by the nucleation/growth of C-S-
H. This continues until all the anhydrous phase is consumed. Figure 13 gives the variation
of the limiting growth rate, for infinitely large platelets, and nucleation rate for C-S-H
as a function of degree of supersaturation in the case of C2S and calcite at high calcium
hydroxide concentration. The limiting growth rate is obtained by extrapolating the free
energy curves in Figure 10 to large particle sizes. In both cases, the nucleation rate is far
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above the growth rate for a large range of supersaturation. In the case of C2S, the crossing
of rate curves occurs at a low degree of supersaturation, S ≈ 1.2, below which the growth
rate is very limited, < 0.0007. With C3S it is even lower and with calcite the crossing
takes place at S ≈ 1.9, with the corresponding rate somewhat larger, ≈ 0.002, but still low
enough to explain the very limited size of the C-S-H particles observed experimentally.

All these results show that the limited size often observed experimentally is not a
thermodynamic stable state, but a consequence of both a relatively high nucleation rate
and a (very) slow growth rate caused by the electrostatic contribution to the free energy
barrier to the growth. The electrostatic interactions are, however, not strong enough to
completely stop the growth.
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Figure 14: a) Surface area versus calcium hydroxide concentration for C-S-H particle grown by Oswald
ripening on a calcite monocrystal. b) The corresponding simulated free energy barrier extrapolated to
infinite particle size.

The contribution to C-S-H growth from electrostatic interactions is also illustrated
in Figure 14a, which shows the size of C-S-H particles after one month of growth (”Ostwald
ripening”) on a calcite mono-crystal as a function of calcium hydroxide concentrations,
that is increasing pH and absolute surface charge density. Figure 14b represents the
variation of the calculated electrostatic free energy barrier for infinite platelet size versus
the calcium hydroxide concentration. The latter was determined from an extrapolation of
the free energy curves at the appropriate surface charge density determined experimentally
from titration experiments of C-S-H[21]. The C-S-H surface area decreases rapidly when
the calcium hydroxide concentration increases and the surface charge density of C-S-H
increases in absolute value. Similarly, the electrostatic free energy barrier to the growth
increases rapidly, or equivalently, the growth rate drops sharply, as the absolute surface
charge density of C-S-H increases.

Conclusions

Charged platelets show different growth behavior depending on the strength of the electro-
static interactions. In a system with weakly charged platelets where the screened Coulomb
approximation is applicable, it is always possible to find a (low) salt regime with limited

15

Page 15 of 17 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



sized platelets, which of course will grow with addition of salt. Thus, there is an electro-
static free energy cost of growing the platelets. This free energy term is dominated by
the counterion entropy. Platelet growth in the low coupling regime can also be illustrated
with simple analytical arguments.

The surface charge density of C-S-H nanoplatelets in cement paste is very high
and it is not possible to rely on simple mean field arguments, but we can still use the
primitive model with explicit representation of all ions. In a real cement paste with a
mixture of mono- and divalent ions the number of formal coupling parameters increases
and we suggest to discuss in terms of energy and entropy dominated systems. The crystal
growth will, for example, be facilitated if divalent counterions replace monovalent ones.
In general, for parameters relevant for real cement systems our simulations predict an
unlimited platelet growth in contradiction to experiments. Thus, we can conclude that
the limited platelet size observed in cement paste is not an equilibrium phenomenon!

In order to investigate non-equilibrium aspects we have calculated the free energy
cost of growth from the simulations. These free energies enable us to make qualitative
statements about the nucleation and growth rates in cement paste. From a combination
with experimental data, we can conclude that the limited growth of C-S-H platelets has
a kinetic origin.

Acknowledgement: Financial support from the Region Bourgogne and computational
support from CRI, Université de Bourgogne are gratefully acknowledged.
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