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Application of the Maximum Entropy Principle to 

determine ensembles of Intrinsically Disordered 

Proteins from Residual Dipolar Couplings 

M. Sanchez-Martinez,a and R. Crehueta  

We present a method based on the Maximum Entropy principle that can re-weight an ensemble 
of protein structures based on data from Residual Dipolar Couplings (RDCs). The RDCs of 
Intrinsically Disordered Proteins (IDPs) inform on the secondary structure elements present in 
an ensemble; however even two sets of RDCs are not enough to fully determine the 
distribution of conformations, and the force field used to generate the structures has a 
pervasive influence on the refined ensemble. Two physics-based coarse-grained force fields, 
Profasi and Campari, are able to predict the secondary structure elements present in an IDP, 
but even after including the RDC data, the re-weighted ensembles differ between both force 
fields. Thus the spread of IDPs ensembles highlights the need for better force fields. We 
distribute our algorithm in an open-source Python code. 
 

 

 

 

Introduction 
Intrinsically Disordered Proteins (IDPs) are an emerging family 
of proteins characterized by adopting a vast number of 
configurations in solution. Their role in cell signalling, 
transcription and aggregation turns them into key proteins in 
cancer and neurodegenerative diseases.1,2 One would expect 
many of them to be drug targets, however very few studies have 
addresses the interaction of IDPs with small molecules.1,3 One 
reason for that is the difficulty in both generating and 
characterizing the ensemble of configurations that turn an IDP 
functional.4 A common mechanism of IDPs is a folding 
transition upon binding partner proteins.5 The amount of 
secondary structure elements in the unbound IDPs governs the 
kinetics of this binding process,6 thus the need to understand 
IDP secondary structure elements  in solution. These regions 
are also called MoRFs7,8 and many studies aim at their 
identification. 
A very suitable technique to characterize the secondary 
structure at a residue level is the NMR Residual Dipolar 
Couplings (RDCs);9 a technique that has been thoroughly 
developed by Blackledge10–13 and Forman-Kay14–17 groups, 
among others. In an isotropic medium, such as liquid water, 
dipolar couplings average out to zero. But if the media has 
some preferential directions, then there is a partial alignment of 
the molecules and a residual coupling can be measured. 

Contrary to what is the case for folded proteins, in IDPs the 
alignment tensor is essentially determined by the local 
(secondary) structure.16 When the main mechanism of 
alignment is steric, repulsion between the protein and the 
alignment medium tends to align secondary structure elements 
parallel to the medium. For this reason N–H couplings convey 
important information on the secondary structure. When the 
alignment medium is parallel to the field they are positive in α-
helices –as all N–H are parallel to the helix– negative in β-
sheets, –as N–H are perpendicular to the sheet– and are very 
low for regions without any secondary structure, where residue 
orientations are random. A qualitative interpretation of RDCs 
can be based on these principles, but a quantitative explanation 
can be achieved if one is able to generate an ensemble of 
configurations that reproduce the measured RDCs.11,12,15,16  
The generation of the ensemble that fit the RDCs is the crux of 
several approximations used in this field.18 A common 
approach is to sample random coil regions of the 
Ramachandran plot with codes such as Flexible Meccano,13,19 
TraDES,16,20 or BEGR21 and then introduce secondary structure 
regions and weight them with a statistical analysis11,17 or a 
genetic algorithm.13 This is because the physics behind these 
force fields are very simple and cannot predict secondary or 
tertiary structure. These methods have proved extremely 
successful in interpreting several IDP studies, but lack 
predictive value in terms of secondary structure elements. 
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The problem of optimizing an ensemble is a case of inferential 
structure determination,22 albeit with a much broader 
probability distribution. If this distribution comes from a 
simulation, we would like to modify it so that it agrees with the 
experimental data. Ideally, the inclusion of the experimental 
data should create ensembles that agree among themselves, 
even if coming from different simulation methods. Here we 
explore to which extent this is true. 
We present a method based on the Maximum Entropy principle 
(MaxEnt) to fit RDCs data to simulated ensembles. Maximum 
Entropy is a logically consistent way to fit a distribution to 
previously known values introducing the minimum possible 
modifications.23,24 It has been advocated very recently as a 
powerful technique to solve structural problems25 and it has 
already been applied to SAXS ensemble determination.26 
We generated our ensembles from two coarse grained force-
fields, which have more accurate physical terms than TRaDES 
or Flexible Meccano while remaining computationally 
affordable. Coarse-grained methods allow sampling the large 
conformational space essential to describe IDPs and converge 
RDC data. However the simulation force-field does not 
influence the validity of presented selection procedure, which 
can be applied to all types of ensembles. 
Our aim for this work is three-fold. First, we develop a fitting 
algorithm to adjust experimental RDCs to an ensemble of 
conformations. We implement our method in a publicly 
available code so that it can be compared to others, and can be 
used by any research group.27 Second, we explore the 
information content of RDC data and the influence of our force 
field; in other words, how much do the RDCs constrain the 
initial ensemble. Considerable efforts have been made to 
determine how much different experimental data determine the 
properties of the ensembles.17 Here we want to highlight the 
relevance of the underlying model, which is often overlooked. 
And third, we test whether some coarse grained methods can 
produce more accurate ensembles than random-coil-based 
Force Fields and thus increase the prediction of RDCs.  

