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Hybrid organosilicas prepared by sol-gel processes using 1-n-

butyl-3-(3-trimethoxysilylpropyl)-imidazolium cation 

associated with hydrophilic and hydrophobic anions can be 

easily decorated with well dispersed and similar size (1.8-2.1 

nm) Pd nanoparticles (Pd-NPs) by simple sputtering-

deposition. Higher Pd concentration at the surface compared 

to the deeper region is obtained in the supports with smaller 

pore diameter (containing hydrophobic ILs) than those 

prepared in supports with the largest pore diameter 

(containing hydrophilic ILs). The IL hydrophobicity plays a 

central role on the hydrogenation of dienes by controlling the 

diene access to NP surface active sites. 

The supported ionic liquid phase (SILP) method is emerging as 

an important alternative for the immobilisation of homotopic 

transition metal catalysts, in particular for continuous 

processes.1,2 More recently, it was demonstrated that the SILP 

concept could be extended to IL soluble transition metal 

nanoparticles (M-NPs).3,4 In these cases, the M-NPs are 

prepared by classical chemical methods (decomposition of 

organometallic complexes and/or reduction of metal salts) in 

the presence of ILs. These M-NPs are used as catalysts for the 

hydrogenation process since they are usually more active and 

selective than the classical homotopic and heterotopic 

catalysts.5-10 However, from an economic and ecological point 

of view, the use of “greener” methods of synthesis of M-NPs is 

more desirable than the classical methods. Thus, the use of 

‘green methods’ of M-NPs preparation such as resistive 

evaporation, laser ablation and magnetron sputtering may be 

used since they do not change the initial chemical composition, 

do not use organic solvents and were shown to be fast methods 

of M-NPs preparation.11-13 Therefore, the use of sputtering-

deposition may constitute one of the simplest and most efficient 

approaches employed for the generation of new SILP 

nanocatalysts. In this respect, our group demonstrated that M-

NPs uniformly distributed onto solid supports can be easily 

prepared by sputtering-deposition (top-down method).4,14 In 

particular, the use of a new sputtering chamber with constant 

mixing of the solid support during the sputtering allowed the 

generation of small and well-distributed Pd-NPs onto ionic-

liquid-modified Al2O3 supports, which displayed comparable 

catalytic performance in the hydrogenation of 1,3-dienes to 

those catalysts prepared by conventional chemical methods 

(bottom-up).4 It is evident that the use of this new technique for 

silica could generate more versatile SILP nanocatalysts. In fact, 

silica is one of most used inorganic supports for the 

immobilisation of M-NPs; however, in many cases, the use of 

an extra-stabilising agent anchored to its surface is necessary to 

improve the catalytic performance of the nanoparticles.15,16 The 

use of ILs in the synthesis of hybrid materials, such as 

organosilicas, has emerged as a new class of supports for M-

NPs stabilisation, since a thin film of IL can immobilise and 

stabilise the nanocatalysts with no mass transfer limitations. 

Moreover, the structural and textural properties of the hybrid 

matrix are influenced by the presence of the IL due to its 

intrinsic organisation and physicochemical properties; its 

presence could affect the activity and selectivity obtained by 

the M-NPs.17-19 Herein, we describe the synthesis and 

characterisation of surface “clean” Pd-NPs uniformly 

distributed onto hybrid organosilicas by the sputtering-

deposition technique. Most importantly, we show that the 

imidazolium IL hydrophobicity mainly controlled by the anion 

nature is the main feature that influences the implantation depth 

of NPs and the catalytic activity of these SILP nanocatalysts. 

 The supports sgB1–sgB4 were prepared using the classical 

sol-gel process in the presence of IL (B1–B4), TEOS, in 

H2O/acetone mixture and an aqueous HF. The support sg0 was 

prepared in the absence of IL (Scheme 1). 
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Scheme 1 Synthesis of the sg0–sgB4 supports. 

 The sg0–sgB4 hybrid materials have been characterised by 
13C CP-MAS NMR spectra and FT-IR (see Tables S1 and S2 

and Figures S1 and S2). N2 adsorption-desorption isotherms of 

the sg0–sgB4 supports exhibited pore diameters of 3.1 to 11.6 

nm (Table 1) with type-IV isotherm patterns (Figure S3), which 

are characteristic of mesoporous materials.20 The surface areas, 

pore volumes and pore diameter values decreased in the 

supports containing ILs, and exhibited two distinct patterns: 

supports with hydrophilic anions (sgB1 and sgB2) showed 

similar values for textural properties and hysteresis loops, while 

supports with hydrophobic anions (sgB3 and sgB4) also 

displayed similar characteristics. 

Table 1 Characterisation of the sg0–sgB4 supports. 

