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The calculation of ion–ion interactions in water is a problem of long standing importance. Modelling these interactions is a

prerequisite to explaining Hofmeister (specific ion) Effects. We here generalize our solvation model1 of ions to calculate the

free energy of two ions in water as a function of separation. The same procedure has previously been applied to calculate ion

interactions with the air–water interface successfully.2 The Conductor like Screening Model (COSMO) is used. This treats the

ions on a quantum mechanical level and calculates numerically the electrostatic response of the surrounding solvent. Estimates

of the change in the cavity formation energy and the change in the ion-water dispersion energy as the ions approach are included

separately. The calculated interaction potentials are too attractive and this is a significant issue. However, they do reproduce the

affinity of similarly sized ions for each other, which is a crucial property of these potentials. They are also oscillatory, another

important property. We normalize the potentials to reduce the over–attraction, and good correlation with experimental values is

achieved. We identify the driving contributions to this like–prefers–like behaviour. We then put forward a plausible hypothesis

for the over–attraction of the potentials. An agreeable feature of our approach is that it does not rely on salt specific parameters

deliberately adjusted to reproduce experimental values.

1 Introduction

Ion–ion interactions in water are central to understanding in a

vast range of biological and industrial processes that involve

electrolytes.3,4 The most direct expression of ion–ion inter-

actions in water are the osmotic and activity coefficients of

electrolyte solutions. Activity/osmotic coefficients are a key

to derived properties such as the pH, buffers osmotic pres-

sure, chemical equilibria, specific heats, colloid interactions

and many more. A parameter-free theory that predicts ion

specific activities is therefore the goal. Specifically, what is

required is a theory that minimises computation and is easily

used by non–experts.

The activities are an important example of Hofmeister or

Specific Ion Effects. Understanding and predicting these ef-

fects has long been a puzzle and a source of great frustration.

These effects are observed universally in complex biological

and chemical systems. But building an understanding of them

must begin with the prototypical and simplest cases. We have

already developed a model for two of these cases. The first is

a continuum solvent model that predicts ionic solvation ener-

gies.1 The second is a model of ionic interactions with the air–

water interface.2 These models were applied successfully to

monoatomic and monovalent ions. Ion–ion interactions serve

as a third example of these “simple” properties. The next chal-

lenge in building a consistent theory is therefore to tackle the
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problem of the interaction of a pair of ions in water. Were

that goal to be accomplished we would have a firm foundation

on which to attempt to build predictive quantitative models of

more complex systems that show up in Hofmeister effects.

In a hierarchy of theoretical approaches we recall that the

simplest so called “primitive” model of these properties is the

Debye–Hückel theory.5,6 It includes only the mean field ion–

ion electrostatic interaction and a continuum solvent. A bulk

liquid dielectric constant mediates (electrostatic) ion interac-

tions. For real electrolytes, at very low concentrations the

osmotic or activity coefficients depend only on the ionic va-

lencies, and this model reproduces them well. At moderate

concentrations, ion–specific short–range interactions become

important. These were very difficult to model accurately, due

to the changes in ion–water interaction with separation and

direct non–electrostatic interactions of the ions. Further direct

non–electrostatic interactions of the ions were ignored.

The next development from a practical viewpoint was to

add extra (empirical) terms and parameters to the expressions

derived from the Debye–Hückel model, in attempts to capture

these short–range ion specific interactions. Two benchmark

examples of this approach are those of Pitzer7 and Bromley.8

Bromley’s formulation is particularly useful as it shows that

the activity and osmotic coefficients of salts can be reproduced

with reasonable accuracy up to moderate concentrations with

only one parameter per salt. This parameter is analogous to a

second virial coefficient, or B coefficient, in the case of a non–

ideal gas. This dramatically simplifies the problem from a the-

oretical perspective, as the task is reduced to predicting only
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these parameters, which have a clear physical interpretation,

rather than having to reproduce the non–trivial concentration

dependence of these properties. Important physically based

extensions of the Debye–Hückel approach have also been de-

veloped,9 as well as generalizations to asymmetric and mixed

electrolytes.10

Numerous alternative approaches to modelling these prop-

erties have been considered. Some examples are HNC11,

NRTL,12–14 MSA,15–17 TPCP,18,19 eCOSMO–SAC,20 Monte

Carlo or classical Molecular Dynamics (MD) simulation21,22,

hybrid implicit/explicit solvent approaches,23,24 and ab initio

MD approaches.25–28 This incomplete list provides an indica-

tion of the variety of approaches taken to solve the problem.

An analysis of the comparative merits and limitations of

these various approaches is outside our brief. However, we

would point out that none of them have proven satisfactory.

This is due to their complexity and a strong dependence on fit-

ting parameters. These parameters are often adjusted for each

salt. This limits their usefulness and obscures physical insight.

The state of affairs is well captured by Kunz and Neueder in

2010, in the introductory chapter to Ref. 29, where they state:

“there is not a single published work in which a prediction

of these values can be found.” Further “Today, it seems that

the most physical model is one of the oldest: the Friedman–

Gurney (FG) model” developed by Ramanathan and Fried-

man11 in 1971. This model uses sophisticated HNC calcula-

tions to treat the statistical mechanics, but still relies on “Gur-

ney potentials”, with parameters adjusted for each salt. Im-

provements in the physical basis of models as well as their pre-

dictive and explanatory power are therefore crucially needed.

The bringing to bear of simulation to treat the position and

orientation of water molecules explicitly does not appear to

have moved us much closer to a predictive understanding of

these interactions. Although these models can reproduce qual-

itative features of these interactions,30 it appears that ion–ion

interaction potential parameters and combining rules must be

adjusted for each salt separately to reproduce these properties

quantitatively.31,32 In principle, this is not very different to re-

lying on fitted Gurney potentials. It may be that only ab initio

simulations,27 will be capable of providing a model that does

not rely on fitting. But their extreme computational demands

make such a program very difficult to implement.

There is an alternative approach. This is to look for inter-

esting correlations in the data, and interpret these using quali-

tative arguments or simplified models. Collins’s33 very useful

“law of matching water affinity” exemplifies this approach.

