PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

1	Formation and Sintering of Pt Nanoparticles on Vicinal
2	Rutile TiO ₂ Surfaces
3	Felix Rieboldt ^a , Stig Helveg ^b , Ralf Bechstein ^a ,Lutz Lammich ^a , Flemming Besenbacher ^a ,
4	Jeppe Vang Lauritsen ^a , and Stefan Wendt ^{a*}
5	^a Interdisciplinary Nanoscience Center (iNANO), Department of Physics and Astronomy, Aarhus
6	University, DK-8000 Aarhus C, Denmark
7	^b Haldor Topsøe A/S, Nymøllevej 55, DK-2800 Kgs. Lyngby, Denmark
8	
9	*Corresponding Author
10	E-mail: <u>swendt@phys.au.dk</u>
11	
12	
13	
14	
15	
	1

1 Abstract

2 By means of scanning tunnelling microscopy (STM) the nucleation, growth and sintering of platinum 3 nanoparticles (Pt NP's) was studied on vicinal and flat rutile titanium dioxide (TiO₂) surfaces. Utilising 4 physical vapour deposition, the nucleation of Pt NP's on TiO₂ surfaces at room temperature (RT) was 5 found to be random and invariant towards different surface morphologies and reduction states. Thus, 6 the nucleation of Pt on TiO₂ at RT is rather insensitive to the surface structure and surface defects. Vacuum-annealing at 600 K, 700 K and 800 K, respectively, led to lower densities of Pt NP's as a 7 8 result of sintering. Sintering occurred at different rates at the TiO₂ surfaces studied, indicating that the surface morphology and the amount of Ti³⁺ excess charge do have an influence on the particle stability. 9 10 Observed changes in the NP distribution as a result of sintering can be explained inferring facile 11 diffusion of Pt NP's along the [001] direction.

12

13

14

15

16

17

18

19

Physical Chemistry Chemical Physics Accepted Manuscrip

1 **1 Introduction**

2 Owing to their technological applications in heterogeneous catalysis and photocatalysis, supported transition metal nanoparticles (NP's) have been studied intensely.¹⁻⁶ Specifically, much research has 3 4 been focused on Platinum (Pt) NP's dispersed on metal oxide supports which are used in automotive 5 converters to reduce the emission of environmentally harmful gases such as carbon monoxide (CO) and nitrogen oxides (NO, NO₂).⁷⁻¹² In automotive converters, high temperatures and pressures are 6 7 commonly used, which leads to sintering of the NP's. Accordingly, NP's are agglomerated into larger 8 NP's, which leads to a decline in catalytic reactivity due to loss of active surface area.^{13, 14} Sintering is a 9 complex process that occurs following various mechanisms, or combinations of them. The prevailing 10 mechanism depends on the exact materials combination of the metal NP's and the support (usually 11 oxides), the gases involved in the reaction(s), the temperature, the structure of the NP's and the interaction between the NP's and the oxide support.^{3, 14-16} A number of studies have previously been 12 conducted addressing the mechanism of sintering, e.g. considering Pt NP's on silica and alumina 13 supports.¹⁷⁻¹⁹ In these studies, Ostwald ripening has been found to be the prevailing mechanism for the 14 15 sintering of Pt NP's. However, the oxide support plays an important role, and for different oxide 16 supports the sintering kinetics and the prevailing sintering mechanism may be different as well. Studies 17 regarding the influence of the oxide support have been proven to be difficult because of lacking control 18 of the surface structure. The present study compares the nucleation, growth and sintering of Pt NP's on 19 various rutile titania (TiO₂) surfaces with different surface morphology and surface reduction states.

TiO₂ is a typical oxide support material in various applications, ranging from gas sensors, photovoltaics, heterogeneous catalysis and photocatalysis to the photogeneration of hydrophilic oxide films.²⁰⁻²² In addition, TiO₂ has become the most studied transition metal oxide in surface science $^{21-25}$ because rutile TiO₂ crystals of high quality can be synthesized. Specifically, the rutile TiO₂ (110)–(1 ×
1) surface has been studied intensely, and many interesting surface phenomena have been unravelled
by using traditional surface science techniques and STM measurements.²¹⁻²⁵ In previous STM studies
by Wendt and co-workers, both the adsorption of molecules such as water, oxygen and ethanol ^{23, 26-30}
and the nucleation of Au and Ag NP's³¹⁻³³ have been studied.