Support 
SBET/    

m
2
 g

−1
 

Pore Volume/ 

cm
3
 g

−1
 
[a]

 

Pore Diameter/ 

nm 
[a]

 

Org. content/ 

mmol IL g
−1

 
[b]

 

sg0 469 1.00 11.6 ― 

sgB1 378 0.55 4.5 0.94 

sgB2 454 0.43 3.9 0.51 

sgB3 289 0.14 3.1 0.46 

sgB4 277 0.13 3.2 0.50 

[a] The specific surface areas were determined by the BET multipoint method 

and the average pore size was obtained by BJH method; [b] Calculated on the 

basis of the nitrogen content determined by elemental analysis. 

 The patterns associated with the anions were also observed 

with the pore diameter distribution, since the supports sgB3 and 

sgB4 displayed narrow distributions and the supports sgB1 and 

sgB2 showed larger distributions. The sg0 support, which does 

not contain IL in its structure, exhibited the largest pore 

diameter distribution among all supports (Figure S4). 

Therefore, it is clear that the anions of the ILs had an influence 

on the formation of the organosilicas. Similar behaviour was 

observed for mesoporous silica synthesised by the sol-gel route 

using ILs as templates.21 Elemental analysis revealed that 

sgB2–sgB4 supports contained lower amounts of IL than the 

sgB1 support (Table 1). 

 For the deposition of Pd-NPs by sputtering technique onto 

the sg0, sgB1, sgB2, sgB3 and sgB4 supports, 35 mA of 

discharge current was used for 3.0 min. The Pd content on the 

supported catalysts (Pd/sg0, Pd/sgB1, Pd/sgB2, Pd/sgB3 and 

Pd/sgB4) was analysed by XRF analysis giving the following 

Pd concentrations: 0.125 ± 0.02 wt%, 0.124 ± 0.01 wt%, 0.122 

± 0.01 wt%, and 0.127 ± 0.02 wt%, 0.123 ± 0.01 wt%, 

respectively. As expected, the absolute amount of Pd was 

almost the same for all of the samples, since the same current 

and time of deposition were used.12 Interestingly, STEM 

analysis displayed the formation of small NPs that were 

uniformly distributed onto the supports with a narrow 

distribution size (1.8 ± 0.7 nm, 1.8 ± 0.8 nm, 1.8 ± 0.6 nm, 2.1 

± 0.9 nm, and 1.8 ± 0.6 nm, respectively) (Figure 1 and Figure 

S5). Similar Pd-NPs sizes (1.8-2.1 nm) were obtained for all of 

the supports indicating that the size of the NPs is controlled by 

the sputtering-deposition conditions. This fact once again 

revealed that the sputtering-deposition technique is an 

interesting alternative for the synthesis of Pd-NPs since 

appropriate tuning of the sputtering conditions easily controlled 

their sizes. 

 

Fig. 1 Typical STEM images and histograms of the (a) Pd/sg0 and (b) Pd/sgB4 

catalysts. 

 

Fig. 2 Depth profile of the Pd/sg0–Pd/sgB4 catalysts determined by RBS. 

 Rutherford backscattering spectrometry (RBS) analysis was 

used to verify the relative depth profile of imprinted Pd-NPs in 

the hybrid supports. In fact, the RBS technique can be used to 
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measure film thicknesses and the depth profile of a known 

impurity up to a depth of around 1 µm of the sample.22 The 

RBS analysis displayed the depth profiles (non-normalised) of 

the Pd-NPs in the supports (Figure 2). It indicates a dependence 

of the depth profile shape with the support used.  

 Comparing Figure 2 and Table 1 it is possible to observe 

that this dependence is related to the pore diameter of the 

support. The supports with smaller pore diameter, sgB3 (3.1 

nm) and sgB4 (3.2 nm), have Pd depth profiles that are 

narrower with a significantly higher Pd concentration at the 

surface compared to in deeper regions. On the other hand, the 

support with the largest pore diameter, sgB1 (4.5 nm), presents 

a Pd depth profile with a wider distribution. This indicates that 

a large pore diameter, which is observed in materials prepared 

in hydrophilic ILs, facilitates the penetration of Pd-NPs into the 

support. 

 In order to evaluate the catalytic performance of these new 

nanocatalysts, they were applied in the selective hydrogenation 

of 1,3-cyclohexadiene (1) under previously tested conditions 

(0.1 µmol Pd, 1,3-diene/Pd = 5000, CH2Cl2, 4 bar H2, 40ºC).4 

The high activities obtained by the catalysts exhibited a 

behaviour that follows the order: TOFPd/sgB3 > TOFPd/sgB4 > 

TOFPd/sg0 > TOFPd/sgB2 > TOFPd/sgB1; i.e., the catalysts 

containing ILs with hydrophobic anions, PF6
− and NTf2

−, 

achieved higher activities (3.03 and 2.82 s−1, respectively) than 

the catalyst that does not possess IL (1.75 s−1) that achieved 

higher activities than the catalysts containing ILs with 

hydrophilic anions, NO3
− and Cl− (0.96 and 0.86 s−1, 

respectively) (Entries 1-5, Table 2).  