Methods 
The Maximum Entropy (MaxEnt) principle derives from 
minimizing the information included in an ensemble to fit 
certain observables. It was first introduced by Jaynes23 and was 
recently applied as a way to constrain Molecular Dynamics on-
the-fly.28,29 Roux and co-workers showed that under certain 
circumstances, their results were equivalent to the more 
traditional constrains with harmonic potentials, used also in 
Molecular Dynamics,30 while Vendruscolo and co-workers 
showed that the restraint strength can be related to the 
experimental error.31 Here we present the application of the 
MaxEnt to the a posteriori re-weighting of an ensemble that has 
already been calculated. We also add some modifications 
needed to treat RDC data. 
We decided to implement an a posteriori re-weighting so that 
our method could be applied to ensembles generated with any 
software or force field. A second reason is that when applying 

the constraints on-the-fly, one usually averages by the number 
of replicas running on parallel32,33 but the number of replicas 
needed to converge the RDC values for IDPs is of the orders of 
thousands (see results section), which means that constraint 
Molecular Dynamics could be only run in supercomputers. 
In our a posteriori re-weighting we assume we have a set of N 
structures {Xj=1,N} that we have previously calculated with a 
Monte Carlo or Molecular Dynamics simulation. As such, they 
have already been generated with probability proportional to 
their Boltzmann factor, which depends on each specific Force 
Field. For a set of M observables q={qi=1,M}, Pitera and 
Chodera showed that the application of the MaxEnt principle 
resulted in a reweighting of the probability of each structure j 
by a term:28 

�� =�exp�	
�
��					(1)
�



	 

The form of the reweighting is fixed and a single parameter 	
  
applied to each observable. As each structure has already been 
generated with a weight according to a given ensemble (a 
Boltzmann factor in NVT), ��  modifies the weight of the 
structure to fit the experimental observables. �
�  represents the 
value of observable i in the structure Xj. q is a matrix of 
dimension: M×N. The average value of observable qi for a 
given reweighting is: 

〈�
〉 =����
�
�

�
					(2) 

RDCs have the peculiarity that they can only be defined up to a 
proportionality constant �, because their absolute value 
depends on their degree of alignment, which cannot be 
measured. This has two consequences. First the weights in Eq. 
2 need not be normalized, and second, one cannot define a 
simple convex objective function as Pitera and Chodera did.28 If 
we know a set of measured RDCs Q ={Qi}, we define the 
function: 

��(�) = max � 1� ‖�〈�〉 − !‖", $"%				(3) 
 
to be minimized. t is a threshold value that is determined by the 
experimental precision, there is no point in optimizing below 
that threshold, so f1 is constant in that region. In the case of the 
experimental RDCs, we chose the value of 1Hz. The value of � 
can be obtained analytically minimizing ��(�) which gives: 

� = |〈(〉. *|〈(〉. 〈(〉 					(4) 
 
When using N–H and Cα–Hα sets of RDCs a common scaling 
factor was used.34 Because of the scaling, the weights need not 
be normalized, but for the sake of clarity in the figures and in 
the main text we scale the weights so that they add up to the 
number of structures, so that a weight equal to 1 is equivalent to 
a structure not being reweighted. 
Because the scaling adds one degree of freedom, the set of 
λ={λi} that minimize f1 lies on a 1-dimensional curve. Based on 
the MaxEnt principle, we seek λ that minimally modifies the 
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ensemble. By Eq. (1) these are the λ as close as possible to 0. 
Therefore we add a penalty term: 

�"(�) = ,� ‖�‖"					(5) 
 
