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Abstract 

In this experimental investigation the interaction of lithium with 1-octyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)amide ([OMIm]Tf2N) is shown. For this purpose thin films of lithium and 

[OMIm]Tf2N were successively vapor deposited on a copper substrate and analyzed by X-ray 

Photoelectron Spectroscopy (XPS) as well as by Ultraviolet Photoelectron Spectroscopy (UPS). When 

[OMIm]Tf2N is evaporated on top of a thin lithium film a chemical shift analysis of XPS spectra 

shows a variety of reaction products like LiF, Li2O and LixCHy which reveals the instability of the IL, 

at least of the cation, against lithium. Time resolved XPS spectra were discussed to separate the cation 

reactions from beam damage effects. In a second step lithium is deposited on a [OMIm]Tf2N layer. 

The XPS spectra are in agreement with the results of the previous step, but show some differences 

concerning the [OMIm] cation. In a third step [OMIm]Tf2N has been deposited on a passivated lithium 

layer. XPS results show nearly unaffected [Tf2N]
-
 anions and partially decomposed [OMIm]

+
 cations. 

Interestingly the cation reactions show similarities when compared to the interaction of 

[C4C1Pyrr]Tf2N (1-butyl-1-methylpyrrolidinium bis[trifluoromethylsulfonyl]amide) and lithium. 

Keywords: Ionic Liquids, lithium, X-ray photoelectron spectra, ultraviolet photoelectron spectra, Solid 
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Introduction 

Room-temperature ionic liquids (RT-ILs) are of fundamental interest as organic solvents and 

functionalized materials, as they have a couple of impressive chemical and physical properties.
1–3
 Due 

to their quite low vapor pressure at room temperature, they can be analyzed under vacuum conditions 

enabling a variety of surface sensitive analysis methods.
4–6
 As RT-ILs exhibit good ion conductivities, 

high temperature stability and a large electrochemical window together with a good solubility for 

lithium salts, they are of potential interest as electrolyte for non flammable Li based batteries
7–9
, like 

e.g. lithium/air batteries. 

Lithium ion batteries are preferentially used for energy storage in cell phones, laptop computers and 

nowadays in some electrically powered cars. As their energy density is only ~150 Wh/kg and as LiPo 

batteries are flammable, further development is needed.  

Especially fires of lithium ion batteries in e-cars recently attracted the public interest as the commonly 

used organic solvents for the cells are also volatile and flammable, implying some danger for the 

driver and rescuers in the case of an accident. Furthermore organic solvents are too reactive against 

metallic lithium, thus lithium anodes, which would enable even higher energy densities
10,11

, are 

practically excluded with conventional electrolytes. 

The variety of possible combinations of anions and cations allows modifying the electrolyte properties 

precisely. Replacing the organic solvents by ionic liquids has been widely tested and promises to be a 

good compromise between performance, safety and stability.
12–14

  

The interaction of lithium with organic solvents for battery applications like tetrahydrofuran (THF) 

and propylene carbonate (PC) has been done for instance by Zhuang et al.
15
 They evaporated thin 

films of THF and PC in a UHV chamber on a lithium layer and observed a lithium induced 

decomposition of the organic molecules by using photoelectron spectroscopy (XPS). In the present 

paper the stability of 1-Octyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ([OMIm]Tf2N) 

against lithium has been investigated by vapor depositing a thin film of the RT-IL on top of a lithium 

covered copper substrate. The interactions have been analyzed by photoelectron spectroscopy using 

Al Kα radiation to observe elemental composition as well as chemical state information and He I 

radiation for valence band spectra of the sample. 

In a second step lithium has been deposited on a [OMIm]Tf2N layer as this might change reaction 

kinetics or even show differences based on the formation of passivating layers of the reaction 

products. Beyond that [OMIm]Tf2N is deposited on a previously oxidized lithium layer in a third step. 

As Keppler et al. observed degradation of [EMIm]Tf2N during non monochromatic X-ray irradiation
16
 

it is important to distinguish beam damage related effects in the interaction of lithium and 
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[OMIm]Tf2N from those occurring immediately after deposition. Therefore the measurements were 

evaluated with respect to the irradiation time. 