He argues that ions with similar water affinity, that is, similar

ion-water interaction strength, are more strongly attracted to

each other, and indeed this pattern is observed in osmotic or

activity coefficients.34,35 This can clearly be seen in Figure 1,

where we plot the osmotic coefficients of several salts. As

shown below, lower osmotic coefficients indicate a stronger

solvent averaged ion-ion attraction. Intuitively, this is because

stronger ion-ion attraction reduces the pressure the ions exert

on the container walls. Figure 1 shows that ions with simi-

lar intrinsic size have lower osmotic coefficients. The intrin-

sic size of an ion also correlates roughly with its interaction

strength with water. Hence, like–prefers–like is consistent

with the “law of matching water affinity.” This is a key ob-

servation on which it is necessary to remark further. Collins

provides a qualitative argument to justify this law and Lund

et al.36 have provided a simple continuum solvent model of

ion–ion interactions. This model qualitatively reproduces this

like–like affinity of ions. The insights are real enough. But

they fall short of the ultimate goal. This is to provide a model

that can reproduce quantitatively the activity/osmotic coeffi-

cients of all salts without parameters fitted for each. Only then

can we have confidence that the model has captured accurately

the actual physical mechanisms that would allow a foundation

for prediction and application to more complex systems.

The calculation of the direct ion–ion interactions in vac-

uum is a relatively straightforward task using modern quantum

chemistry software. The fundamental difficulty in predicting

these interactions in water is ionic hydration, i.e., the interac-

tion of the ions with the water molecules around them and how

this interaction changes as the two ions come together. The

basic problem therefore amounts to calculating how the solva-

tion energy of the two ions changes as they come together.

We have developed a satisfactory model of solvation ener-

gies.1,37,38 We can therefore generalize this solvation model

to the case of two ions in close proximity to each other. A

knowledge of this solvation model will therefore be very use-

ful in understanding the method applied here.

We have recently used this approach to calculate ion inter-

actions with the air–water interface.2 The results are encour-

aging and invite extension to other properties of electrolyte

solution. If that works, the assumptions of the model are re-

inforced. This will also reduce the need for more fitting pa-

rameters, our main aim. Ref. 39 used this approach. A model

for osmotic coefficients was fitted to determine the dispersion

interaction contributions by adjusting the polarizabilities and

ionic sizes. These ion–specific interactions are missing from

conventional approaches. It was then generalized to deter-

mine ion–surface interactions. Although the model had lim-

ited success due to some neglected contributions, the general

approach is still suggestive.

2 Theory

The solvent averaged free energy of interaction of two ions is

taken to be given by the expression

G(d) =GCOSMO(d)+∆Gcav(d)+∆Gdisp(d) (1)
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Fig. 1 The osmotic coefficients of the fluoride and iodide salts exhibit the like prefers like behaviour. Ions of similar size have the lowest

osmotic coefficient and hence the strongest attraction.

Each of these three terms is a generalization of one of the

three terms in our solvation model.1 GCOSMO(d) corresponds

to the change in the electrostatic Born solvation energy plus

the direct ion–ion interaction. ∆Gcav(d) and ∆Gdisp(d) give

the change in the cavity formation energy and the ion–water

dispersion interaction energy of the two ions as the approach

each other. Each of these terms is described in more detail

in the following sections. The cavity and van der Waals (dis-

persion) interactions are missing from standard treatments in

which the first term would be an electrostatic interaction with,

e.g., a hard core cut–off.

This interaction energy will be used to determine experi-

mental activity and osmotic coefficients. We discuss this in

the Experimental Values section below.

2.1 Direct Electrostatic Contributions

As two ions come together they experience a direct elec-

trostatic interaction. At large separations (several wa-

ter molecules) this is given to a good approximation by

Coulomb’s law with the static dielectric constant of water

used.

GCoulomb = e2

4πεoεwr
(2)

The dielectric constant of water has its bulk static value.

At large separations and at infinite dilution the Coulomb term

is the only contribution to the interaction. It is used in the

derivation of the original Debye–Hückel model, which is the

origin of the non–ion specific term in the Pitzer and Bromley

equations.

However, at short–range this expression is inaccurate. This

is because it assumes that the ions are point charges imbedded

in the dielectric medium. It is often asserted that at small sep-

arations, i.e., where r is of the order of the size of a molecule,

the continuum solvent approximation will break down and ex-

plicit solvent or more sophisticated treatments will be neces-

sary. Although on the face of it this seems like a reasonable

statement it is worth testing, by building the best possible con-

tinuum models we can, and looking at their degree of accu-

racy. There are several potential improvements of the simple

continuum solvent model that can still be made. In the context

of the electrostatic interaction this means including the change

in geometry,40 magnitude21 or isotropy41 of the dielectric as

the two ions come together.

More specifically, as the two ions approach there will even-

tually come a point where the separation is so small that a

water molecule can no longer fit between them. There will

be some substantial cost to removing this water from the sur-

faces of the ions. But there will be a corresponding increase

in attraction of oppositely charged ions, due to the decrease in

the effective dielectric constant of the medium between them.

These effects arise because the ions occupy finite sized cavi-

ties in the water where the relative dielectric constant is 1. To

take care of this problem we need the solution of Poisson’s

equation with the complex boundary condition created by the

two overlapping spherical cavities.

We can use a numerical approach to model this situa-

tion approximately with the Conductor Like Screening Model

COSMO).42,43 This model treats the solutes on a quantum me-

chanical basis. The water is approximated as a conductor, and
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Fig. 2 Depiction of the COSMO calculation of the ion–ion

interaction. The pink line shows the surface of the cavity where the

surface charges are located.

the interface between the cavity occupied by the solutes and

the background medium is determined from the Solvent Ac-

cessible Surface Area (SASA). The electric field of the so-

lutes induces a surface charge on this interface. The calcu-

lation proceeds until self–consistency is reached. This cal-

culation is depicted in Figure 2. The advantages of this ap-

proach are: Firstly, it includes the repulsion due to the loss of

electrostatic ion–water interactions upon the removal of wa-

ter from the first hydration layer. Secondly, it includes the

reduced damping of direct ion–ion interaction, due to the re-

moval of water. Thirdly, it provides an accurate calculation

of the direct ion–ion interaction as both solutes are treated at

a quantum mechanical level. This quantum mechanical treat-

ment does mean that the COSMO calculation includes the di-

rect ion–ion dispersion interaction and Pauli repulsion of the

two ions. Hence, it is not purely an electrostatic calculation.