and minimize f=f1+f2. Although we are introducing a new 
parameter, its value is only determined by the user-defined 
threshold t. If k is large, f2 will dominate and will force low λ 
that will result in f1 higher than the threshold. Once k is small 
enough, f1 reaches the threshold and further reduction of k 
results in the same optimal λ (Fig. S1). Therefore the selection 
of k is done by the algorithm. The lack of sensitivity to k is an 
important difference with restrained dynamics where its choice 
is highly non-trivial.25,30,31 The minimization of f is done with 
the Newton-GC method implemented in scipy.35 For that, the 
analytic gradient is required. Its expression is deduced in the 
Appendix.  
Our implementation converges less than 10 seconds for the 
ensembles used in this work in a 1 processor Xeon machine. 
This is to be compared with the Bayesian method developed by 
Stultz,36,37 which  their most efficient method takes about 30 
minutes in an 8 processor Xeon machine with an ensemble of 
299 structures.  At the time of writing this paper, Das et al.38 
published an interesting paper with a full Bayesian approach 
(called FitEnsemble) based on MonteCarlo sampling and 
implemented in pyMC.39 In the results section we compare our 
method with theirs and we show that the full Bayesian approach 
does not convey any essentially new information. At present 
their method cannot deal with scale-invariant quantities such as 
RDCs, but we do not see any fundamental reason why it could 
not be extended to treat them and we plan to explore this 
possibility. That would allow a cleaner way to introduce the 
uncertainty of RDCS prediction and the experimental error, 
which are cumbersome to include in a Maximum Entropy 
formalism40 in an ad-hoc manner. As the comparison with 
FitEnsemble38 will show, both of these terms are small for 
RDCs and the MaxEnt principle results in a fast algorithm. The 
extension of generative probabilistic models40,41 or Maximum 
Likelihood approaches42 to IDPs is also an attractive 
alternative, but it is beyond the scope of this work to evaluate 
them. The MaxEnt principle gives results in agreement with the 
Sparse Ensemble Selection algorithm,43 but the latter is 
computationally more expensive and needs some further 
development to be applicable to IDPs.43  

Data 

As N–H RDCs are the most discussed RDCs for IDPs we focus 
on these data, but we also explore the additional information 
carried by Cα–Hα RDCs. We use two kinds of data. First, we 
test our method with synthetic data, as that allows comparisons 
to the exact result. Then we apply the method to experimental 
RDCs to see how it performs.  In both cases we use a 53 
residue sequence from the nucleocapsid-binding domain of 
Sendai virus phosphoprotein. This protein has a crucial role in 
the replication and transcription of the negative strand RNA 
genome.11,44 The N-terminal domain of this protein is 

unstructured but contains some partial secondary structure. The 
sequence of the simulated fragment is FVTLHGAERLEE-
ETNDEDVSDIERRIAMRLAERRQEDSATHGDEGRNN-
GVDHE (the charges at the end of the sequence were removed 
as it is part of a larger protein). This fragment corresponds to 
the residue numbering 458 to 510 in 11. We have analysed only 
this region as it contains secondary structure elements11,44 that 
cannot be predicted with a simple force field such as Flexible 
Meccano. 

Synthetic data 

We run a Parallel Tempering simulation using the Profasi Force 
field45,46 in the Profasi code47 with 16 replicas, from 270 to 
330K.  
We take T1=325.6K as our reference or “experimental” 
ensemble. We calculated the RDCs for 8000 uncorrelated 
structures with PALES48 using steric alignment, because the 
NMR setup used  (see SI for the PALES options used). Then, 
we have used the ensembles of structures at T0=317.0K to fit 
the RDC data at T1. 
Because we have simulated both ensembles, we know that the 
weight that a given structure j with energy Ej from the T1–
ensemble at temperature T0 is given by the Bolzmann factor, 
namely: 

�Boltzmann
� ∝ exp �− � 1/� −

1/0%1
%					(6) 
And this can be compared with the reweighting of our MaxEnt 
algorithm based on the RDCs. 

Experimental data 

The experimental data for this study was obtained from a 
Blackledge and co-workers work.11 In their study they 
measured N–H and Cα–Hα RDCs and made a statistical 
analysis to evaluate which regions of α-helix needed to be 
added to explain the observed results. When comparing with 
experimental data, our residue number 1 corresponds to residue 
number 458 in 11. In this region, 31 N–H RDCs and 25 Cα–Hα 
RDCs were measured. RDCs for the 11 terminal residues are 
not calculated nor taken into account for the fit side to eliminate 
the boundary effects in the RDCs.49,50  
The most interesting part corresponds to residues 18 to 34, 
because of their tendency to form partial α-helices, also known 
as MoRFs.7,8  
These data has been simulated with two different coarse-
grained force fields: Profasi45–47 and Campari51. Profasi was 
chosen for its focus on reproducing the folding behaviour of 
proteins based on physical terms. We think that using a 
physics-based force field is important to work with IDPs as 
knowledge-based force fields are biased towards folded 
proteins. Profasi has also been applied to IDPs.52,53 The choice 
of Campari is justified because it was specifically design to 
work with IDPs and has been applied in several studies.51,54 The 
Campari system contains 9 sodium ions to neutralize the 
charge. 
The RDCs were calculated from the PDBs with the PALES 
software.48 As the alignment media, poly(ethylene glycol), is 
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dominated by steric interactions, we used the steric alignment 
in PALES (see the SI for further details). 

Data and code availability 

The Profasi and Campari ensembles re-weighted to fit the 
experimental data have been deposited on the Protein Ensemble 
Database (pE-DB)55 with the code 4AAB. Because the pE-DB 
does not support weighted ensembles, the deposited structures 
are those structures with weights larger than 0.75 (see below). 