Experimental 

The experimental investigations as well as the preparation steps were performed in an UHV chamber 

with a base pressure of below 5×10
-10
 mbar. A polished copper foil, commonly used as current 

collector in battery applications17, was used as substrate, fixed on a molybdenum sample holder and 

transferred into the UHV chamber.  

For each of the experiments the substrate was cleaned referring to the literature18: it was heated by a 

resistive sample heater (PBN) as part of the Omicron manipulator to 880 K for 10 minutes and etched 

at this temperature for 10 minutes by argon ions with a kinetic energy of 2 keV using an Omicron ISE 

5 ion source. Afterwards, it was heated to 930 K for 15 to 20 minutes, depending on the base pressure 

in the main chamber. The purity of the copper surface was verified by XPS survey spectra (see SI). 

The ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([OMIm]Tf2N) was 

purchased in the highest available quality (NMR: purity > 99%, IC: Halides < 100ppm) from Io-Li-

Tec (Germany) and dried under vacuum conditions at 375 K to remove the water content to below 2 

ppm.  

To produce a thin layer of [OMIm]Tf2N, the RT-IL was evaporated at 415 K for 600 seconds using the 

TCE-BSC (Kentax GmbH) evaporator resulting in a layer thickness of about 7 nm on top of the 

substrate, which was validated by XPS intensity loss of the Cu 2p3/2 peak after deposition. Evaporation 

of [OMIm]Tf2N in thin films on Au(111) under UHV conditions has been well investigated19,20. The 

ionic liquid remains intact as thermal decomposition first can be observed in a temperature range 

above 600 K.21 

For lithium evaporation a lithium-metal alloy (Alvasources® AS-3-Li-10-C by Alvatec) was heated 

via resistive heating with a current of 8 A resulting in a temperature of about 875 K. At this 

temperature pure lithium is emitted from the alloy, which is stored in a stainless steel tube. Lithium 

was vapor deposited for 180 seconds in all experiments described here. The amount of lithium can be 

estimated by evaporating lithium on the substrate and calculating the thickness by XPS measurements 

with approx. 0.6 nm. As we expect a difference in the interaction of lithium with the ionic liquid when 

lithium is previously deposited on the substrate and followed by evaporation of [OMIm]Tf2N 

compared to the opposite procedure, this investigation includes three experimental steps:  

1. Depositing [OMIm]Tf2N on a layer of Li 

2. Depositing Li on a layer of [OMIm]Tf2N 

3. Depositing [OMIm]Tf2N on a layer of previously oxidized lithium 
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The steps were characterized by valence band spectroscopy (UPS) using an He I VUV source 

(Omicron HIS 13) with 21.2 eV photon energy and core level spectroscopy (XPS) using Al Kα 

radiation with 1486.6 eV photon energy of a non monochromatic X-ray source (Omicron DAR 400). 

While the sample is grounded for the XPS measurements, a potential of 5 V was applied for the UPS 

experiments supporting the emission of low energy electrons. Electrons emitted were detected by a 

hemispherical analyzer (Omicron EA125) under an angle of 45° to the surface normal. 

Since degradation of ionic liquids with imidazolium cations, that are exposed to non-monochromatic 

X-ray radiation, was observed before
16
, XPS analysis was performed as fast detail scan of the C 1s, 

N 1s, O 1s, F 1s, S 2p and Li 1s regions with a total exposure time of about 1h.  

As X-ray degradation is a continuous process relative to the exposure time, the beam damage based 

reaction products can be emphasized by evaluating detail spectra time resolved. For the time resolved 

XPS plots a 5 data point wide moving average procedure has been applied to time and energy 

information of fast detail scans.  

All spectra were displayed as a function of the binding energy with respect to the Fermi level. The 

XPS spectra have been charge corrected by fixing the F1s component of the CF3 group at 688.5 eV to 

improve comparability of the results. 