Several previous experimental and theoretical surface science studies addressed the nucleation, growth 6 and sintering of Pt NP's on TiO₂ surfaces and revealed interesting insights.³⁴⁻⁴⁹ For example, Gan *et al.* 7 8 concluded that the surface structure of TiO₂ (110) plays a crucial role and that the (1×2) reconstructed surface exhibits a stronger interaction with Pt than the (1×1) surface.³⁴ Nevertheless, a conclusive 9 10 understanding of the Pt-TiO₂ support interaction has not yet been achieved, and contradictory results 11 have been reported regarding the preferred nucleation site of Pt atoms on the rutile TiO_2 (110) surface. Previous STM studies revealed random positioning of Pt NP's on the rutile TiO₂ (110) surface.³⁴⁻³⁶ 12 Inspired by Isomura et al.'s STM study,³⁶ Jiang et al. considered in their density functional theory 13 (DFT) calculations Pt NP's consisting of 4 to 8 Pt atoms.³⁷ All these small Pt NP's were found to be 14 15 centred about the Ti troughs on the TiO₂ (110)–(1 × 1) surface. In another theoretical study by Çakir et 16 *al.* it has been reported that bridging oxygen vacancies (O_{br} vac.'s) serve as nucleation sites for Pt NP's on rutile $TiO_2(110)$;³⁸ however, direct experimental evidence for this prediction has not been provided. 17 18 Another interesting issue that needs to be considered for Pt-TiO₂ systems is the strong metal - support interaction (SMSI).⁵⁰ The SMSI effect occurs upon reduction of Pt-TiO₂ and leads mostly to decreased 19 catalytic activity.^{40-42, 51-55} The SMSI effect has been explained by encapsulation of Pt NP's on the TiO₂ 20 support by a reduced TiO_x over-layer.^{40-43, 53, 56} For small Pt particles down to atomic Pt the SMSI 21 effect has been observed in UHV following annealing at 700 K.^{45, 47} However, while Gan et al. 22 23 reported evidence for encapsulation of Pt NP's on TiO₂ (110)–(1 \times 1), they did not find evidence for 1 encapsulation of small Pt NP's supported on a (1×2) reconstructed TiO₂ (110) surface, even after 2 annealing at 770 K.³⁴

3 In the present study, STM results on the nucleation and sintering of Pt NP's on various rutile TiO₂ 4 surfaces are presented. Four different TiO₂ surfaces are compared that differ (i) in their density of 5 prevailing step edges and (ii) in their surface reduction states. The TiO_2 surfaces were imaged directly 6 following Pt evaporation at RT and, additionally, following vacuum-annealing at elevated temperatures 7 to induce sintering. Conclusions are drawn on the nucleation and sintering behaviour of Pt NP's 8 depending on the surface morphology and surface reduction of the support. It is found that neither the 9 surface morphology nor the surface reduction state of the TiO₂ samples strongly influence the 10 nucleation of Pt at RT. Annealing the samples led to NP sintering resulting in larger Pt NP's, and 11 differences were found regarding the Pt NP distributions on the TiO₂ supports compared. Based on 12 these differences it is inferred that anisotropic surface diffusion of Pt NP's or atomic Pt species in the 13 [001] direction is dominant.

14

15 **2 Experiments**

All the experiments were carried out in a UHV system (SPECS, Germany) consisting of two separable
chambers, one for STM analysis and one for sample preparation and Pt evaporation. The base pressure
was below 1 × 10⁻¹⁰ mbar in both chambers. The UHV system was equipped with an Aarhus-150 STM
(SPECS), an X-ray source (SPECS), a helium discharge lamp (Thermo Fischer, UK), a hemispherical
energy analyser (SPECS, PHOIBOS) and an electron beam evaporator for Pt evaporation (SPECS).