Cross Validation 

We have performed two types of cross-validation. First, we use 
experimental N–H RDCs as a training set and leave the 
experimental Cα–Hα as test set. Second, we use a set of 10000 
structures as a test set and use a variable number of structures in 
the training set. We tried the following sizes for the training set: 
{100, 250, 500, 750, 1000, 2500, 5000, 7500, 10000}. When 
using smaller sets, MaxEnt could not converge to the requested 
accuracy in the training set. Remark that the training set is not a 
subset of the test set, and in the final case, we have a total of 
20000 structures. We compare the error in the fit in the test set 
with the λ={λi} and the scale factor coming from the training 
set with respect to the error in that training set. This procedure 
can tells us the adequate size of the training set and an 
estimation of the error. 
 

Results and discussion 

Size of the ensemble and error estimation 

The number of molecules in an NMR experiment is orders of 
magnitude larger than what can be simulated. How many 
structures should an ensemble contain? We seek the minimum 
number of structures needed so that when we add more 
structures to the ensemble (sampling from the probability 
distribution given by our force field) the results do not change 
appreciably.56 This depends both on the property we measure 
and the shape of the probability distribution of the ensemble. 
For example, for several folded proteins, a single structure can 
reproduce a SAXS curve or a diffraction pattern.  
Fig. 1 shows the error in the test set when using different 
number of structures for the training set to fit N–H RDCs with 
the Campari ensemble. We can see that for training sets smaller 
than several thousands, the errors in the test set remain very 
large, and increase as we improve the fit in the training set. In 
other words, the optimized {λi} are not transferable.  This 
shows us that we need training sets at least of 7000 structures to 
determine parameters that do not overfit the experimental 
results until an RMS error of approximately 1Hz. Because this 
number is close to the experimental error, we consider 
ensemble sizes of 7000–10000 as adequate. 
Alternatively, we can estimate the error when calculating the 
mean value for an RDC: the standard error of the mean.  There 
is certain ambiguity in this value as RDCs can be scaled, but we 
take here a fixed scale factor obtained from the fit of the 10000 
structures (α=2.08). Fig. S2 agrees with our conclusion that 

several thousands of structures are needed to get a mean RDC 
values of the same order of the experimental error. This result is 
independent of the residue we are measuring: the convergence 
of all RDCs is the same. Other studies have also found the 
underlying ensembles are more heterogeneous than what the 
measured mean value may suggest.56–58 
Several previous studies used a smaller ensemble size31,32 to 
successfully simulate IDPs. The size of the ensemble in these 
MD restrained simulations depends not only on the dispersion 
of the measured property but also on the other parameters used 
for the restrain, namely its force constant.30,31 These works run 
simulations in parallel and were limited by computational 
resources, but formally their results are exact only when the 
number of replicas tends to infinity. Other computational 
methods are expensive, thus limiting the size of the 
ensembles.4,14,15,17,37 Our method is efficient for thousands of 
structures so that we prefer to use the full simulated ensemble. 
A second important reason to limit the size of the ensembles is 
to reduce the overfitting. This is an issue when the weights of 
the structures are the parameters to be optimized, because new 
structures introduce new parameters, with the obvious risk of 
overfitting. With the MaxEnt algorithm, the number of 
parameters is fixed by the number of experimental data and not 
by the number of structures in the ensemble, which again, does 
not prevent the use of large ensembles. 

Synthetic data. What are the RDCs re-

weighting? 
In this section we analyse to which extent the MaxEnt can 
recover an unknown ensemble, using some experimental data 
from that ensemble. 
To analyse the secondary structure (SS) content of the 
ensemble, we use SS-map.59 SS-map is a software that plots the 
SS fraction of a given residue on the y axis and the length of the 
SS element on the x axis, thus providing a picture of the SS 
distribution of an ensemble with the information of the 
cooperativity of different SS of individual residues. By plotting 
both the fraction of SS and its length, it allows to distinguish, 
for example, a fully formed helix of 10 residues present 50% of 
the time, from 2 fragments of 5 residues spanning the same 
range. 
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Fig. 1 Plot of the root mean square (RMS) error allowed when fitting 
the training set with respect to the error in the test set. The test set is 

always of 10000 structures whereas the training set increases from 100 
to 10000 structures. Results seem converged above 7500 structures and 

trying to fit below 1Hz results in overfitting even for the largest 
ensembles. 

 

The ensemble at T1 represents what in a real situation would be 
the unknown ensemble, from which we only know the 
measured RDCs. T0 is a calculated ensemble that presumably 
will be similar, but does not have to reproduce the data exactly. 
MaxEnt should be able to reweight the T0-ensemble so that it 
fits the “measured” RDCs. Will the T0 re-weighted ensemble be 
more similar to the T1 ensemble? 
Fig. 2 shows the SS-map of the synthetic ensembles at 
temperatures T0 and T1 and the re-weighted T0-ensemble to fit 
T1 N–H RDCs. Because T0 is a lower temperature, this 
ensemble presents longer helices. Fig. 3 shows the application 
of the MaxEnt principle returns a set of weights that can 
reproduce the final RDCs. 