For quantitative XPS analysis, a Shirley-background-subtraction was employed.22 Photoelectron peak 

areas were calculated by fitting Gauss-type profiles optimized by the Levenberg-Marquard algorithm 

with the CasaXPS software. Photoelectric cross-sections calculated by Scofield23 and asymmetry 

factors calculated by Yeh and Lindau
24
 as well as the transmission function of the hemispherical 

analyzer have been taken into account for stoichiometric calculations. The free mean path of the 

electrons in organic samples was also involved in the calculations, according to literature.
25
 

Results 

1. Reference spectrum of [OMIm]Tf2N on Cu 

In figures 1-5 detail XPS spectra of the C 1s, N 1s, F 1s and O 1s regions are shown. For a better 

comparability the intensity of the different experimental parts is scaled equally in each figure. The 

binding energy (BE) and the relative amount of the fitted component peaks are displayed in table 1. As 

the signal/noise ratio of the S 2p peak is rather bad, it has not been taken into account and thus is not 

displayed here. In the first row (a) of the figures the spectra for [OMIm]Tf2N as deposited on the 

copper substrate are shown.  

Due to the strong C-F3 bond the C 1s peak of the anion at 292.8 eV is clearly distinguished from the 

cation peaks at 286.4 eV and 284.8 eV. While the first cation component at 286.4 eV  is associated 
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with carbon atoms in the imidazolium structure in a chemical environment of nitrogen the second 

component at 284.8 eV is associated with the residual carbon in imidazolium and in the octyl-chain.26 

The small peak at 287.9 eV can be assigned to C-F 
27
 which may be associated with radiation induced 

decomposition of the anion. 

The N 1s spectrum in Fig. 2a can as well be divided into two components, as the nitrogen in the cation 

is more positive compared to the nitrogen in the anion. The first peak at 401.8 eV is related to the 

[OMIm]
+
 cation while the second peak at 399.3 eV nitrogen peak is related to [Tf2N]

-
.
26
 

The spectrum in Fig. 3a shows the O 1s component of the anion peak of [OMIm]Tf2N at 

532.4 eV next to a rather small peak at 530.5 eV. The small peak is a hint for oxidation of the copper 

substrate either by oxygen impurities during evaporation or by decomposed anions. 

In Fig. 4a the XPS spectrum of the F 1s region is displayed. It consists of a single peak at 

688.5 eV that can be assigned to carbon in the CF3 component of the anion. 

Due to the high reactivity of copper the interactions of RT-ILs with the copper substrate has to be well 

considered. Uhl et. al. recently reported about changes of [C4C1Pyrr]Tf2N (1-butyl-1-

methylpyrrolidinium bis[trifluoromethylsulfonyl]amide) vapor deposited in a sub-monolayer film on a 

Cu(111) surface at room temperature.28 They observed decomposition of the [Tf2N]
- anion and found a 

stable adsorbate phase mainly containing CuxS but as well adsorbed CF3, while the cation remains 

intact.  

Thus the C-F assigned peak in the C 1s spectrum and the small peak in the O 1s spectrum might show 

radiation based anion decomposition16 but might as well be based on anion degradation in presence of 

the copper surface. However, as the present XPS results for [OMIm]Tf2N on copper are in good 

agreement with XPS studies in the literature26,29–31 and as there are no further chemical changes 

visible, bulk interactions between [OMIm]Tf2N and copper can be neglected.  

2. [OMIm]Tf2N / Li / Cu 

When [OMIm]Tf2N is deposited on a lithium layer major changes can be observed for the cation 

components in the C 1s (Fig. 1b) and N 1s region (Fig. 2b).  

The C 1s peaks of the cation lose about 84% of their peak area and both shift by approx. 0.5 eV to 

lower binding energies to 285.9 eV and 284.5 eV. In contrast the peak area of the anion peak in the 

C 1s region at 292.7 eV does not significantly change. 

At 281.7 eV a new component shows up in the region where we would expect carbon bound to 

lithium. The lithium seems to have reacted with the carbon either in the imidazolium ring or in the 
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aliphatic chain to build LixCHy. The peak assignment to LixCHy is in good agreement with the lithium 

carbon bounds observed for powdered methyllithium and dilithiomethane samples by Meyers et al.32 

In the N 1s region the cation component at 401.8 eV has vanished completely, while the anion 

component still is located at 399.3 eV. Additionally a new component is detected at 397.4 eV, which 

is difficult to allocate without doubt as it could either be related to decomposed [OMIm]
+
 cations or 

decomposed [Tf2N]
- anions. However, this peak most likely originates from nitrogen in [OMIm]+ 

shifted by 4.4 eV to lower binding energies. This means the nitrogen is under these conditions in a 

completely different chemical environment compared to nitrogen in the imidazolium ring and thus the 

cation character of [OMIm]
+ 
is lost during the interaction with Li.  