This calculation can be thought of as the direct ion–ion in-

teraction plus the change in Born energy of the two ions as

they come together. This is consistent with the fact that the

COSMO calculation of the two ions at infinite separation gives

the Born solvation energy of the two ions. The calculation de-

tails are provided below. If the cavities do not overlap, the

COSMO calculation reproduces the normal Coulomb interac-

tion. The methodology is in principle the same as the one

presented by Rashin40 and Pratt et al.,44 except that we have

applied a more sophisticated quantum treatment of the ion.

2.2 Cavity Energy

The next contribution to the ion–ion interaction is that as they

come together the water removed will move back into bulk.

There will be some energy gain associated with this due to the

fact that there is an energy of forming the cavity in water that

the ion occupies, which is now released. This has been put

forward by Collins33 as a key mechanism driving the experi-

mentally observed affinity of large ions for each other. It has

also been identified as a key driver of anionic adsorption to the

air water interface.2,45 This can be thought of as a hydrophobic

attraction, although it may not have the usual entropic charac-

ter.38

In our solvation model1 the energy of forming a cavity is

calculated by multiplying the surface area of the cavity by the

surface tension of the bulk air–water interface. This is dif-

ferent to the cavity formation energy of small neutral solutes,

which is smaller and entropically dominated. The reason for

this difference is that water molecules can form a hydrogen

bonded network around a neutral molecule.46 This is not ap-

plicable to ions, which will reorient nearby water molecules

and break this structure.

The use of bulk interfacial tension can obviously be dis-

puted. However we have used it in other applications1,2,38

where it works reasonably well.

We therefore use the same bulk interface surface tension

to calculate the cavity contribution to the ion–ion interaction

energy. For instance for solutes i and j in contact, we have:

∆Gcav = σion(∆Ai(d)+∆A j (d)) (3)

where σion = 0.434 kJmol−1Å
−2

. ∆Ai(d) is the change in sur-

face area of ion i due to the presence of ion j as a function of

separation, and vice versa for ∆A j(d). The change in area is

straightforwardly determined by the area of the spherical cap

that is removed when the two ions overlap.47

∆Ai(d) =
⎧⎪⎪⎨⎪⎪⎩
−πRS,i (RS,i+RS, j −d)(1+ RS, j−RS,i

d
) d < RS,i+RS, j

0 d ≥ RS,i+RS, j

(4)

RS,i is the RS parameter of ion i, defined as the distance to

the peak in the solute–oxygen radial distribution function.37

Similarly, we have:

∆A j(d) =
⎧⎪⎪⎨⎪⎪⎩
−πRS, j (RS, j +RS,i−d)(1+ RS,i−RS, j

d
) d < RS, j +RS,i

0 d ≥ RS, j +RS,i

(5)

2.3 Dispersion

2.3.1 Ion–Water Dispersion. The next important contri-

bution is the change in the ion–water dispersion interaction.

The simplest approximation to this energy is to assume that

it decreases in proportion to the change in the surface area.

This is the approximation we have used in the case of the ion

interaction with the air–water interface. However, this will

not work in this situation as the water molecules are not be-

ing removed completely from the ion as they are in the case

of an ion at the air–water interface, but simply displaced to

a distance slightly further away. The accurate computation
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of this energy would require the calculation of the Green’s

function with the boundary condition given by the overlap-

ping cavity. This is equivalent to solving Poisson’s equation

for these rather complicated geometrical configurations. This

task is underway, but significant difficulties remain. We can

use an approximation in between these two approaches. We

assume that the dispersion solvation energy is approximately

pairwise additive, with a C2n/r2n behaviour. n = 3 for the dipo-

lar dispersion energy n = 4 for the quadrupole term and n = 5

for the octupole term. In other words, we assume:

GD = ∫ d3r′ρ(r′) C6

∣r′−ri∣6 (6)

GQ = ∫ d3r′ρ(r′) C8

∣r′−ri∣8 (7)

GO = ∫ d3r′ρ(r′) C10

∣r′−ri∣10
(8)

Where the GD, GQ and GO are the same as defined in Ref. 37.

For ρ(r′) we use a function that is ρw outside the cavity and 0

inside it. This function is therefore dependent on the distance

between the two ions, as well as the size of the cavities etc.

We therefore write it as ρ(r′,d).
We can then write the change in dispersion interaction as a

function of separation:

∆GD(d) = ⎛⎜⎝
∫ d3r′ρ(r′,d) C6

∣r′−ri∣
6

∫ d3r′ρ(r′,∞) C6

∣r′−ri∣
6

−1
⎞⎟⎠GD (9)

∆GQ(d) = ⎛⎜⎝
∫ d3r′ρ(r′,d) C8

∣r′−ri∣
8

∫ d3r′ρ(r′,∞) C8

∣r′−ri∣
8

−1
⎞⎟⎠GQ (10)

∆GO(d) = ⎛⎜⎝
∫ d3r′ρ(r′,d) C10

∣r′−ri∣
10

∫ d3r′ρ(r′,∞) C10

∣r′−ri∣
10

−1
⎞⎟⎠GO (11)

The density of water and the dispersion constants cancel

out, and these expressions can be calculated analytically us-

ing toroidal coordinates. This calculation is presented in the

appendix.

