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We obtain a shallow-tunnelling correction factor for use with Wigner-Eyring transition-state theory (TST). Our starting point

is quantum transition state theory (QTST), which approximates the accurate quantum rate as the instantaneous flux through a

delocalised transition-state ensemble of ring-polymers. Expanding the ring-polymer potential to second order gives the well-

known Wigner tunnelling-factor which diverges at the cross-over temperature between deep and shallow tunnelling. Here, we

show how to remove this divergence by integrating numerically over the two softest ring-polymer normal modes. This results

in a modified Wigner correction factor involving a one-dimensional integral evaluated along a straight line on the potential

energy surface. Comparisons with accurate quantum calculations indicate that the newly derived correction factor gives realistic

estimates of quantum rate coefficients in the shallow-tunnelling regime.

1 Introduction

In the most commonly used form of transition state theory

(TST),1,2 the potential energy surface is expanded to second

order about the saddle point, where the reaction coordinate is

taken to be the unstable normal mode. The TST rate is then

evaluated using

k‡(T ) =
kBT

h

Q‡(T )
Qr(T )

e−V ‡/kBT (1)

where T is the temperature, kB is the Boltzmann constant,

V ‡ is the potential energy at the saddle point, and Qr(T ) and

Q‡(T ) are harmonic (quantum) partition functions for the re-

actants and the saddle point (and approximate rotational parti-

tion functions are included in Qr(T ) and Q‡(T ) when neces-

sary). We will refer to k‡(T ) as the Wigner-Eyring TST rate

coefficient.

Evidently k‡(T ) is a crude approximation. By expanding to

second order, one has neglected the curvature of the reaction

coordinate3 and decoupled it from the ro-vibrational motions

orthogonal to it, thus reducing the calculation to an effective

one-dimensional rate problem. In addition, the effects of an-

harmonicity and rotation-vibration coupling on the partition

functions are completely neglected. However, given the diffi-

culty of evaluating accurate potential energy surfaces on reac-

tion barriers, it often seems fruitless to attempt to go beyond
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Eq. (1), since by far the greatest errors are present in V ‡. Fur-

thermore, if the reaction is direct and recrossing is unimpor-

tant, and if quantum tunnelling can be safely ignored, Eq. (1)

often gives a reasonable estimate of the order of magnitude of

the rate coefficient and its dependence on T . Wigner-Eyring

TST has therefore played a key role in the history of physical

chemistry and continues to be used extensively.4–6

A variety of methods have been developed for extending

Wigner-Eyring TST to include quantum tunnelling, and thus

to approximate the exact quantum rate.7 Such methods can

broadly be divided into shallow-1,2,4,8 and deep-tunnelling

methods,5,9–31 depending on how the tunnelling affects the

quantum Boltzmann distribution. In shallow tunnelling, the

Boltzmann distribution is delocalised by fluctuations around a

point on top of the reaction barrier; in deep tunnelling,∗ the

fluctuations take place around a delocalised ‘instanton’ path,

which typically bypasses the barrier via ‘corner cutting’. Un-

less the barrier is rather flat, 32 shallow tunnelling dominates

at temperatures above a cross-over temperature14

Tc =
h̄ω‡

2πkB

, (2)

where ω‡ is the imaginary frequency at the saddle point of

the system. Below this temperature, deep tunnelling gradually

plays a larger role. Deep tunnelling dominates in electron-

transfer reactions,33 and in some hydrogen-transfer reactions

(e.g. gas-phase hydrogen-transfer reactions at very low tem-

peratures34); but vast numbers of reactions, including many

∗Alternative definitions of ‘deep tunnelling’ can be found in the literature. We

use the definition given in the Introduction throughout this article.
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enzyme-35–37 and surface-catalysed38–41 hydride- and proton-

transfer reactions are dominated by shallow tunnelling.

In this article, we derive a correction factor with which one

can multiply Eq. (1) in order to obtain a realistic approxi-

mation of the accurate exact quantum rate in the shallow-

tunnelling regime. The earliest shallow-tunnelling correc-

tion factor to be developed is the well-known expression of

Wigner1

κW(β) =
βh̄ω‡/2

sin(βh̄ω‡/2)
. (3)

where β = 1/kBT . Unfortunately, this expression is of little

practical use, since it diverges at the cross-over temperature

Tc, and this divergence builds up gradually such that κW(β)
can overestimate the rate by orders of magnitude as the tem-

perature approaches Tc from above. As a result, Eq. (3) is

sometimes approximated to second order to give14,42

κsW(β) = 1 +
1

24
(βh̄ω‡)2. (4)

This second order Wigner tunnelling factor (s-Wigner) does

not diverge at cross-over, but there is no rigorous justification

for using it (since it is the first term in a divergent series),

except that it connects smoothly to the classical rate at high

temperatures.