The [Tf2N]
- peak in the O 1s region (Fig. 3b) exhibits a shoulder peak on the low binding energy side 

at 531.2 eV which is related to reaction products of lithium and [OMIm]Tf2N. In this region of O 1s 

we expect Li2CO3, but as well LiOH like shown in XPS studies at the electrode surface of non ionic 

liquid based lithium ion batteries.
33,34

 

Additionally a new peak appears at 528.1 eV with a peak area of 16 at.% of the total O 1s area, which 

can be assigned to oxygen in Li2O.
33–35

 

The F 1s spectrum in Fig. 4b also shows a new component at 684.8 eV referring to LiF.36 

We can conclude that both anion and cation react with the lithium layer. As these reactions might be 

influenced by beam damage under the incidence of X-ray radiation, we did time dependent 

measurements. Fig. 5 and Fig. 6 display time resolved XPS spectra of the F 1s and C 1s region in a 

waterfall plot. For reasons of clarity and comparability the first recorded spectrum is fit and displayed 

like the spectra in Fig. 1 – Fig. 4, while the other ones are displayed as solid line. For a more detailed 

view the area of each peak fit is plot in relation to the measurement time in supporting information (SI 

Fig. S2). 

Fig. 5 clearly shows a continuous decay of the F 1s anion peak at 688.5 eV while the F 1s peak of LiF 

at 684.8 eV increases. Thus the LiF forms because of beam damage on the anion side. However, as it 

is already present at the moment where the measurement starts we have to conclude that the initial 

presence of LiF is due to the reaction of the IL layer with lithium. 

The anion peak in the C 1s spectrum (Fig. 6) at 292.7 eV is in good agreement with this. While its 

peak area continuously decays no significant change can be seen for the cation peaks at 285.9 eV and 

284.5 eV, as well as for the LixCHy component. Even the N 1s spectrum (see SI) does not change with 

time of measurement. This means the cation reaction must have taken place before the XPS analysis 

started and the decomposition is not induced by the XPS measurements.  
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Comparing the C 1s and F 1s spectra in Fig. 5 and Fig. 6 with the ones in Fig. 1b and Fig. 4b the anion 

seems to be stronger reacting with the lithium surface in the waterfall plots (small intensity in the C 1s 

anion component, great amount of LiF). This most likely is related to the changed order of 

measurement, may as well be due to partially oxidation of the lithium surface before evaporating 

[OMIm]Tf2N. 

 

3. Li / [OMIm]Tf2N / Cu 

When evaporating lithium on a [OMIm]Tf2N layer the reaction products are quite similar to those 

observed before.  Major differences were observed for the C 1s region in Fig. 1c. The anion peak at 

292.6 eV has broadened and is much smaller compared to the peak in step 2 (Fig. 1b). However the 

relative amount of the anion component in C 1s is still high, compared to the [OMIm]Tf2N spectrum 

in the reference (Fig. 1a). The main difference can be detected in the C 1s cation peaks as the 

component at 285.9 eV, assigned to C-N, raised compared to the result in step 2 (Fig. 1b), thus even 

exceeds the amount of the C-C component. Maybe this is due to the formation of C-O contributions, 

which would not be distinguishable from C-N bonds in the shown C 1s XPS spectrum. 

The shoulder on the low binding energy side of the C 1s cation peak indicates the existence of 

LixCHy
29
 and can be fit by a peak at 282.4 eV with an area of 7 at.% of the total peak area of the C 1s 

region. 

The N 1s spectrum in Fig. 2c is in good agreement with the results of [OMIm]Tf2N deposited on a 

lithium layer shown in step 2 (Fig. 2b). The anion peak can be detected at 399.3 eV, while there is a 

component at 397.3 eV again, which might be related to reaction products of [OMIm]
+
 and lithium. 

Small changes are observed for the anion peaks of the O 1s and F 1s spectra. The O 1s spectrum in 

Fig. 3c shows a shoulder peak at 531.2 eV next to the [Tf2N]
-
 peak at 532.4 eV, like observed before 

in step 2. At 528.5 eV a new component has built, which might be Li2O shifted 0.4 eV to higher 

binding energies. Compared to [OMIm]Tf2N evaporated on a lithium layer (step 2) the total intensity 

of the O 1s anion peak decreased.  