 

 Fig. 2 SS-map of the Profasi ensemble at T0=317.0K (right) and 
T1=325.6K (left) and the T0 MaxEnt re-weighted ensemble to fit T1 N–
H RDCs (middle). The later ensemble has fewer long helices than the 

T0 ensemble, but it still contains more long helices than the T1 ensemble 
despite reproducing the RDCs at T1.  

 

 

The re-weighting needed to fit the data gives a set of weights 
that are closer to 1 than the exact Boltzmann reweighting (see 
Fig. 3). In other words, although the exact Boltzmann weights 
can reproduce the RDCs of the objective T1-ensemble (see Fig. 
S3), the MaxEnt principle tells us that, based on the data, we do 
not need to change the weights that much, and that a lower 
modification of the ensemble is enough and consistent with the 
data. 
As Fig. 3 suggests, the energy distribution of the reweighted T0-
ensemble is still closer to the T0-ensemble than to the objective 
T1. On average the energy increases but remains lower than the 
T1-energy distribution (see Fig S4). Fig. S5 shows that most of 
the structures do not get re-weighted, and only a few do. For 
those that get re-weighted there is a certain correlation between 
the Boltzmann re-weighting and the re-weighting given by the 
N–H RDCs. Of course, if more data are used, for example Cα–
Hα RDCs, the reweighting will increase, but even when 
doubling or tripling the number of experimental data, the 
degrees of freedom of the ensemble are much higher. We 
explore this in the following section. 
The N–H RDCs do not give information on the energy but on 
the SS content of the structures, thus we expect the re-
weighting to change the SS distribution. Figs. 2 and S6 reveal 
that the re-weighting the data produce goes in the expected 
directions: the T0 ensemble gets depleted from the long helices 
that give too large RDCs. But these figures also show that the 
SS-map of the resulting ensemble remains different from the 
objective T1-ensemble. There are still regions of long helices 
much less populated in the T1-ensemble. In the following 
section we will give a reason why the reweighting is not 
complete and only affects some of the structures. 

       

Fig. 3 Left: MaxEnt fit of the Profasi T0=317.0K ensemble to the 
Profasi T1=325.6K average N–H RDCs (blue). The unweighted 

ensemble (green) has a too many long alpha-helices compared to the 
optimized ensemble (red). Right: distribution of the weights after the 
ME optimization (blue) compared to the exact Boltzmann weights. 

 

 
The results from this section suggest that the RDCs give some 
information on the SS content of an ensemble, but this 
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information is limited and cannot fully determine the helical 
propensity nor the helical lengths of an ensemble.  

Application to experimental RDCs 
We now focus on the reproduction of the experimental RDCs. 
First we use N–H RDCs and then we include Cα–Hα RDC 
either as a form of cross validation or as a source of further 
structural information. Here, we treat the temperature of the 
simulation as a parameter, so that we first select the ensemble 
that best fits the N–H RDCs. For Profasi, this temperature is 
325.6K, and for Campari, the temperature is closer to the 
experimental one: 300.5K. As these are the only ensembles we 
will use from now on, we will refer to them as Profasi and 
Campari ensembles. Previous studies showed that some force 
fields need higher-than-experimental temperatures to agree with 
the data,57 however this adds a parameter that limits the 
predictive power of Profasi.  
The Profasi ensemble fits the N–H RDCs reasonably well, but 
shows a region, around residue 35 of too much alpha helix. The 
MaxEnt algorithm produces a small reweighting of this 
ensemble, with most of the structures retaining a weight close 
to one. Therefore the SS-map of the ensemble is visually 
indistinguishable from the one shown in Fig. 2. 
We can use the Cα–Hα RDCs to cross-validate this refined 
ensemble. The Cα–Hα RDCs are very similar to the original 
ones, showing that we did not incur in overfittng, but differ 
significantly from the experimental (Figure S7). This shows 
that Cα–Hα and N-H RDCs are not correlated, and depend on 
different structural properties of the ensemble. The lack of 
agreement with Cα–Hα indicates that the Profasi ensemble does 
not correctly represent the real structural ensemble. 
As fitting one set of RDCs does not affect the other, we can use 
MaxEnt to also fit Cα–Hα RDCs The resulting ensemble is 
reweighted to a stronger extent and correctly fits the 56 RDCs. 
(Figure S8). However Fig. 5 shows that despite the use of the 
additional 25 Cα–Hα RDCs, the fitted Profasi ensemble has 
only changed its composition slightly (compare to Fig. 2). This 
change went in the expected direction, increasing the long 
helices in the region of residues 20-27 and depleting the 
ensemble from helices in the region 31-39 (Figure S9). 
However this change was minor compared to the overall 
composition of the ensemble. Thus, even the use of 56 RDC 
data does not qualitatively change the Profasi ensemble and 
hints that it is still far from the real ensemble. We believe this 
information can be used by developers to improve the quality of 
this force field. The spread of IDPs energy landscape make 
them a good target to find the balance between secondary 
structure populations and lengths versus random coils. 
The Profasi ensemble differs from the ensemble deduced by 
Blackledge and co-workers,11,44 that was mainly composed of 
random coil regions and three long helices. Their helices add up 
to 75% of the ensemble, and the longest helix has a population 
of 11% and ranges from residue 20 to 35. The robustness of 
their choice was checked by statistically significant 
improvement compared to other helical combinations. Despite 