The shallow-tunnelling correction factor that we obtain in

this article is obtained by modifying the Wigner correction

factor (Eq. (3)), such that it does not diverge at Tc, and gives

realistic estimates of the rate at T ≥ Tc (and in fact also at

temperatures slightly below Tc). To obtain this factor, we

start from the recently derived quantum transition-state theory

(QTST) of Refs. 43–45, where it was shown that the definition

of classical TST (as the instantaneous reactive flux through

a dividing surface) generalizes to quantum mechanics. The

difference between QTST and classical TST is that the for-

mer uses a delocalised dividing surface, which is expressed

as a constraint on the imaginary-time path-integrals or ‘ring-

polymers’ that describe the quantum Boltzmann statistics. 46,47

Remarkably, QTST is identical† to a method developed earlier

based on heuristic arguments, called ‘ring-polymer molecu-

lar dynamics’ (RPMD) TST.15,29,30 Thus QTST validates the

growing body of quantum rate calculations done using the

RPMD approach.29,30,33,36,48,49 An important special case of

RPMD-TST is ‘centroid-TST’,25–28 in which the dividing sur-

face is taken to be the centre-of-mass (centroid) of the poly-

mer beads. The centroid dividing surface works well in the

shallow-tunnelling regime,15 and will thus be used to obtain

the tunnelling correction factor presented here.

The key equations of QTST are summarised in Section 2,

after which we derive the new correction factor by modify-

ing the derivation from QTST of the Wigner correction factor

†We therefore use the terms QTST and RPMD-TST interchangeably.

κW(T ) (Eq. (3)). Section 3 presents comparisons with the

exact quantum rates for one- and three-dimensional models.

Section 4 concludes the article.

2 Derivation

2.1 Summary of quantum transition-state theory

Quantum transition-state theory43–45 (QTST) approximates

the exact quantum rate coefficient7,10 by the instantaneous flux

through a path-integral dividing surface. As mentioned in the

introduction, QTST is equivalent to ring-polymer molecular

dynamics (RPMD) TST.29,30,48 More precisely,

kQTST(β) = lim
N→∞

k
[N ]
RPMD-TST(β). (5)

where kQTST(β) is the t → 0+ limit of the quantum flux-

side time-correlation function introduced in Ref. 43, and

k
[N ]
RPMD-TST(β) is the t → 0+ limit of the (classical) RPMD

flux-side time-correlation function. The latter corresponds to

applying classical rate theory in the extended (and fictitious)

phase space occupied by the ring-polymer Hamiltonian. For a

system with f degrees of freedom and classical Hamiltonian

H =

f∑
i=1

p2i
2mi

+ V (x1, ..., xf ) , (6)

the ring-polymer Hamiltonian is46,50

HN (X,P) =

f∑
i=1

N∑
j=1

P 2
i,j

2mi
+ UN (βN ,X), (7)

where UN (βN ,X) is

UN (βN ,X) =
N∑
j=1

V (X1,j , ..., Xf,j) (8)

+

f∑
i=1

mi

2(βN h̄)2

N∑
j=1

(Xi,j+1 −Xi,j)
2,

with βN = β/N , and j defined cyclically such that

Xi,N+1 = Xi,1. In other words, the ring-polymer con-

sists of N replicas of the original system, each located at

Xj ≡ {X1,j , . . . , Xf,j}, which are joined into a loop by har-

monic springs. Applying classical TST to this system, we ob-

tain

k
[N ]
RPMD-TST(β)Qr(β) =

1

(2πh̄)Nf

∫
dP

∫
dX e−βNHN (P,X)

×δ[s(X)]vs(P,X)h[vs(P,X)], (9)
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where Qr(β) is the quantum partition function of the reactants

(or equivalently the classical ring-polymer partition function

of the reactants), and

vs(P,X) =

f∑
i=1

N∑
j=1

∂s(X)

∂Xi,j

Pi,j

mi
. (10)

is the flux through an Nf − 1-dimensional dividing surface

orthogonal to the reaction coordinate s.