A similar trend is observed at the anion peak in the F 1s region in Fig. 4c as its peak area decreased 

compared to the spectrum in step 2. The area of the LiF component of F 1s at 684.9 eV increased to 

33 % of the whole F 1s peak area.  

4. [OMIm]Tf2N / Li2O / Cu 

The formation of Li2O surfaces by an interaction of oxygen with a lithium multilayer has been 

investigated by Shek et al.
37
. Referring to their work a lithium layer was oxidized by exposure of 
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approx. 10 L O2. The formation of a Li2O surface has been verified by UPS spectra and XPS analysis 

of the O 1s peak. Next to the Li2O peak the O 1s spectrum after O2 exposure exhibits a smaller peak, 

which may be associated with partial oxidation of the copper surface. Thus the lithium layer might 

either not be completely closed or there is oxygen diffusion through the lithium layer. 

 As for the results shown above in step 2 and step 3 (Fig. 1b-c), the C 1s component of the anion in 

Fig. 1d is intense compared to the cation peaks. However, the [OMIm]+ peak with its components at 

284.5 eV and 285.9 eV is shaped like the reference peak in step 1 (Fig. 1a). Additionally there is a 

small component at 283.1 eV BE which is correlated to LixCHy,
32 like already observed for the 

previous experiments. The small shoulder peak in the C 1s spectrum at 287.1 eV on the high binding 

energy side of the cation peak could be explained by C-F fragments of decomposed anion.  

In Fig. 2d the N 1s spectrum of [OMIm]Tf2N evaporated on an oxidized lithium layer is shown. There 

are three peaks visible in the N 1s region. The peaks at 397.4 eV and 399.3 eV are in good agreement 

with the components shown in step 2 and step 3 (Fig. 2b-c). Compared to them the peak area and thus 

the amount of nitrogen of the new component at 397.4 eV is decreased.  

Additionally there is another component at 401.0 eV which most probably is related to nitrogen in 

[OMIm]+. The shift of the N 1s peak by 0.8 eV to lower binding energies, compared to the [OMIm]+ 

component in the reference, can be explained by a slightly modified chemical environment and is in 

good agreement with XPS spectra of neutral imidazolium compared to cationic ones38 and spectra of 

RT-ILs with imidazolium cations in general.
26,29

 

When [OMIm]Tf2N is deposited on top of the Li2O layer the O 1s spectrum (Fig. 3d) shows 4 different 

peaks. On the one hand the peaks of Li2O at 528.1 eV and CuxO at 530.5 eV, which already have been 

measured before evaporating [OMIm]Tf2N, on the other hand the O 1s peak of [Tf2N]
- at 532.4 eV and 

the shoulder peak at 531.2 eV, which both can be fit analog to steps 2 and 3 (see Fig. 3b-c). 

Remarkably the shoulder peak has 17 % of the whole O 1s peak area, thus Li2O might be reduced in 

the reaction with [OMIm]Tf2N. 

In contrast the F 1s spectrum in Fig. 4d is clearly dominated by the fluorine in the CF3 component of 

the anion. The LiF component at 684.8 eV is quite small with a peak area of 7% of the sum of both F 

1s component areas. 

Li 1s 

For each of the experiments Li 1s can be detected in the region between 54 eV and 58 eV. The 

resulting Li 1s spectra after reaction of lithium and [OMIm]Tf2N are shown in Fig. 7. Due to the very 

low photoionization cross section of the Li 1s state, long integration times have to be chosen to 

observe this peak in more detail. As this would enhance the decomposition of the ionic liquid and 

possibly lead to side reactions, a bad signal/noise ratio has to be taken into account here. 
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UPS results 

In addition to the XPS results UPS spectra were recorded (see SI) for [OMIm]Tf2N deposited on Li 

and on Li2O immediately after sample preparation. With increasing time after deposition the two main 

peaks of the RT-IL30,39 decrease continuously, which could be caused by desorption of the ionic liquid 

or by rearrangement of the components and has not been observed before
20
. Further experiments are 

needed to interpret these UPS results in detail. In the case of [OMIm]Tf2N evaporated on top of the 

lithium layer contributions of LiF and Li2O appear next to the main peaks of the RT-IL, which is in 

good agreement with the XPS results. When evaporated on top of the oxidized lithium layer no 

additional features can be observed next to a small Li2O peak and the main peaks of [OMIm]Tf2N. 