This allows a calculation of the change in ion–water disper-

sion interaction at contact. We then assume that this interac-

tion scales with the change in surface area of the ions. This

is for several reasons: Firstly, for ease of computation, which

would otherwise require the use of bispherical coordinates at

larger separations. Secondly, because the cavity formation and

dispersion energy should have similar distance dependence as

both arise from the removal of water. Thirdly, for consistency

with our previously developed model of ion–surface interac-

tions where this approximation worked well. The expression

is therefore given by:

∆Gdisp(d) =(∆GD,i(dc)+∆GQ,i(dc)+∆GO,i(dc)) ∆Ai(d)
∆Ai(dc)

+(∆GD, j(dc)+∆GQ, j(dc)+∆GO, j(dc))
∆A j(d)
∆A j(dc)

(12)

Where dc gives the separation of the ions in contact. For this

we use the sum of the crystal radii of the ions, given in Ref.

37. This is approximately the position of the minimum in the

ion–ion interaction potential.

2.3.2 Ion–Ion Dispersion. We have previously sug-

gested35 that the direct ion–ion dispersion interaction plays

a significant role in the affinity of large ions for each other

in water. This contribution can be included in the COSMO

calculation by using an MP2 level of theory. Hence, it does

not need to be calculated separately, i.e., the term GCOSMO(d)
includes both the electrostatic and ion–ion dispersion inter-

actions. We can probe the importance of this interaction by

comparing calculations at the MP2 level and the Hartree–Fock

level. The difference is likely to be predominantly due to the

dispersion interaction, as the dispersion interaction arises en-

tirely from the intermolecular correlation effects included in

the MP2 level but not at the Hatree–Fock level. This is clear

from the interaction of noble gas atoms where the difference

between these two levels of theories is very close to analyti-

cal calculations of the dispersion interaction. This calculation

does neglect the many body correction to this interaction due

to the presence of the surrounding water molecules, that may

be on the order of 10%.48 Including this contribution would

again require the Green’s function with the given boundary

conditions.

2.4 Experimental Values

The most rigorous approach to compare our interaction poten-

tials with experiment would be to use the solvent averaged

ion–ion interactions to calculate the activity/osmotic coeffi-

cients accurately at all concentrations using relatively sophis-

ticated statistical mechanics, such as HNC calculations11 or

simulations.23 These calculations are prone to numerical dif-

ficulties, and are sensitive to small perturbations in the inter-

action potential.22 We adopt a simpler approach.

We start with the osmotic and activity coefficients of a so-

lute that only interacts only via short–range interactions with

other solutes at low concentrations. The osmotic coefficient is

given by:49,50

φ(c) = 1+Bc (13)

and the activity coefficients by:

lnγ(c) = 2Bc (14)
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where B is the second virial coefficient:

B = −2π∫
∞

0
drr2 (e−βG(r)−1) (15)

Here G(r) is the free energy of interaction of two solutes as

a function of separation. We use the variable r instead of d

for clarity. The situation is significantly more complicated

for ions because they undergo long–range electrostatic inter-

actions, and so these expressions are invalid. However, this

long–range electrostatic interaction depends only on the va-

lency of the ions. It is well established that ion–specificity,

for ions of the same valence, is primarily attributable to the

short–range interactions. If we assume that these two effects

make additive contributions, then we can write the osmotic

coefficients as:

φi j(c) = 1+ fφ(c)+Bi jc (16)

and the activity coefficient as

lnγi j(c) = fγ(c)+2Bi jc (17)

Where fφ(c) and fγ(c) depend only on the valency of the ions

and are attributable to the long–range electrostatic Coulomb

interaction, while the ion–specificity is captured by the Bi j pa-

rameter.

Indeed, this expected behaviour is approximately correct.

The Specific Interaction Theory (SIT)51 shows that these val-

ues can be reasonably well captured over a range of concen-

trations using only one parameter (Bi j) per salt. In SIT the

Debye–Hückel expression is used to calculate the Coulomb

term’s contribution:

fγ(c) = A
√

c

1+1.5
√

c
(18)

This simple formulation of the ion–specific variation is con-

sistent with Figure 1, where the osmotic coefficients do not

cross, but simply spread out as concentration increases. More

exactly, the difference between the osmotic coefficients of two

different salts as a function of concentration is approximately

a straight line though the origin, which supports this formula-

tion.52 The activity coefficients behave similarly.

This provides a much simpler and more direct means of test-

ing theoretically calculated potentials, and bypasses the need

to perform complex concentration dependent calculations. We

can take our solvent averaged ion–ion potentials, subtract the

long–range Coulomb interaction and then substitute this po-

tential into Eq. 15. In principle, the resulting values should

approximately agree with the Bi j parameters derived from ex-

periment. Although this procedure is approximate the error is

likely to be less than that associated with a continuum solvent

approximation and more sophisticated calculations should be

possible once a satisfactory model is discovered. Reproduc-

ing the Bi j parameters is practically equivalent to reproducing

the osmotic and activity coefficients over a large concentra-

tion range and with reasonable accuracy. The simplest model9

for the Bi j parameter is to assume a hard sphere potential, in

which case Eq. 15 reduces to: 2
3
πa3, where a is the size of the

ions. However, this model is unsatisfactory as the ion sizes

must be adjusted to unphysical values, and are not additive,

that is, the size depends on the counterion.

SIT is very similar to the Pitzer and Bromley formulations

with some exceptions. Firstly, some empirical adjustments are

made to the parameters of the f (c) term to improve agree-

ment. Secondly, in Bromley’s model the Bi j parameter has

a weak concentration dependence. Thirdly, in the Pitzer for-

mulation there are some additional higher order salt specific

parameters. These differences are not too important and only

improve agreement by a few per cent, or extend the concentra-

tion range. Hence, for our purposes the three approaches are

equivalent and we can compare with the Bi j parameters from

any approach and reach similar conclusions.

We will compare our calculations with the parameters deter-

mined by Bromley. This is because this is a single parameter

formulation, which achieves agreement over a wide concentra-

tion range, and the values have been tabulated for a large num-

ber of ions. The conclusions are very similar if we compare

with the β (0) parameters of Pitzer’s model,7 or the ε0 parame-

ters of SIT.51 In addition, technically we should compare with

Bi j coefficients adjusted to reproduce the activity coefficients

after adjustment to the McMillan–Mayer53 system as well as

adjustment to molarity for the concentration units. This more

rigorous approach has been completed and does not alter the

conclusions of the work significantly; we therefore neglect it

for simplicity.