Like classical TST, QTST assumes that there is no recross-

ing of the dividing surface,45 and is therefore a good ap-

proximation for direct reactions. Unlike classical TST, QTST

does not give a strict upper bound to the exact rate, because

recrossing of quantum flux can sometimes increase the rate

(by removing destructive interference). However, at tempera-

tures sufficiently high that the amount of real-time coherence

is small, QTST will give a good approximation to an upper

bound to the exact rate, and one can thus proceed as in classi-

cal TST, by assuming that the optimal dividing surface is the

one that minimises kQTST(β). If real-time coherence effects

are large, then QTST is invalid and one has no choice but to

attempt to compute the real-time quantum dynamics.

The reaction coordinate s must be invariant under cyclic

permutation of the beads.43 At temperatures T > Tc (see Eq.

(2)), the form of s that minimises recrossing is usually the

centroid

s(x) =
1

N

N∑
j=1

sr(Xj) (11)

i.e. the centre-of-mass of the polymer beads along some (clas-

sical) reaction coordinate sr. For asymmetric barriers at lower

temperatures, s assumes a more general permutationally in-

variant form, which involves functions of the normal modes

of the ring-polymer.15

2.2 Deriving the Wigner correction factor from QTST

To derive the Wigner correction factor κW(T ) from the

QTST rate of Eq. (9), one approximates the integrals over

X by steepest-descent, meaning that the ring-polymer poten-

tial UN (βN ,X) is expanded to second order about its saddle

point, such that the integrand becomes a product of Gaussian

functions. This is a standard derivation, and we give here just

the steps we will need (in Sec. 2.3) to derive a non-divergent

modification to κW(T ). Mass-weighted coordinates are used

for the rest of Sec. 2.

At T > Tc, the saddle point on UN (βN ,X) is located at the

collapsed ring-polymer geometry

X‡ ≡ {x‡, . . . ,x‡} (12)

in which each replica is located at the saddle point x‡ on V (x),
so that

βNUN (X‡) = βV (x‡) ≡ βV ‡ (13)

The second-order expansion of UN (X) about X‡ gives

UN (Q) � UN (Q‡) +
1

2

f−1∑
i=0

N−1∑
j=0

η2i,j(Qi,j −Q‡
i,j)

2 (14)

where Qi,j and ηi,j (i = 0, f−1, j = 0, N−1) are the normal

modes and frequencies given in the Appendix, and

Q‡
i,j =

√
Nx‡

i for j = 0

Q‡
i,j = 0 otherwise (15)

Each of the modes Qi,j describes a stretch of the ring-polymer

along the direction of the i-th normal mode qi on V (x) at x‡.

The unstable mode on UN (X) is Q0,0, and the reaction coor-

dinate s is taken to be the centroid,

s =
1√
N

(Q0,0 −Q‡
0,0)

=
1

N

N∑
j=1

q0,j − x‡
j (16)

The unstable mode Q0,0 is held fixed (by the δ-function in

Eq. (9)); hence the second-order expansion about x‡
0 factorizes

Eq. (9) into Nf − 1 Gaussian integrals over the stable modes

Qi,j .

For each i > 0, the set of N integrals over Qi,j gives the

quantum partition function for a harmonic oscillator with fre-

quency ωi; together, these integrals give Q‡(T ) of Eq. (1) (if

one also includes the same approximate rotational partition

function). The remaining N − 1 Gaussian integrals over the

modes Q0,j �=0 thus give the correction factor

κW(β) =N

N−1∏
j=1

(
1

2πβN h̄2

)1/2 ∫ ∞

−∞
dQ0,j e

−βNη2
0,jQ

2
0,j/2

=N
N−1∏
j=1

1

βN h̄η0,j
(17)

Using the expressions for ηi,j given in the Appendix, taking

the limit N → ∞, and using the identity in the Appendix of

Ref. 29, we then obtain the expression for κW(β) in Eq. (3).