Discussion 

The experiments exhibit an instability of [OMIm]Tf2N against lithium. As shown in the time-resolved 

XPS spectra in Fig. 5 and Fig. 6 some of the species observed formed during the measurement, i.e. 

caused by the incidence of X-rays. 

A fragmentation of the [Tf2N]
- anion by electrons was shown in literature before.40,41 Whishart et al. 

observed the degradation pathways of different ILs by electron paramagnetic resonance spectroscopy 

and predicted a charge transfer process of the much more stable cation radicals to the anion.40 Keppler 

et al. have shown similar anion fragmentation and desorption occurring on slow time-scales when 

exposed to X-ray radiation, which most probably is the reason for the formation of LiF and Li2O 

during the measurements in the presence of lithium.
16
  

However, as the time-resolved XPS spectra in Fig. 5 exhibit a certain amount of LiF even in the first 

spectrum, the reactions of [Tf2N] and lithium initially started before XPS analysis. This is in good 

agreement with the few observations on lithium ion batteries using ionic liquids with [Tf2N]
- anion as 

electrolyte.
42,43

 

[C4C1Pyrr]Tf2N 

The decomposition of the cation in the presence of lithium is subject to a different process, as the 

cation peaks of the N 1s and C 1s regions do not change during XPS analysis. To investigate the role 

of the imidazolium cation in the reaction, experiments with ionic liquids with alternative cations have 

to be performed and compared to these results. 

As a first insight Fig. 8 and Fig. 9 show the C 1s and N 1s spectra of [C4C1Pyrr]Tf2N (1-butyl-1-

methylpyrrolidinium bis[trifluoromethylsulfonyl]amide) deposited on copper and on lithium/copper, 

similar to the experiments above. The XPS spectra of ionic liquids with pyrrolidinium ions has been 

well described by Men et al.44 As those spectra are in good agreement with the present results 

interactions of [C4C1Pyrr]Tf2N with copper, recently observed for sub-monolayers
28
, might have a 

minor effect on thicker RT-IL films.  
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Due to the different chemical environment of carbon bound to nitrogen the carbon in the cation C 1s 

spectrum in Fig. 8 can be divided in C-C and C-N components, too. If [C4C1Pyrr]Tf2N is evaporated 

on lithium, the intensity of the second peak (here at 286.5 eV) associated with carbon in a nitrogen 

electronic environment decreases, while the peak area of the other components remain nearly constant. 

The peak area of the N 1s cation peak (at 402.4 eV) in Fig. 9 decreases when the RT-IL is evaporated 

on lithium, in good agreement to the C 1s spectra. Additionally a new component has formed at 396.9 

eV analog to the results observed for N 1s in [OMIm]Tf2N (see Fig. 2).  

Howlett et al. analysed the solid electrolyte interface of a cycled lithium/copper electrode using 

[C4C1Pyrr]Tf2N as electrolyte.
42
 They observed the presence of reduction products of [Tf2N]

-
 on the 

electrode interface, in good agreement with the anion reaction products shown before. Although a 

certain influence of the cation was noted, the role of [C4C1Pyrr]
+
 in the reaction remains ambiguous. 

Interestingly also a new component in the N 1s XPS spectrum was found on the low binding energy 

side after interaction with lithium, which is supposed to be nitride and part of the native film of the ex-

situ prepared sample. 

In our case no nitrogen contamination was observed during sample preparation (see survey spectra in 

SI). On the contrary Fig. 9 shows the formation of a new nitrogen species concomitant with partially 

decomposition of [C4C1Pyrr]
+
. This most likely is based on a breakup of the pyrrolidinium structure 

changing the local chemical environment of nitrogen to a chain-like LiCxHyN structure. 

Nguyen et al. investigated the SEI during lithiation of a silicon-copper electrode covered with 

[C3C1Pyrr]Tf2N using FTIR spectroscopy and XPS.
45 They observed degradation of anion and cation 

depending on the applied voltage and cleavage of C-F bonds in the [Tf2N]
-
 anion responsible for LiF 

formation. In the N 1s region of the XPS results a new peak is detected with a similar binding energy 

shift, which is supposed to be related with further degradation products of the anion after cleavage of 

the C-F bond.  