Evidence indicates that the cation–cation and anion–anion

short–range interactions are not too important at low to moder-

ate concentrations as Coulomb repulsion prevents them from

approaching close enough to each other. Hence, we assume

that it is a reasonable approximation in calculating the Bi j pa-

rameter to use only the cation–anion interactions.22

2.4.1 Collins’s Rules. We will refer to the B coefficients

determined by Bromley as BBrom. These BBrom parameters

show an intriguing regularity when plotted as a function of

difference in the solvation energy of the ions.35 This can be

seen below in Figure 4a, where they are compared with the

theoretically calculated values. Although the trend appears

inverted, the values are consistent with the classic “Volcano

behaviour.”33 Hence, they reflect Collins’s “Law of Matching

Water Affinity.” Ions with similar solvation energies have the

lowest BBrom coefficients and hence have the lowest osmotic

and activity coefficients and are most strongly attracted to each

other. Reproducing these BBrom coefficients should therefore
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also mean this useful and puzzling correlation has been ex-

plained.

3 Calculation Details

The calculation details are very similar to those used in Ref.

2. We used the TURBOMOLE package (v6.4)54,55 with

COSMO42,43 implemented. The def2–QZVPP56–59 basis sets,

and associated ECPs60,61 were used for all nine alkali and

halide ions. We did not use def2-QZVPPD due to implementa-

tion constraints of RIMP2, and because there is some evidence

diffuse basis sets do not work well with a continuum solvent

model.62

The calculations were performed both at the Hartree–Fock

level using the DSCF program63 and at the MP2 level us-

ing the RIMP2 program.64–66 There is some evidence that

the MP2 level of theory may overestimate dispersion interac-

tions somewhat, compared with the more accurate CCSD(T)

level.67 For a more quantitatively exact approach it would be

preferable to use this higher level. There are implementation

problems with this approach however and the error is likely

substantially less than that associated with the continuum ap-

proximation.

For the cavity sizes in the COSMO calculation we use the

cavity sizes determined in the original solvation model. They

are referred to as Rcav and shown in Table 1. They are given

by Rcav = RS −Radj, where Radj = 0.84 Å. This was justified

in Ref. 37, where they were originally determined. Using

these cavity sizes leads to an error in the solvation energies of

12 kJ mol−1 (3%). This error will result in some correspond-

ing error in the ion–ion interactions, as a result of the fact that

the total solvation energy is not correctly modelled. In order

to reduce this error, we adjust Rcav to the nearest 0.01 Å to

minimize the error in the solvation energies. It is reasonable

to adjust these values, as they are the largest source of error

in the model. This is due to the fact that the solvation ener-

gies are quite sensitive to these values and they are difficult

to determine accurately. This adjustment reduces the mean

unsigned error in the solvation model to 1 kJ mol−1, which

should allow for improved agreement with ion–water interac-

tion potentials. These values are referred to as RcavA and are

given in Table 1. The RS values are also altered to satisfy the

relationship RS = Rcav+Radj.

COSMO’s RSOLV parameter was set to 0.84 Å. This is be-

cause it is equivalent to the Radj parameter we have used here.

They both give the distance from the surface of the cavity to

the centre of the solvent molecule. An open cavity was con-

structed for simplicity and consistency with Ref. 2. The out-

lying charge correction was included although the ROUTF pa-

rameter had to be reduced to 0.3, due to numerical error with

the default value. The epsilon parameter was set to 116.95 to

reproduce the correct 1/78.3 damping of the Coulomb interac-

Table 1 Values of the cavity sizes of the ions in water. Rcav is taken

from Ref. 37. RcavA is determined by adjustment that minimize the

deviation from experimental bulk solvation energies. This table is

reproduced from Ref. 2

Ion Rcav(Å) RcavA(Å)
Li+ 1.22 1.24

Na+ 1.51 1.55

K+ 1.95 1.94

Rb+ 2.08 2.11

Cs+ 2.27 2.31

F− 1.84 1.84

Cl− 2.36 2.41

Br− 2.51 2.59

I− 2.80 2.83

tion. The ion–specific short–range interaction has a negligible

dependence on this parameter.

Both sets of radii have been used in order to compare with

experiment. An identical procedure was carried out for the

ion–water interactions in Ref. 2 where it improved experimen-

tal agreement slightly, as expected.

4 Results and Discussion

4.1 Interactions

The interaction potentials calculated using the above method

are shown in Figure 3. The most obvious and concerning ob-

servation is that the attraction between two ions is too large to

be physical. The potential wells should be of the order of a

few kBT . Here they can exceed −20kBT .

Nonetheless there are two encouraging features of these

potentials. Firstly, and most clearly evident for small ions,

there is an oscillatory character to the interaction potentials.

This character is consistent with simulation and is occasion-

ally used as justification for the necessity of explicit solvent

approaches. This calculation shows that it is possible to pre-

dict an oscillatory potential solely on the basis of a continuum

approach. This was originally pointed out by Rashin.40 In-

deed, if the Hartree-Fock level of theory is used with the same

cavity sizes chosen by Rashin in the COSMO calculation, the

calculated potentials are consistent with the ones in Ref. 40.

The contributions to these potentials are discussed below, and

Figure 6 shows that it is the COSMO contribution that drives

this oscillation. It arises from the lost ion–water electrostatic

interaction as the solvent is removed from the surface of the

ion. This results in a repulsion when the ionic cavities first

overlap. This repulsion is then overcome by the large elec-

trostatic attraction, which is no longer damped by interven-

ing solvent molecules. However, the oscillatory character is
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not observed for the larger ions. This is presumably another

symptom of whatever is causing the large over–attraction in

the potentials. Indeed, by reducing the cavity size arbitrar-

ily we can prevent the over–attraction and a qualitatively cor-

rect oscillatory interaction emerges. We should point out that

the attractive surface area term, which is analogous to a hy-

drophobic attraction, should have an oscillatory character as

well. It arises from the changing environment from one con-

taining bulk water molecules to a vacuum as the two ions come

together. It is clear from simulation of neutral molecule inter-

actions in water, and could be partially included in the model

with a more sophisticated definition of the change in surface

area.68 Also only one peak in the oscillation is present as the

removal of discrete second and third water layers is not mod-

elled.