2.3 Numerical Wigner approximation

We now explain how to remove the divergence from κW(β) at

T = Tc, to obtain a modified ‘numerical Wigner’ correction
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Fig. 1 Schematic plots of the part of the ring-polymer potential

ΔUN (Q0,1, Q0,−1) that depends on the soft modes Q0,±1. Note

that ΔUN (Q0,1, Q0,−1) is independent of the angle θ (shown top

left), and that the plots show cuts through r (blue). The collapsed

saddle point X‡ is at r = 0 in the T > Tc plot; the instanton saddle

point spreads around a circle which appears as a double-minimum in

the cut through r at T < Tc.

factor (n-Wigner) κnW(β) that is able to give a realistic esti-

mate of the rate at temperatures down to (and in fact slightly

below) T = Tc.

From Sec. 2.2, we see that κW(β) allows for fluctuations

in the Boltzmann distribution around the top of the barrier, in

the direction of the unstable mode q0. These fluctuations are

decoupled from the coordinates orthogonal to q0, which are

treated harmonically as in Wigner-Eyring TST. This treatment

is exact for a parabolic barrier, and correctly describes the in-

finite delocalisation in the Boltzmann distribution of such a

system at T = Tc. The delocalisation is accounted for by the

behaviour of the frequencies

η0,±1 =

√
4π2

(βh̄)2
− (ω‡)2 (18)

which are real for T > Tc and imaginary for T < Tc (see Eq.

(2)). Below Tc, the modes Q0,±1 (which control the overall

extent of the Boltzmann distribution) can thus stretch indef-

initely over the top of the barrier, which is what causes the

integral to diverge.

In a real system,‡ the rate does not diverge at T = Tc, but

instead becomes dominated by deep tunnelling. On passing

through Tc, the saddle point on UN (X) shifts to a geometry

in which the polymer beads are distributed along the ‘instan-

ton’, which is a periodic orbit on the upside-down potential

‡This analysis breaks down if the barrier-top is very flat. See Ref. 30

energy surface −V (x). 11 One can still approximate Eq. (9)

by steepest-descent in this regime, but now the calculation

is more expensive, since one must expand about the instan-

ton saddle point, which first needs to be located on the Nf -

dimensional surface UN (X). 15,17,31

For T > Tc, on the other hand, the saddle point on UN (X)
is the same for a real system as for a harmonic barrier, namely

X‡. However, the fluctuations around X‡ are different, since,

in a real system, Q0,±1 samples increasingly anharmonic re-

gions of V (x) as T approaches Tc. This causes the steepest-

descent approximation to break down. The neat distinction

between deep and shallow tunnelling is thus an artefact of the

steepest-descent approximation: for T > Tc, the tunnelling is

predominantly ‘shallow’, since the polymer fluctuations take

place around the collapsed saddle point X‡, and most of the

modes Qi,j make only small displacements away from it; but

the soft modes Q0,±1 clearly sample regions of space that be-

come increasingly distant from X‡ as T approaches Tc. At

T = Tc, the dependence of UN (X) on Q0,±1 is completely

flat near X‡, as shown in Fig. 1.

We therefore propose relaxing the steepest-descent approx-

imation in the modes Q0,±1, such that UN (X) is now approx-

imated by

UN (Q) � UN (Q‡) +
1

2

f−1∑
i=0

N−1′∑
j=0

η2i,j(Qi,j −Q‡
i,j)

2

+ΔUN (Q0,1, Q0,−1) (19)

where the prime indicates that the terms i = 0, j = ±1 are

omitted from the sum, and ΔUN (Q0,1, Q0,−1) is the part of

UN (X) that depends on Q0,±1 (when all the other Qi,j are

set to Q‡
i,j). This approach is not perfect (since it neglects the

coupling between Q0,±1 and the other modes, which is likely

to become stronger as Q0,±1 becomes softer), but it is cer-

tainly an improvement on treating Q0,±1 by steepest-descent,

since it is guaranteed not to diverge at T = Tc.

The dependence of ΔUN (Q0,1, Q0,−1) on Q0,±1 is illus-

trated schematically in Fig. 1. An important property of

ΔUN (Q0,1, Q0,−1) is that it is independent of θ in the limit

N → ∞, where θ is the polar angle defined by

r =
√
Q2

0,1 +Q2
0,−1,

θ = arctan(Q0,−1/Q0,1). (20)

This symmetry follows from the invariance of UN (X) to

cyclic permutation of the polymer beads (as may be easily

demonstrated by writing ΔUN (Q0,1, Q0,−1) in terms of the

bead coordinates X, then changing Xi,j → Xi,j+1). We may

thus reduce the two-dimensional integral over Q0,±1 to a one-

dimensional integral over r. On evaluating the integrals over

the other modes by steepest descent (following Sec. 2.2), we
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obtain

κnW(β) =
NAN (β)

βN h̄2

∫ ∞

0

Q0,1 dQ0,1 e
−βNΔUN (Q0,1,0) (21)

with

AN (β) =

N−1∏
j=3

1

βN h̄ η0,j
(22)

This new shallow-tunnelling correction factor is the main re-

sult of the article, and will be referred to as the ‘numerical

Wigner’ correction factor.