On the contrary Weingarth et al. performed an in situ electrochemical XPS study for [EMIm]BF4 on 

platinum and observed the formation of a new peak at this position in the N 1s region, which is a clear 

evidence for an imidazolium cation decomposed and fragments adsorbed on the electrode surface.
46  

As N 1s spectra of [C4C1Pyrr]Tf2N and [OMIm]Tf2N, each in interaction with lithium, show 

similarities concerning the cation region (compare with Fig. 2b-d), breakup of the immidazolium 

structure most probably is the reason for the changes of the cation peaks in steps 2-4, too. But as both 

decomposed Tf2N anions
45 and decomposed imidazolium cations46 result in an N 1s component around 

397.4 eV this cannot be proven here. 

Nevertheless, quite similar results with XPS have been obtained for tetrahydrofuran and propylene 

carbonate by Zhuang. et al.
15
 Both organic molecules react with the lithium layer and were 
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decomposed. The authors claim the decomposition is based on ring-opening, too. In addition they 

found desorption of fragments of the decomposed molecules into the vacuum at elevated temperatures. 

Furthermore Zhao et al. observed changes in the XPS cation peaks of [EMIm]Tf2N, which is used as 

electrolyte for lithium secondary batteries, after cycling. Those changes as well were reported to 

involve breakup of the imidazole ring and are quite similar to the present results.
47
 

For a slight impression of the mechanisms behind Valencia et al. performed ab initio calculations of 

[EMIm]BF4 adsorbed on crystalline lithium surfaces.
48
 They observed a great attraction of lithium to 

the [BF4]
- anion together with the partial reduction of [EMIm]+.  

But as LixCHy components and most probably C-O compounds can be observed in the results here, the 

decomposition of [OMIm]+ cation might be more complex and proceeding in several steps. Especially 

the differences in the cation components of the C 1s spectra (Fig. 1) of [OMIm]Tf2N deposited on 

lithium and lithium deposited on a [OMIm]Tf2N layer are unclear at this state. As the intensity and 

peak area ratio of the N 1s peaks (Fig. 2) of both experiments are in good agreement, carbon species of 

decomposed [OMIm]+ most likely were involved in the reaction with lithium. This furthermore would 

explain the shoulder peak in the O 1s spectrum, which could not be explained by anion decomposition. 

However the peaks would not be distinguishable from the peaks of [OMIm]Tf2N in the C 1s and O 1s 

spectra, thus further experiments are needed.  

The results of the UPS spectra indicate loss of [OMIm]Tf2N or its components in the interaction with 

lithium or Li2O (see SI). This is emphasized by loss of intensity in the XPS peaks, mainly in C 1s 

cation peaks, and supports the conclusion most of the cations or more likely parts of decomposed 

cations were desorbed in presence of lithium on the copper surface.  

As loss of fragments from X-ray induced degraded imidazolium cations using mass spectroscopy has 

been observed before
16
 thermal desorption spectroscopy (TDS) measurements of ionic liquids on a 

lithium surface could help out identifying desorbed species and thus might explain the decomposition 

of [OMIm]
+
 in presence of lithium in more detail. 

Passivation of the lithium surface slows down or even prevents the interaction of [OMIm]Tf2N and 

lithium. This is obvious comparing the peak area of the LiF species in the F 1s spectra (Fig. 4b-d). The 

highest amount of LiF with 33 % can be found for lithium deposited on top of [OMIm]Tf2N. The 

amount of LiF when [OMIm]Tf2N is deposited on a previously oxidized lithium layer is only 7% of 

the total F 1s peak area. In this case even the cation does not decompose completely. When lithium is 

evaporated first followed by evaporation of [OMIm]Tf2N there might be a passivation of the lithium 

surface by the reaction products leading to a lower amount of LiF and Li2O.  
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Conclusion 

In the current paper the reaction of the ionic liquid [OMIm]Tf2N with Li and Li2O has been 

investigated. Both the cation and the anion react with lithium, giving a series of decomposition 

products like LixCHy, Li2O and LiF. Time resolved XPS measurements show that species like LiF and 

Li2O continuously form during the measurement. However, as these species were already present at 

the moment where the XPS measurement has started it is excluded that they solely form during the 

measurement, thus they must initially be the result of a chemical reaction of [OMIm]
+
 with lithium. 