The second promising feature of these potentials is that they

appear to be consistent with Collins’s “law of matching wa-

ter affinity”, i.e., like–prefers–like. For instance, Figure 3a

shows the interactions of the lithium ion. We see that as the

anion increases in size the interaction becomes more repulsive.

Whereas for cesium’s interactions (Figure 3b), as the anion in-

creases in size, the potential well widens but the depth remains

relatively constant. This will be countered to some extent by

the additional repulsion from the larger ion sizes.

This Hofmeister series reversal with activities has been

noted previously,34 and is clear from Figure 4a. This rever-

sal is also apparent between iodide and fluoride salts. This

is consistent with Collins’s law, and Figure 6 below provides

physical insight into its cause.

4.2 Experimental Comparison

It is useful to have a quantitative comparison of the theoretical

ion–ion affinity with experiment. It is clear that we cannot use

these potentials to directly to calculate B coefficients. (Eq. 15)

The exponential term combined with potentials that are much

larger than thermal energy means there will be huge variation

in these calculated B values, in clear disagreement with ex-

periment. The simplest and most straightforward fix to this

problem is to normalize the potentials to reduce them to a size

on the order of thermal energy. If we divide all of the poten-

tials by a factor (λ ) and then calculate the B coefficients, we

achieve much better results. That is:

BTheory = −2πk∫
∞

0
drr2 (exp−βG(r)/λ −1) (19)

where

G(r) = (GCOSMO(r)+ e2

4πεwr
+∆Gcav(r)+∆Gdisp(r)) (20)

and where k = 2/ ln(10) is a conversion factor which allows

BTheory to be compared directly with BBrom. If Ångstroms

are used in the calculation then an additional factor of NAρw×
10−30 is needed to convert to kg mol−1. The theoretical values

calculated with Eq. 19 have a good linear correlation with the

experimental Bromley B coefficients. If λ =6.9 then R2 =0.95.

This value is insensitive to the choice of lambda, with the cor-

relation staying above R2 = 0.9 for λ = 4.3→ 22. This level

of agreement cannot be explained by chance and the physics

must be correctly captured to some degree. With λ = 6.9 the

resulting linear correlation has a slope of 1. The resulting B

coefficients thus calculated are shown in Figure 4b. It is im-

mediately clear that the behaviours seen in Figure 4a are re-

produced, although with some error. The largest affinity of

sodium fluoride and cesium iodide is reproduced. The upturn

for the fluoride salts is also reproduced, as is the linear trend

for the smaller alkali cations. Figure 5 shows the more direct

comparison. With the unadjusted cavity radii the correlation

is significantly worse (R2 = 0.84).

As the correlation has a slope of 1 only a constant needs to

be added to the theoretical values in order to predict the ex-

perimental values. This constant is 0.13 if RcavA are used. It

is essentially an additional fitted parameter. It is non–ion spe-

cific and accounts for the deviation of Bromley’s B coefficient

from the ones defined here. There could be several causes

of this deviation. One could be that there is a contribution

from the like charge interaction, which we neglect. Alterna-

tively, it could arise from the fairly artificial process of apply-

ing the damping parameter λ . It could also be an issue aris-

ing from the splitting of the Coulomb and short–range interac-

tion into additive contributions. Calculating the real potentials

from those calculated here is likely a more complex task. The

key point is that this parameter is not salt specific and so the

model should be able to provide improved predictability and

explanatory power, over existing models that often depend on

salt specific parameters.

Reproducing the ion–specific trends in the activity coeffi-

cients has been a long–standing and central goal of physical

chemistry for nearly a century. During this time there has been

limited success in reproducing these trends without the use of

parameters fitted to each salt. Here we reproduce the trend

with good accuracy for all nineteen soluble alkali halide salts.

Two parameters reproducing 19 values with such a good corre-

lation is strong evidence that the Hofmeister trends have been

correctly modelled. We emphasize that apart from the damp-

ing parameter and the offset constant, there has been no de-

liberate adjustment of parameters to reproduce desired prop-

erties of the interaction potentials. They are determined from

a straightforward generalization of our solvation model.

4.3 Possible Causes of Over–Attraction

Although the good correlation seen in the theoretical compar-

ison (Figure 5) is compelling, we need to answer the ques-

8 | 1–16

Page 8 of 16Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



1 2 3 4 5 6 7
d (Å)

-30

-20

-10

0

10

20

30

G
 /(

k B
T

)

Lithium Fluoride
Lithium Chloride
Lithium Bromide
Lithium Iodide

(a) Lithium salts

1 2 3 4 5 6 7
d (Å)

-20

-10

0

10

20

G
 /(

k B
T

)

Cesium Fluoride
Cesium Chloride
Cesium Bromide
Cesium Iodide

(b) Cesium salts

1 2 3 4 5 6 7
d (Å)

-30

-20

-10

0

10

20

30

G
 /(

k B
T

)

Lithium Fluoride
Sodium Fluoride
Potassium Fluoride 
Rubidium Fluoride
Cesium Fluoride

(c) Fluoride salts

1 2 3 4 5 6 7
d (Å)

-20

-10

0

10

20

G
 /(

k B
T

)

Lithium Iodide
Sodium Iodide
Potassium Iodide 
Rubidium Iodide
Cesium Iodide

(d) Iodide salts

Fig. 3 Ion–ion interaction potentials. Calculated using RcavA.
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Fig. 5 Comparison of the theoretical B coefficients with Bromley’s values.

10 | 1–16

Page 10 of 16Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



tion of how the potentials could be so strongly over–attractive.

This over–attraction of ion pairs has been observed previ-

ously.44,69 To a lesser degree, it also occurs in continuum sol-

vent models applied to more complex protein systems,70,71 as

well as in non–polarizable explicit solvent simulations of ion–

pairing.30,72 These studies put forward various physical ex-

planations of this effect and introduce empirical corrections to

account for it.