3 Numerical implementation

The computation of κnW(β) has two parts: the evaluation of

AN (β), and the numerical integration over Q0,1. The evalu-

ation of AN (β) demands little computational effort, since it

requires only the frequencies ωi at the saddle point of V (x)
(which will already have been obtained in the Wigner-Eyring

calculation). Unlike κW(β), AN (β) is not in closed form,

which raises the question of how large to make N ; this param-

eter needs to be sufficiently large that AN (β) has converged

with respect to N , but not so large that AN (β) becomes nu-

merically difficult to evaluate. In practice, we expect that a

value of N in the range of 100-300 will usually suffice (see

below).

Having converged AN (β), one can then evaluate the inte-

gral over Q0,1, which clearly will involve a non-trivial amount

of computational effort, since ΔUN (Q0,1, 0) needs to be cal-

culated along a set of points in Q0,1. The most economical

way to do this is to interpolate V (x) along a grid of points

on q0 (centred on the saddle point), from which it is then

straightforward to use Eq. (8) to generate ΔUN (Q0,1, 0) at

all desired temperatures. To determine the maximum value

of q0, it is best to generate ΔUN (Q0,1, 0) from V (x) first

at T = Tc, the temperature at which the polymers stretch

furthest along Q0,1, and to continue increasing |Q0,1| until

exp[−βNΔUN (Q0,1, 0)] becomes small; one then has an up-

per range sufficient for the integrals at all T > Tc. The inte-

grand varies smoothly as a function of Q0,1, and thus a large

number of points is unlikely to be necessary.

Figure 2 plots the rate coefficients obtained from κnW(β)
for a set of one-dimensional models, and compares them with

the coefficients obtained from κnW(β), and with the QTST,

Wigner-Eyring TST and exact quantum results. The potentials

used were Eckart barriers (E1-3) of the form

V (x) =
V1

1 + exp(−2x/a)
+

[V
1/2
0 + (V0 − V1)

1/2]2

4cosh2(x/a)
, (23)

with V0 (barrier height) and V1 (exothermicity) taking the val-

ues given in Table 1. More detailed comparisons (of the ratios

Table 1 Parameters (in atomic units) used to obtain the results in

Fig. 2 and Table 2.

a m (mass) V0 V1

E1 0.66047 1836 72/(ma2π2) 0
E2 0.66047 1836 0.009 −0.003

E3 8/
√
3π 1 6/π −18/π

of the numerical Wigner to the exact quantum rate) are given

in Table 2. For convergence N = 128 beads were used for

E1 and N = 256 for E2 and E3. These results show that,

as expected, the numerical Wigner rate does not diverge at

T = Tc, and gives better results than the Wigner rate (Eq.

(3)) for T > Tc. In fact, the numerical Wigner method con-

tinues to give a good estimate of the rate down to tempera-

tures slightly below Tc. This ‘extra’ range of temperatures

narrows as the barrier is made more asymmetric, which is to

be expected, since increasing the asymmetry of the barrier is

known to push the unstable mode away from the centroid more

rapidly as temperature decreases.

Figure 3 and Table 3 show similar results for the (fully-

dimensional) H + H2, D + H2 and H + CH4 reactions, ob-

tained using the potential energy surfaces of Refs. 51 & 52,

where they are compared with accurate quantum and QTST

results obtained previously31,53,54 using the same surfaces.