Profasi being able to reproduce the folding of peptides and 
small proteins ab initio.45,60 it does not predict the long helical 
elements suggested by Blackledge and co-workers.  
   

 

Fig. 4 Left: MaxEnt fit of the Profasi T1=325.6K ensemble to the 
experimental N–H RDCs (blue). The unweighted ensemble (green) has 
a region of too much alpha-helices compared to the optimized ensemble 

(red) between residues 32–40. Right: distribution of the weights after 
the optimization. 

 

The introduction of the experimental data does not reweight all 
the structures equally, because the weight of a structure 
depends on its RDC values.  

 
Fig. 5. SS-map of the MaxEnt re-weighted Profasi (left) and Campari 
(right) ensembles using 31 N–H RDCs and 25 Cα–Hα RDCs. Both 

ensembles fit the experimental RDCs to the same accuracy. 

 

The set of RDCs forms a 31-component vector that is difficult 
to compare to weight of the structures. We can compress the 
information of this vector in its root-mean-square (RMS) value. 
If we plot the optimized weights vs. the RMS of the RDC 
vector for each structure, a clear trend appears (Fig. 6): the 
higher the RMS(RDC) the more reweighted the structure is. 
This makes sense, as reweighting a structure with small RDCs 
does not improve the fit. In other words, MaxEnt (or any other 
fitting procedure) is blind to structures that have low RDCs. 
Because RDCs can be scaled, “low” or “high” RDC refers to 
the value with respect to the other structures. As is well known, 
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large RDCs correspond to long helices, and these structures are 
the ones MaxEnt finally re-weights to a larger extent. 
Only 208 structures out of 8000 have a weight lower than 0.75 
(see Fig. 7) when fitting N–H RDCs. Just by removing these 
structures from the ensembles and letting the others unchanged, 
the fit is almost as good as the optimized one in Fig. 4 (RMSD 
= 1.96Hz compared to the optimized 1.00Hz, Fig. S10). The 
SS-map of these structures (Fig. S11) reveals that these 208 
structures are mainly long helices in the region of residues 32–
40, just where the original Profasi ensemble gives RDCs that 
are too large. Thus the MaxEnt re-weighting agrees with our 
biophysical intuition. 
We now turn to the comparison with the Campari ensemble. 
This comparison is illustrative because it allows disentangling 
the fitting procedure with prior distribution of the ensemble. 
Indeed, the comparison we did with Blackledge and co-workers 
was comparing a different ensemble and a different fitting 
procedure. This is a common practice in this field: different 
groups have developed sampling force fields and fitting 
procedures and the results contain information of both. For 
example, Forman-Kay group results are based on their 
ENSEMBLE selection procedure15,17 from a TRaDES force 
field16,20 generated structures. The present comparison will shed 
light on the information RDCs provide giving two different 
ensembles and the same fitting procedure. 
The temperature of the Campari force field is better defined 
than that of Profasi, because the best fitting temperature 
corresponds to the experimental temperature. However, the 
initial ensemble has a worse agreement with the experimental 
N–H RDCs and therefore it needs a larger re-weighting (Fig. 7) 
The secondary structure of this ensemble is considerably 
different from that of Profasi. It lacks the very abundant short 
helices of the Profasi ensemble and contains mainly helical 
fragments in the regions of residues 22–32. This is, indeed, the 
region that the RDCs suggest should have helical fragments, 
and the region where Blackledge and co-workers deduced the 
helices were. There is a quantitative difference because the 
amount of helices in the Campari ensemble is lower than that 
obtained by Blackledge11 (see also Fig. 4 in 59). However, it is 
true that both convey a similar ensemble, whereas the Profasi 
one is qualitatively different. Despite the differences, the 
Campari and the Profasi ensemble to fit N–H RDCs have 
similar scaling factors, (α= 3.97, 3.67 respectively). 
 

 

Fig. 6 Optimized weights for the Profasi ensemble to fit the 
experimental RDCs. The x-axis represents the root-mean-square of the 
RDCs for each of the 8000 structures, showing that the structures that 
get significantly reweighted are the ones that have large RDCs. When 
using only N–H RDCs (orange) the reweighting is smaller than when 

also using Cα–Hα RDCs. The dotted lines are set  at w=0.75, and 
defines a fraction of structures that, if removed, improve significantly 

the fit. See the text for more details. 