One straightforward explanation is that there is some miss-

ing repulsive contribution. For instance, as the two ions

come together their electric fields will partially cancel. This

may result in a reduced attraction with the surrounding water

molecules, which then relax away from the ions. This would

effectively cause an increase in the Rcav parameters. The cor-

responding energetic cost could substantially cancel the large

attractive potentials calculated here.73 Alternatively, entropic

effects associated with the discrete water molecules may be

important. It is plausible that the simple continuum solvent

approach cannot account for these effects. For instance, an

ordered profile of water molecules will form around an ion.

This may lead to an entropic repulsion as that profile is dis-

turbed. This is in essence the mechanism identified in Ref.

74. Similarly, it appears that there is a substantially enhanced

solvent ordering around ion pairs.30 Again this would provide

an entropic repulsion which may be neglected by the contin-

uum approach. Additional possibilities are a loss of electronic

ion–water interactions,27 bridging water molecule effects,75

or inadequate dielectric screening at short–range. These ex-

planations apply only to ion-pairs. This is important because

the same approach appears to work well without any damp-

ing when applied to ion-surface interactions and to single ion

solvation energies.

However, an issue with these explanations is that if there is

some missing repulsive contribution of the size of ≈ 10kBT ,

presumably it would play an important role in determining

the ion–specificity. How can the correct Hofmeister trends

be reproduced with such a large missing contribution? One

plausible answer lies in the notion of entropy–enthalpy com-

pensation. It is known that ion–ion interactions are the result

of the cancelling of an entropic attraction and enthalpic re-

pulsion.76 It is possible that the entropic component has been

overestimated, and hence the potentials are too attractive. This

is consistent with the fact that the underlying solvation model

calculates entropies of solvation that are too negative if not

corrected to account for dielectric saturation effects.38 This

amplification of the entropy changes may lead to the over at-

traction. The dampening of these potentials to bring them into

line with the expected size, can therefore simply be interpreted

as a means of artificially imposing entropy–enthalpy cancella-

tion, and hence is all that is required to achieve quantitative

agreement with experiment.

4.4 Mechanism of Collins’s law

Having established a plausible candidate for the cause of the

over–attraction. We can investigate the contributions to the

ion–ion interactions in order to determine a physical expla-

nation of the like–prefers–like behaviour. We assume that

the relative balance of contributions will be the same in the

true interaction as they are in the overly attractive ones calcu-

lated here. If this were not the case, it is difficult to see how

the correct Hofmeister trends could be so well reproduced.

These contributions are shown in Figure 6, where the interac-

tions of representative large–large, small–small, small–large

and large–small pairs are presented. We omit lithium fluoride,

as it is insoluble.

4.4.1 COSMO Contribution. The GCOSMO term in-

cludes contributions from the ion–ion dispersion interaction

and Pauli repulsion as well as the ionic electrostatic interac-

tion. We can identify several important behaviours of this

contribution. For small pairs, there is a substantial cost to

removing the tightly bound water resulting in a repulsion at

larger separations. A large attraction, likely from direct elec-

trostatics, cancels this effect at short–range, and results in a

narrow and deep potential well at contact. As one of the ions

gets larger, two effects come into play; the water is less tightly

bound to the large ion and hence easier to remove. But this is

overwhelmed by a weaker direct ion–ion attraction as well as

the “shadowing mechanism” laid out by Lund et al.,36 where

the large ion removes additional water from the surface of the

small ion. This is included implicitly in the COSMO calcula-

tion. As a result there is a strong repulsion of large–small ion

pairs at small separations. For two large ions the contact min-

imum is significantly smaller than for two small ions. This

is because the direct electrostatic attraction is substantially

weaker for two large ions; although the larger dispersion at-

traction will somewhat obscure this decrease. However, there

is also much less, if any, repulsion at larger separations. This

corresponds with the fact that the energy cost of removing wa-

ter molecules from the surface of large ions is low. The result

is that the net interaction is similar to small-small ion pairs.

An important corollary of this is that ion–ion interactions can-

not be characterized solely by the depth of the potential well

at contact.

4.4.2 Non–Electrostatic Ion–Water Contributions. We

can see that the cavity and dispersion contributions approx-

imately cancel each other. This is similar to the behaviour

of the total solvation energies.1 However, they do still play an

important role in determining the puzzling ion–specific trends.

Firstly, the sum of these two contributions is attractive for

sodium fluoride and repulsive for cesium fluoride. This can

be attributed in part to the significant increase in cation–water

dispersion interaction with cation size. Figure 7a presents the
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(d) Cesium iodide

Fig. 6 Contributions to the ion–ion interaction potentials, for some representative ion pairs. Calculated using RcavA.
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calculation of B coefficients without these contributions. From

this figure it is clear that the increase in repulsion with cation

size is necessary to reproduce the reversed trend of the fluo-

ride salt series compared with the other anions. This reversed

trend can be seen in Figure 4a.

For cesium salts as the anion increases in size the repulsive

ion–water dispersion contribution decreases and the cavity at-

traction increases. This increased attraction with increasing

anion size is necessary to reproduce the reversal in the cesium

salt trend compared with the other cations. Again, as seen in

Figure 7a. For cesium iodide the cavity attraction outweighs

the repulsive dispersion contribution. This is important in ex-

plaining the fact that large–large ion pairs have a similar affin-

ity to small–small ion pairs. In essence, this corresponds to

the hydrophobic type mechanism of large–large ion attraction

outlined by Collins.

4.4.3 Ion–Ion Dispersion. Next we probe the importance

of the direct ion–ion dispersion interaction by performing the

calculation at the Hartree–Fock level, where this contribution

is neglected unlike at the MP2 level used previously. It is true

that other contributions such as the static polarization interac-

tion may be altered by this change in level of theory. However,

the change in the dispersion interaction is likely to dominate,

due to the fact that the static electronic effects are damped by

the large dielectric response of the water.