Two flat rutile TiO_2 (110) samples were used as well as two TiO_2 (110) samples that were intentionally miss-cut by ~3° either perpendicular to or along the [001] direction (see Fig. 1). All four samples

Physical Chemistry Chemical Physics Accepted Manuscript

1 originated from the same batch (SurfaceNet). The slightly miss-cut TiO₂ (110) single crystals provided 2 two vicinal TiO₂ (110) surfaces: (i) TiO₂ (870) with a high density of [001] step edges and (ii) TiO₂ (771) with a high density of $[1\overline{1}1]$ and $[1\overline{1}\overline{1}]$ step edges.^{57, 58} The two vicinal surfaces and one of the 3 flat TiO₂ (110) surfaces were similarly prepared by continuous cycles of Ar⁺ sputtering (10 min, 5×10^{-10} 4 ⁷ mbar, 1.5 keV, 10 mA) and 15 min vacuum-annealing at (910 \pm 10) K. At the beginning of the 5 experiments, the flat TiO₂ (110) surface was prepared by ~90 cycles of sputtering and annealing, while 6 7 the two vicinal surfaces [(870) and (771)] were prepared by ~60 preparation cycles. Based on UPS measurements these three samples were assessed to be highly reduced.⁵⁸ In order to distinguish 8 9 between the flat TiO₂ (110) surface that was prepared already ~90 times and a second flat TiO₂ (110) 10 surface that was much less reduced, the highly reduced surface will be denoted as HR-TiO₂. The 11 second flat TiO₂ (110) sample was prepared only ~ 20 times at the beginning of the experiments and this sample was vacuum-annealed at only (855 ± 10) K. As shown previously,^{26, 59, 60} this preparation 12 13 leads to a slightly reduced surface, and accordingly, this surface is referred to as SR-TiO₂. During 14 sample preparation, ramps of 1 K/s were used upon heating and cooling of the samples. The sample 15 temperature was measured using a K-type thermocouple and double checked using a pyrometer. Pt was deposited via e-beam evaporation with the TiO₂ samples at 300 K. Subsequently, the samples 16 17 were annealed for 5 min either at 600 K, 700 K or 800 K. Between the different experiments the TiO_2 18 surfaces were cleaned by four cycles of sample preparation to remove the Pt from the previous 19 experiment. By means of XPS it was verified that the surfaces were indeed free of Pt and that identical

amounts of Pt were evaporated onto the surfaces. The Pt coverage was determined by XPS using the ratio of the integrated Pt 4f and Ti 2p peak areas.^{34, 61} A monolayer matrix factor Q_{Ti}^{Pt} of ~3.7 was taken into account with a mean free electron path λ of ~1 nm and a layer thickness d_{Pt} in Pt of ~0.27

6

nm.^{61, 62} Additionally, XPS measurements before and after the annealing treatments showed that the 1 2 amount of Pt on the surfaces did not change through the annealing at higher temperatures, i.e. that no Pt 3 was lost (Fig. S1). The UPS measurements were conducted using He I irradiation (21.21 eV) at 100-4 120 K. The valence band (VB) spectra were normalized such that the intensities at ~ 10 eV binding 5 energy (BE) were equal in all spectra. This allowed a direct comparison of the VB spectra and the 6 integrated areas of the gap state (GS). STM measurements were conducted in the constant current mode 7 (bias voltage ~1.2 V, tunnelling current ~0.1 nA) with the sample kept similarly at a low temperature of 8 90-110 K.