Table 2 Hydrogenation of 1,3-cyclohexadiene by Pd/sg0–Pd/sgB4 catalysts. 

4 bar H2

cat.
++

1 2 3 4  

Entry 
[a,b]

 Catalyst Conv./ % [t/h] 2/ % 3/ % 4/ % TOF/ s
−1

 
[c,d]

 

1 Pd/sg0 98 [1.83] 3 96 1 1.75 

2 Pd/sgB1 100 [4.00] 3 96 1 0.86 

3 Pd/sgB2 62 [6.00] 3 94 3 0.96 

4 Pd/sgB3 100 [2.67] 2 97 1 3.03 

5 Pd/sgB4 100 [1.83] 2 98 0 2.82 

[a] Reaction conditions: 0.1 µmol Pd, 1,3-cyclohexadiene/Pd = 5000, 10 mL 

of CH2Cl2, 4 bar H2, 40ºC; [b] Conversion and selectivity determined by GC 

analysis; [c] TOF = mol 1,3-cyclohexadiene converted/(mol Pd surface × 

time); [d] Calculated from the slope of plots of time vs. TON at low substrate 

conversions.23 

 

 Generally, the cyclohexene (3) vs. cyclohexane (4) rate 

receives full attention concerning selectivity, and the formation 

of benzene (2), a by-product originating from the hydrogen 

disproportionation of the diene, is not commonly described in 

the literature.24-29 High selectivities for cyclohexene (3) (ca. 94-

98%) and low amounts of benzene (2) (2-3%) were obtained by 

the catalysts. Since the Pd-NPs sizes are similar (1.8-2.1 nm) 

the activities achieved by the catalysts indicate that the IL layer 

on the surface of the supports had a strong influence in their 

catalytic performance. This behaviour could be noted by the 

analysis of the reaction kinetics displayed by the catalysts since 

only the Pd/sg0 catalyst exhibited an incubation period (Figure 

S6), which suggest that the solubility and diffusion of the 

substrate/products/H2 until the Pd-NPs can be modified by the 

IL layer.30 The Pd/sgB2 catalyst, which contains the NO3
− 

anion, was deactivated after 6 hours. Indeed, it is known that 

some Pd catalysts can be poisoned by the formation of cyanide 

and nitrogen oxides.31 It is clear that dienes are much more 

soluble in hydrophobic IL than in hydrophilic ones.32,33 

 Under deuterium, a small kinetic isotopic effect was 

observed with the Pd/sg0 catalyst (H2/D2TOF ratio 1.28) and a 

greater effect was seen with the Pd/sgB4 catalyst (H2/D2TOF 

ratio 1.96) (Table S3). The kinetic isotopic effect, related to the 

H−/D− transfer in two steps of the hydrogenation pathways4 is 

more pronounced with the Pd/sgB4 catalyst. This is a strong 

indication that the activation of H-H /D-D bonds is the rate-

determining step in this case.34 Therefore, the IL moiety is 

acting as a ligand and probably making the Pd surface more 

electrophilic. A similar ligand/isotopic effect was recently 

observed on hydrogenation reactions catalysed by 

cinchonidine-modified Pt/Al2O3.
35  

Conclusions 

We have demonstrated that well-dispersed and small-sized Pd 

nanoparticles can be easily “imprinted” in IL-containing hybrid 

organosilicas using simple sputtering-deposition. In these cases, 

the NPs size is not directly controlled by the nature of the IL. 

However, a higher Pd concentration at the surface compared to 

deeper regions is obtained in the supports with smaller pore 

diameters, i.e., those prepared with hydrophobic ILs compared 

to those prepared in supports with the largest pore diameter 

(containing hydrophilic ILs). It is also clear that even low 

amounts of IL have a strong influence on the catalytic 

performance of SILP Pd nanocatalysts. Thus, the IL 

hydrophobicity seems to play a central role in controlling the 

diene access to NP surface active sites and therefore has a 

strong influence on the catalyst activity (TOF), with a lesser 

effect on the selectivity. Moreover, the IL thin layer on the Pd 

NPs surface change the kinetic of the hydrogenation of dienes 

in view of primary kinetic isotopic effect of KL/KH = 1.96 

observed in the Pd-NPs implanted in hybrid silica, indicating 

that the activation of H-H/D-D bonds is the rate-determining 

step, which is in contrast to that seen with Pd supported on 

unmodified silica (KL/KH = 1.28). 
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Graphical abstract 

 

Decoration of hybrid silicas with Pd nanoparticles via sputtering-deposition 
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