 

As before, the initial ensemble is similar to the optimized one, 
so that because the original Profasi and the Campari ensemble 
differ, the optimized ensembles still differ, even qualitatively. 
Even using the same fitting procedure, the starting ensemble 
has a pervasive influence in the optimized one. This is because 
the MaxEnt principle minimizes the modifications to the 
original ensemble, but this is a positive quality because it 
avoids overfitting or biasing the optimization procedure. 
Again, we can introduce the Cα–Hα RDCs to increase the 
number of experimental data. As with Profasi, the reweighting 
increases, but the final ensemble is qualitatively very similar 
than the original. The cross-validation with Cα–Hα RDCs 
shows that the Campari predicted values are closer to the 
experimental ones. In spite of being closer, the N–H RDC 
reweighted ensemble does not improve the Cα–Hα (Figure S7) 
in agreement with the results of Profasi, and suggesting the the 
Cα–Hα are independent of the N–H RDCs.  
Despite the difference between the Campari and Profasi 
Ensemble, it is worth emphasizing that both are able to 
reproduce the positive N–H RDCs in the central region, and 
that the MaxEnt re-weighted ensemble do not differ 
significantly from the original ones. This may seem 
disappointing –if we expected them to collapse to the same 
final ensemble– but it also shows that the initially generated 
ensembles are physically reasonable. Based on the relation 
between energy and probability Δ1
 = −4	/ log��
 �
0⁄ �,  
where �
0 = 1 9⁄ , the energy difference for a reweighting of 
0.5 is only 0.4kcal/mol. Unfortunately, if we want to predict 
secondary structure elements we need these force fields to do 
better, and the RDC data can be used to improve them. The 
weight distribution of IDP structures is not peaked as with 
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folded proteins, and thus can be easily reweighted to fit 
experimental data. Therefore agreement with experimental data 
does not guarantee a real structural ensemble. If we expect 
insights from the simulated ensembles we need Force Fields to 
have more predictive power. Campari seems to be more 
successful in this respect.   
The Campari ensemble is “simpler” to interpret, but that does 
not seem to us a valid reason to favour it. On the contrary, the 
Profasi ensemble needs less re-weighting and thus has more 
predictive power. It is true, however, that the use of an 
artificially high temperature in the Profasi ensemble is 
introducing a parameter that Campari force fields predicts to a 
good accuracy and this can also be the cause for the higher 
errors of the Cα–Hα in the Profasi ensemble. The Profasi 
temperature was originally defined as the correct scaling 
parameter of the energy to reproduce the melting temperature 
of the Trp cage peptide.45 For IDPs maybe this parameter can 
be slightly scaled and it is then transferable to other sequences 
or maybe rescaling some of the energy terms results in a shifted 
temperature. Further systems need to be tested but our 
preliminary results suggest that the higher temperature is 
transferable among IDPs. 
 

 

Fig. 7. Left: ME fit (red) of the Campari ensemble to the experimental 
RDCs (blue). The unweighted ensemble is shown in green. Right: 

distribution of the weights after the optimization. 

 

If, as before, we remove the structures that have w<0.75 and 
leave the remaining unweighted, the fit of the Campari 
ensemble is very good (Fig. S12). In this case, the number of 
structures removed is larger, 2074 out of 8000 (Fig. S13). As 
with the Profasi ensemble, the structures that get a larger re-
weighting are the ones that have larger RDC norm. The 
consistency of the re-weighting starting from different 
ensembles with different RDCs, strengthens our confidence on 
the validity of the MaxEnt algorithm that we present. 
Ideally, one wishes to start with a large pool of structures and 
let the data select the ones that agree with the ensemble. 
Different initial distributions should swamp to the same re-
weighted distribution. Unfortunately, this is not the case; not 
even for folded proteins!41 RDCs do not convey enough 
information to make the initial distribution irrelevant. Our 
perspective is that the biophysical community has made heroic 

efforts in developing experimental techniques to probe IDPs, 
and then has hoped the data to speak by themselves, 
overlooking the influence of the prior distribution that the force 
fields produce. 
Profasi and Campari can predict secondary structure elements 
in IDPs ensembles based only on first principles, i.e. they can 
go beyond random coil force fields. But the ensembles they 
generate are different, and the RDC fitting cannot make them 
equal, not even similar. They do have an influence on the final 
ensemble that can fit the RDCs data. This is not to say that the 
RDCs are not informative, but that the ensembles that fit the 
data mingle the information form the RDCs with that of the 
force fields. Efforts should be made both to improve 
experimental methods and force fields. Indeed, we believe that 
the later lag behind the experimental developments attained in 
the IDPs world. 