This calculation at Hartree–Fock level is presented in Fig-

ure 7b. By comparison with Figure 4 it is immediately clear

that the Hartree–Fock level gives far inferior results to the

MP2 level of theory used above. In addition the observed de-

viation is exactly what one would expect if the ion–ion disper-

sion contribution were neglected. Although counter–intuitive

we have previously shown that the anionic dispersion interac-

tion is relatively constant with size. On the other hand, the

cationic dispersion interaction increases substantially with ion

size.35,37 We see that it is the larger cations that have their

B coefficients substantially overestimated. Indeed the differ-

ence between Figure 7b and Figure 4b, correlates with Figure

3 of Ref. 35, where DFT–SAPT calculations were performed

on ions in vacuum to calculate the strength of their dispersion

interaction. This provides strong evidence that the affinity of

large ions for each other as constituted in Collins’s law is crit-

ically dependent on their large direct dispersion interaction.

4.4.4 Polarization Interaction. As the ions approach

each other their electric fields will induce a dipole on their

partner and result in a net attractive interaction. It is in princi-

ple possible to probe the magnitude of this contribution based

on the quantum mechanical calculations. However, this exten-

sion is beyond the scope of this paper.

5 Conclusion

Future work will require a more satisfactory explanation of

the over–attraction, as well as the extension of the approach

to multivalent and anisotropic ions, mixed electrolytes, and

temperature dependence. This should hopefully validate the

theory and begin to allow practical applications in chemical

engineering, where these properties are essential. In addition,

the model will hopefully be useful in the explanation of more

complex traditional Hofmeister series problems, such as those

involving ion–protein interactions. For example, the classic

Hofmeister effect is the salt dependence of protein precipi-

tation. This effect depends on a balance of ion interactions

of two types. One is an ion–surface interaction with the hy-

drophobic surface of the protein. The second is a pairwise

ion–ion interaction with the charged head groups on the pro-

tein.77,78

In summary, we have generalized our model of ionic sol-

vation energies in order to calculate the free energy of a pair

of ions as a function of separation. The calculation includes

the essential contributions to these interactions. The cavity

sizes were adjusted to match solvation energies, but otherwise

there was no deliberate adjustment of ion–specific parameters

to achieve agreement. Only two global parameters are nec-

essary to calculate the B coefficients. One is used to normal-

ize the potentials which leads to good direct linear correlation

with the experimental B coefficients. A second offset constant

is also required. Enthalpy–entropy compensation is hypoth-

esized as the justification for this normalization. This means

that the most direct example of Collins’s “law of matching wa-

ter affinity” has been quantitatively reproduced and the driving

contributions of this law identified, including the importance

of the dispersion interaction.

This work therefore represents, we hope, a significant ad-

vance in our understanding of this frustrating and long un-

solved problem of physical chemistry. Its resolution serves as

a necessary step towards developing a quantitative and predic-

tive understanding of the interaction of solutes in water.

6 Appendix

In order to perform the integrals in Eqs. 9–11 we used toroidal

coordinates as given in Ref. 79:

x = R0

√
1−ξ 2 cos(φ)

1−ξ cos(η) (21)

y = R0

√
1−ξ 2 sin(φ)

1−ξ cos(η) (22)

z = R0ξ sin(η)
1−ξ cos(η) (23)
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Fig. 7 The theoretical B coefficients vs. the difference in the solvation energy of the ions. (a) Only the COSMO contribution is used, i.e, with

∆Gcav = ∆Gdisp = 0. (b) The Hartree–Fock level of theory is used instead of MP2 for the COSMO contribution. RcavA is used in both cases.

Where 0 < η < 2π ,0 < φ < 2π ,0 < ξ < 1

Surfaces of constant η give spherical bowls with a centre

on the z axis. They are cut off in the xy plane with at a cir-

cle of radius R0. If ηc < π the sphere is above the xy plane(

(+)ve z) and taking the surface with ηn = ηc +π gives the rest

of the circle below the xy plane. We can easily create the sur-

face of two overlapping spherical cavities in this coordinates

system. Given the radii of the two cavities (Rcav,i and Rcav, j)

and the separation (d) between their centres, we can give the z

coordinates of the centre of the two spheres:

ci =
d2−R2

cav, j +R2
cav,i

2d
(24)

c j =
−d2+R2

cav,i−R2
cav, j

2d
(25)

The values of constant η which give the surfaces are:

ηi = arccos( ci

Rcav,i

) (26)

η j = arccos( c j

Rcav, j

)+π (27)

Also R0 = Rcav,i sin(ηi) = Rcav, j sin(η j). The positions of

the centres can be written in toroidal coordinates as ξc,i =
ξc, j = 1,φc,i = φc, j = 0, and ηc,i = 2arctan(R0

ci
) and ηc, j =

2arctan(R0
c j
)+ 2π For ion i we can then rewrite the two in-

tegrals in each of Eqs. 9–11 as

[∫ ηi

0 +∫ 2π
η j
]∫ 1

0 ∫ 2π
0 dφdξ dη(Jt)U(ξ ,η)

4π ∫ ∞Rcav,i
drr2U(r) (28)

Where U(r)= 1/r2n. From the transformation equations above

we also have:

U(ξ ,η) =
1/(x(ξ ,η)+y(ξ ,η)2+(z(ξ ,η)− z(ξc,i,ηc,i))2)n (29)

n is 3 for dipolar, 4 for quadrupole and 6 for octupole. The

Jacobian is

(Jt) = R3
0ξ

(1−ξ cos(η))3 (30)

This integral can be solved analytically, and for the dipole op-

erator we arrive at:

π

6R3
0

(cos(η −ηc,i)−2)cot(η −ηc,i

2
)csc(η −ηc,i

2
)2

×sin(ηc,i

2
)6⎤⎥⎥⎥⎥⎦

η=ηi

η=η j

(31)

with similar although significantly longer expressions for the

quadrupole and octupole moments. This is straightforwardly

generalized for the second ion by replacing z(ξc,i,ηc,i) with

z(ξc, j,ηc, j) in Eq. 29 and Rcav,i with Rcav, j in the denominator

of Eq. 28.
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63 M. Häser and R. Ahlrichs, J. Comput. Chem., 1989, 10, 104–111.
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65 F. Weigend, M. Häser, H. Patzelt and R. Ahlrichs, Chem. Phys. Lett.,

1998, 294, 143–152.
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