The number of ring-polymer beads needed to converge the

steepest-descent integrals was N = 256 for all cases. A total

of 40 points distributed along q0 were found to be sufficient

to interpolate V (x) and thus generate ΔUN (Q0,1, 0) for all

T > Tc. The same overall improved agreement with the accu-

rate quantum results is obtained as for the one-dimensional ex-

amples, but there is additional numerical error (Table 3) near

cross-over (which gives rise to a fortuitous cancellation of er-

rors in the case of H + CH4). Most likely, this extra error

is caused by the neglect of reaction-path curvature, since the

soft modes Q0,±1 are likely to bend around the minimum en-

ergy path, mixing in other modes. Although these effects are

unlikely to affect the order of magnitude of the predictions

above cross-over (since the polymer stretches across a rela-

tively small distance), they are nonetheless quite significant

(Table 3). Further work may attempt to derive a correction for

the neglect of curvature. A curious feature of these results is

that the crude second-order approximation to κW(β) (Eq. (4))

agrees closely with the numerical Wigner result (Fig. 3 and

Table 3). Such close agreement is probably fortuitous (and

was not found in the one-dimensional calculations–see Table

2).

As already mentioned, κnW(β) continues to give reason-

able estimates of the quantum rate coefficient over a range of
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Fig. 2 Rate coefficients for the one-dimensional model systems E1-E3 of Table 1 showing that the newly developed numerical Wigner

approach [n-Wigner: Eq. (21), right panels] gives a good approximation to QTST [Eq. (9)] at the cross-over temperature (dashed line), by

removing the divergence from the standard Wigner approximation [sd-Wigner: Eq. (3), left panels]. Also shown are the results of

Wigner-Eyring TST [WE-TST: Eq. (1)], the second-order truncated Wigner approximation [s-Wigner: Eq. (4)] and exact quantum

calculations.
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Fig. 3 Rate coefficients for the (fully-dimensional) H+H2, D+H2 and H+ CH4 reactions. The quantum calculations are taken from Refs.

31,53; the experimental results (Exp) from Refs. 54–56. All other abbreviations used are defined in Fig. 2.

1–10 | 7

Page 7 of 10 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Table 2 Ratios of approximate to exact quantum rate coefficients, computed for the one-dimensional model systems E1-E3 of Table 1. The

abbreviations used are defined in Fig. 2.

E1 E2 E3

βh̄ω‡ QTST n-Wigner s-Wigner QTST n-Wigner s-Wigner QTST n-Wigner s-Wigner

2 0.96 0.97 0.95 0.96 0.97 0.96 0.97 0.98 0.96
4 0.91 0.98 0.81 0.91 0.98 0.81 0.93 0.99 0.80
6 0.84 1.12 0.48 0.85 1.15 0.48 0.88 1.15 0.44
8 0.75 1.69 0.17 0.76 1.82 0.16 0.85 1.94 0.12
10 0.66 3.89 0.03 0.74 4.77 0.03 0.84 5.58 0.01

Table 3 Ratios of approximate to accurate quantum rate coefficients, 31,53 calculated for the H+H2, D+H2 and H+ CH4 reactions. The

abbreviations used are defined in Fig. 2.

H+H2 D+H2 H+CH4

T (K) QTST n-Wigner s-Wigner QTST n-Wigner s-Wigner T (K) QTST n-Wigner s-Wigner

600 0.87 0.89 0.91 0.91 1.00 1.01
500 0.92 0.84 0.86 0.91 0.96 0.98
400 0.86 0.77 0.76 0.87 0.91 0.90 400 1.87 1.20 1.40
300 0.86 0.62 0.52 0.89 0.80 0.69 300 2.33 1.06 1.21
200 0.83 0.37 0.09 0.89 0.53 0.18 225 2.84 0.70 0.62

temperatures below Tc. This is because, at temperatures just

below Tc, the instanton geometry depends mainly on Q0,±1

and is thus correctly included in the integral over r in Eq. (21).

At such temperatures the potential ΔUN (Q0,1, Q0,−1) is flat,

with the instanton geometry appearing as a shallow circular

depression, i.e. a minimum along r. At lower temperatures,

the instanton geometry mixes in modes other than Q0,±1, and

appears as a pronounced minimum along r, giving rise to a

corresponding maximum at r=0 (see Fig. 1). A reliable rule

of thumb for determining whether the numerical Wigner rate

is within 50% of the QTST rate is to observe whether the in-

tegrand in Eq. (21) has a noticeable slope at r=0; once the

integrand becomes flat, then κnW(β) can no longer be trusted

to give a good estimate of the rate (see Fig. 4).