Comparison with FitEnsemble 
The recent publication of FitEnsemble,38 a method to reweight 
calculated ensembles to experimental data, prompted us to 
compare this approach with ours. The advantage of 
FitEnsemble is that it is a fully Bayesian approach. It is one 
order of magnitude slower than MaxEnt, but that involves times 
of a bit more than a minute, which is still very competitive. The 
problem is that it cannot work with scale invariant quantities 
such as RDCs. Here we take the scaling factor of the optimized 
ensemble with MaxEnt to compare both methods. 
The agreement with both methods is very high (Fig. 8). We also 
see that the uncertainty in the weights is low compared to its 
dispersion. That confirms our assumption that this is not a key 
parameter. We found that the resulting FitEnsemble fit has 
much lower errors than the introduced experimental 
uncertainty. In particular, for an uncertainty of 1 Hz, the fit has 
a root-mean-square error of 0.2. Therefore we optimized our 
MaxEnt to a threshold of 0.1. For the FitEnsemble, we used a 
regularization strength of 3, as suggested by the authors but we 
checked that values of 0.3 and 30 essentially produced the same 
average results and the same dispersion. 
The extension of FitEnsemble to include a scale parameter 
seems a interesting approach. Still, questions about the 
convergence of MCMC for RDCs ensembles need to be 
addressed, as well as ensuring that it remains a computationally 
affordable method. 
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Fig. 8. Comparison of the fitting of MaxEnt and FitEnsemble.38

 

FitEnsemble results include the estimated error from the Bayesian 
procedure, but it is of the order of the point size. 

Conclusions 
We present an algorithm based on the Maximum Entropy 
principle, which minimizes the information introduced in the 
fitting of experimental data to a given ensemble. We adapted 
the algorithm to work with scale invariant measures, such as 
RDCs. The algorithm is implemented in an open source code 
freely available.27 The advantage of our method is that it can be 
used by different experimental groups using different 
ensembles, as it can use any given set of structures. It can use 
thousands of structures and converges in a few seconds. It also 
avoids the risk of overfitting, as the number of parameters 
depends only on the number of experimental data, and not on 
the number of structures in the ensemble. Cross-validation 
shows that more than 7000 structures need to be used to get 
errors close to the experimental errors of 1Hz.  
It has been claimed that RDCs are one of the best probes of 
IDPs residual secondary structure,12 but other works have 
questioned the relevance of RDCs in IDPs modelling.17 Our 
results, both with a synthetic and an experimental data set, 
suggest that RDCs can shift the ensembles secondary structure 
composition, but only to a limited extent. Different sets of 
RDCs – N–H and Cα–Hα – give complementary information 
and improve the reweighting, however  the vast conformational 
space that IDPs can sample makes it a complex case of 
inferential structure determination,22 so that even with the large 
number of RDC experimental data, the amount of data is sparse 
compared to the size of the ensemble.40 
Neither all-atom, nor coarse-grained force fields have the 
precision to describe an IDP ensemble,61 as errors of 1 or 2 
kcal/mol can significantly shift the populations of helices or 
other secondary or tertiary structure elements. Therefore the 
need to use experimental data to improve these ensembles is 

mandatory. But the experimental data is insufficient to fully 
determine this ensemble, and the pervasive influence of the 
force field cannot be overlooked, if we wish to have consistent 
representations of IDPs ensembles. 
Even though both Campari and Profasi predict certain 
secondary structure elements, their ensembles are qualitatively 
different. That determines the composition of the MaxEnt 
reweighted ensembles. The combination of Cα–Hα and N–H 
RDCs suggests that Campari is more suitable to describe IDPs 
than Profasi. We still need further work to test other force 
fields, improve them, and check other complementary sources 
of data that help up further select the ensembles. One of our 
future goals is to include SAXS and chemical shifts in our 
Maximum Entropy code. 
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Appendix 
Here we derive the expression of the gradient of f1 and f2, 
needed for their optimization. 
For the sake of simplicity we will derive the gradient of f1 
piecewise. We only consider when the argument in Eq. (3) is 
larger than the threshold; otherwise the gradient is the null 
vector. The gradient of the average RDC is: 
 

:(〈(〉) ∶= <〈�=〉<	
 = −��
��=� exp >�−�?�
�

?
	?@

�

�
 

The gradient of the scaling factor α is: 
 

:(�) ∶= <�<	
 =
A	:(〈(〉) ⋅ *	(〈(〉 ⋅ 〈(〉) − 2|〈(〉 ⋅ *|	〈(〉 ⋅ :(〈(〉)(〈(〉 ⋅ 〈(〉)"  

 
Where s is the sign function of 〈(〉 ⋅ *. Finally: 
 	 <��<	
 =

2�	�:(�) C 〈(〉 D �	:(〈(〉)� ⋅ (�〈(〉 − *) 
 
Where × represent the outer product. The gradient for f2 is 
trivial: 
 <�"<	
 = 2

,� 	
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