9

10 **3 Results**

11 Figure 2 presents STM images and valence band spectra of the flat HR-TiO₂ (110) surface and the two vicinal surfaces, TiO₂ (870) and TiO₂ (771), respectively. STM images (60 nm \times 60 nm) of the three 12 13 clean surfaces are shown in Fig. 2(a)-(c), whereas typical valence band (VB) spectra are presented in 14 Fig. 2(d)-(f). For all STM images, a periodic colour scale with a periodicity of one atomic layer on the 15 TiO_2 (110) surface, i.e. ~0.33 nm, was used to illustrate the (110) terraces with the same colour 16 gradient. The terraces are characterized by alternating rows along the [001] direction of in-plane, fivefold-coordinated Ti atoms (bright rows) and bridging oxygen atoms (O_{br}, dark rows). Within the 17 O_{br} rows, the O_{br} vac.'s can be seen as faint, bright spots.²²⁻²⁴ The flat TiO₂ (110) surface was 18 characterized by large terraces (and thus, a high density of Obr vac.'s) 55 and rather few step edges [Fig. 19 20 2(a)], whereas the two vicinal surfaces showed narrow terraces and high step edge densities. 21 Particularly, the TiO₂ (870) surface was characterized by a high density of [001] steps [Fig. 2(b)], whereas a high density of $[1\overline{1}1]$ and $[1\overline{1}\overline{1}]$ steps dominated the TiO₂ (771) surface [Fig. 2(c)].^{57, 58} 22

Physical Chemistry Chemical Physics Accepted Manuscript

^Dhysical Chemistry Chemical Physics Accepted Manuscript

Whereas the $[1\overline{1}1]$ step edges are reduced,⁶³⁻⁶⁶ no O vac.'s are stabilised along the [001] steps.⁶⁵⁻⁶⁷ 1 2 Additionally, a high amount of elongated strands in the [001] direction (elliptic mark) were present on the (771) surface.^{57, 58} These strands are reduced ad-structures connected to the $[1\overline{1}1]$ steps that grow on 3 4 the lower terrace with a periodic centre-part and a more protruding end-structure (see Fig. 1). The 5 strands are a possibility to compensate for missing O atoms and thus, they are competitive to point defects such as O_{br} vac.'s and Ti interstitials.⁵⁷ The strands are characteristic of the (771) surface and 6 occur at all reduction states.^{57, 58} The VB spectra in Fig. 2(d)-(f) were acquired at comparable bulk 7 8 reduction states, i.e. after applying the same number of preparation cycles. The differences in the VB spectra between the three surfaces arose from the different surface morphologies.^{57, 58} The GS (see 9 inserts) originates from Ti³⁺ excess charge and its integrated area is considered a measure for the 10 surface reduction.^{26, 60, 68} The flat TiO₂ (110) surface showed a significantly larger GS than the two 11 12 vicinal surfaces, indicating a higher surface reduction of this surface compared to the other two TiO_2 13 surfaces.

14 Figure 3 shows a panel of STM images acquired after depositing ~0.1 ML of Pt at RT onto the three 15 TiO₂ surfaces considered [Fig. 3(a)-(c)], and after annealing of the samples in UHV for 5 min at either 16 600 K [Fig. 3(d)-(f)], 700 K [Fig. 3(g)-(i)] or 800 K [Fig. 3(k)-(m)], respectively. Following Pt 17 evaporation at RT [Fig. 3 (a)-(c)], a considerable amount of Pt NP's have nucleated on all TiO_2 surfaces considered. The average apparent height of the Pt NP's was consistently 0.33 ± 0.04 nm on 18 these TiO₂ surfaces, in good agreement with the literature.^{36, 49} Likewise, the densities of Pt NP's were 19 comparable on the TiO₂ (110), (870) and (771) surfaces with a value of $1.2 / \text{nm}^2$. Furthermore, the Pt 20 21 NP's were distributed similarly on all three surfaces, i.e. their distributions were homogeneous across

8

the surfaces and there was no obvious preference for Pt NP's to nucleate at step edges or on terrace
sites. On the TiO₂ (771) surface, Pt NP's appeared also on top of the strands [Fig. 3(c)].