Finally, in pointing out the limitations of the numerical

Wigner method, we should emphasize that, since it employs

steepest-descent in all but two of the Nf modes, it is likely

to break down if the potential energy surface V (x) is strongly

anharmonic near the barrier top, either in the direction of the

reaction coordinate or perpendicular to it. Two examples bear

this out. Figure 5a plots the rates obtained for the H + Cl2
reaction, in which the barrier top is flat in the direction of the

reaction coordinate. The concept of a cross-over temperature

(which is based on a harmonic analysis) breaks down in this

system, which supports instantons at T > Tc. Such behaviour

may be quite common32 and is probably tractable by instanton

Fig. 4 Plots showing the shape of the integrand in Eq. (21) as a

function of Q0,1. The numerical Wigner method gives a reasonable

approximation to the quantum rate until a maximum develops at

Q0,1 = 0, such that the integrand becomes flat at the origin as

shown in the rightmost plot. These plots were obtained for the

one-dimensional E1 system; similar behaviour was found for all

other systems tested.

methods. Figure 5b shows the results for Cl + HCl; the bar-

rier is flat perpendicular to the reaction coordinate, and thus

the numerical Wigner method fails (as also does the Wigner-

Eyring method at classical temperatures).

4 Conclusions

We have proposed a simple correction factor for including the

effects of shallow tunnelling into the Wigner-Eyring TST rate.

This ‘numerical Wigner’ factor is similar to the well-known

Wigner correction factor (Eq. (3)), except that the degenerate

modes that cause the latter to diverge at the cross-over tem-
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Fig. 5 Computational results for the collinear H+ Cl2 and Cl + HCl reactions, showing how the numerical Wigner approach breaks down if

the potential is flat along the reaction coordinate (H+ Cl2) or perpendicular to it (Cl + HCl).

perature are integrated over numerically. The resulting cor-

rection factor does not diverge at the cross-over temperature,

and gives realistic estimates of the quantum rate down to tem-

peratures slightly below cross-over. The extra computational

effort required (in addition to evaluating the Wigner-Eyring

TST rate) is to evaluate a one-dimensional integral along a

straight line in the direction of the unstable mode at the saddle

point. Typically, the integral requires the potential energy to

be calculated at about 30-40 points along this line. We thus

expect the new correction factor to be computable for a large

variety of systems, certainly for proton and hydride transfer

in complex gas-phase systems,37 and possibly also for pro-

ton and hydride-transfer reactions in solution (provided one is

able to free-energy average over the solvent modes).

The disadvantage of the method is that is neglects the effects

of reaction-path curvature on the tunnelling, although this was

found to have a relatively minor effect in the numerical tests

carried out here (most likely because the fluctuations in the

QTST partition function do not extend far along the reaction

coordinate at shallow-tunnelling temperatures). The advan-

tages of the method are that it does not need additional optimi-

sation calculations to be done (once the classical saddle-point

is located), and that it is based, not on a heuristic model, but

on a systematic approximation to the QTST rate.
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APPENDIX: Ring-polymer normal modes

Let the f mass-scaled normal modes of the potential energy

surface V (x) at the saddle point x‡
0 be qi, i = 0, . . . , f −

1, with ωi being the associated frequencies, and define q0 to

be the unstable normal mode (i.e. the reaction coordinate in

Eq. (1)), so that ω0 = iω‡, where ω‡ is the modulus of the

barrier frequency.

The Nf normal modes of the ring-polymers at the collapsed

ring-polymer saddle point x‡ are then

Qi,0 =
1√
N

N∑
j=1

qi,j ,

Qi,k =

√
2

N

N∑
j=1

sin

(
2kjπ

N

)
qi,j ,

Qi,N−k ≡ Qi,−k =

√
2

N

N∑
j=1

cos

(
2kjπ

N

)
qi,j ,

Qi,N/2 =
1√
N

N∑
j=1

(−1)jqi,j . (24)

where i = 0, . . . , f − 1 and k = 1, ..., (N − 2)/2. The asso-

ciated frequencies are

ηi,k =

√
4

(βN h̄)2
sin2

(
kπ

N

)
+ ω2

i , (25)

where k = −(N − 2)/2, ..., 0, ..., (N − 2)/2, N/2 . Note that

the modes Qi,±k are degenerate.

In the limit N → ∞, only modes with k << N have non-

zero probability in the ring-polymer distribution, and their fre-
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quencies become

ηi,k =

√(
2kπ

βh̄

)2

+ ω2
i , k << N. (26)
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