Interestingly, the cation C 1s and N 1s spectra show similarities when compared to the first results 

obtained for the interaction of [C4C1Pyrr]Tf2N with lithium.  

The results give a first insight into the reaction products that have to be expected when [OMIm]Tf2N 

and other ionic liquids with an imidazolium cation shall be used either as electrolyte or additive in 

lithium ion batteries. In our next steps we will thus investigate how liquids with pyrrolidinium cations 

interact with lithium or sodium in more detail. 
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  [OMIm]Tf2N [OMIm]Tf2N / Li Li / [OMIm]Tf2N [OMIm] Tf2N / Li2O 

Peak BE [eV] at.% BE [eV] at.% BE [eV] at.% BE [eV] at.% 

C 1s     281.7 13 282.4 7 283.1 8 

284.8 51 284.5 39 284.6 25 284.5 37 

286.4 33 285.9 4 285.9 37 285.9 15 

287.9 5 287.1 7 287.1 8 

  292.8   11 292.7 43 292.6 24 292.5 32 

N 1s     397.4 73 397.3 66 397.4 49 

399.3 41 399.3 27 399.3 34 399.3 35 

  401.8 59       401.0 16 

O 1s     528.1 16 528.5 28 528.1 25 

530.5 12 530.5 10 

531.2 16 531.2 31 531.2 17 

  532.4 88 532.4 68 532.4 41 532.4 48 

F 1s     684.8 25 684.9 33 684.8 7 

  688.5 100 688.5 75 688.5 67 688.5 93 

 

table 1: XPS C 1s, N 1s, O 1s and F 1s binding energies and stoichiometrics for pure [OMIm]Tf2N on copper, 

[OMIm]Tf2N deposited on a lithium layer,  lithium deposited on a [OMIm]Tf2N layer, [OMIm]Tf2N deposited on 

Li2O 

 

 

Fig. 1: C 1s XPS spectra for – a) pure [OMIm]Tf2N on copper, b) [OMIm]Tf2N deposited on a lithium layer, c) 

lithium deposited on a [OMIm]Tf2N layer, d) [OMIm]Tf2N deposited on Li2O 
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Fig. 2: N 1s XPS spectra for – a) pure [OMIm]Tf2N on copper, b) [OMIm]Tf2N deposited on a lithium layer, c) 

lithium deposited on a [OMIm]Tf2N layer, d) [OMIm]Tf2N deposited on Li2O 

 

Fig. 3: O 1s XPS spectra for – a) pure [OMIm]Tf2N on copper, b) [OMIm]Tf2N deposited on a lithium layer, c) 

lithium deposited on a [OMIm]Tf2N layer, d) [OMIm]Tf2N deposited on Li2O 
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Fig. 4: F 1s XPS spectra for – a) pure [OMIm]Tf2N on copper, b) [OMIm]Tf2N deposited on a lithium layer, c) lithium 

deposited on a [OMIm]Tf2N layer, d) [OMIm]Tf2N deposited on Li2O 

 

 

Fig. 5: Waterfall plot of F 1s XPS spectra for [OMIm]Tf2N deposited on lithium with rising measurement time 
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Fig. 6: Waterfall plot of C 1s XPS spectra for [OMIm]Tf2N deposited on lithium with rising measurement time 

 

 

Fig. 7: Li 1s XPS spectra for – b) [OMIm]Tf2N deposited on a lithium layer, c) lithium deposited on a [OMIm]Tf2N 

layer, d) [OMIm]Tf2N deposited on Li2O 
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Fig. 8: C 1s XPS spectra for [C4C1Pyrr]Tf2N deposited on copper (top) and on a lithium layer (bottom) 

 

 

Fig. 9: N1s XPS spectra for [C4C1Pyrr]Tf2N deposited on copper (top) and on a lithium layer (bottom) 
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In this experimental investigation lithium and [OMIm]Tf2N were evaporated in thin films on a copper 

substrate and reaction products were analyzed by XPS and UPS.  
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