3 Upon annealing the samples, the density of Pt NP's declined on all three surfaces from $1.2 / \text{nm}^2$ to below 0.5 / nm², and the average Pt NP height increased from 0.33 ± 0.04 nm to 0.47 ± 0.07 nm. XPS 4 measurements on the clean TiO₂ surface, after Pt deposition and after annealing revealed that the Pt 5 6 coverage remained constant and that no Pt was lost upon annealing (Fig. S1). This result is in line with previous studies on Pt NP's on TiO₂ (110).³⁹ The Pt NP's in Fig. 3(k)-(m) were larger compared to 7 8 those seen in Fig. 3(a)-(c). In particular, the particles marked by black squares in Fig. 3(k)-(m) were 9 higher than two atomic layers of TiO₂ on TiO₂ (110) (i.e. 0.66 nm, note the periodic colour scale) and 10 on all three surfaces several of these high NP's were found following annealing at 800 K. Note that 11 such high NP's were not observed directly after Pt deposition (average height 0.33 ± 0.04 nm) and that 12 the number of these high NP's was lower on the (870) surface compared to those observed on the (110) 13 and (771) surfaces.

Following vacuum-annealing the samples at 600 K, 700 K and 800 K, respectively, different geometric distributions of the Pt NP's were found on the three surfaces considered. Whereas the Pt NP's remained distributed homogeneously on the (110) and (870) surfaces even after annealing at 800 K [Fig. 3 (k),(l)], the distribution of the Pt NP's changed considerably on the (771) surface. Here, following annealing at 800 K, the Pt NP's were found almost exclusively along $[1\overline{1}1]$ step edges and on top of the strands [Fig. 3(m)].

Figure 4 compares annealing experiments conducted with the HR-TiO₂ (110) surface (left column) and the SR-TiO₂ (110) surface (right column). The STM images of the HR-TiO₂ surface were selected from the same data set that was used for compiling Fig. 3. The second TiO₂ (110) crystal was prepared by

1 using fewer cycles of sputtering, and annealing and lower annealing temperatures were used than for 2 preparing the HR-TiO₂. This resulted in a lower surface reduction state and a lower O_{br} vac. density on 3 the SR-TiO₂ surface (cf. Fig. 5). Specifically, the HR-TiO₂ surface was characterized by ~10-11 % monolayer (ML) O_{br} vac. density, where 1 ML is defined as the density of (1×1) unit cells on the 4 TiO₂(110) surface, i.e. 5.2×10^{14} / cm². The SR-TiO₂ was characterized by ~7 % ML O_{br} vac. density. 5 6 Following Pt evaporation and annealing, the Pt NP distributions found on the SR- and HR-TiO₂ 7 surfaces were comparable. However, the total NP density was lower on SR-TiO₂ than on HR-TiO₂ 8 following annealing at 800 K [Fig. 4(g),(h)].

9 Figure 6 presents another interesting result obtained for the TiO_2 (771) surface. On the clean TiO_2 10 (771) surface [Fig. 6(a)], a ~1.5 nm wide gap exists between the strand end-structures and the 11 following step edges.^{57, 58} After Pt evaporation and annealing at 800 K [Fig. 6(b)], Pt NP's were found 12 preferentially along the step edges on the upper terraces (circle) and on top of the strands. Interestingly, 13 Pt NP's at the end of the strands (square) "extended" the strands all the way to the step edges. In 14 addition, the Pt NP's on top of the periodical centre-part of the strands (diamonds) were only dilute 15 features and NP's on the terraces were very rare.

16 Figure 7 illustrates the decrease in NP density on the various TiO₂ surfaces as function of the annealing 17 temperature. For each data point, six STM images of 60 nm \times 60 nm large areas were analysed. 18 Directly after Pt evaporation at RT (300 K), the NP densities were within the error bars comparable at ~ 1.2 / nm² for all four TiO₂ surfaces. Annealing at 600 K led to similarly decreased densities of Pt NP's 19 of ~0.65 / nm² on the HR-TiO₂ (black circles, continuous line), the SR-TiO₂ (yellow triangles, dashed 20 21 line) and the TiO₂ (771) surface (green triangles, continuous line), respectively. Only for the TiO₂ (870) 22 surface (blue circles, dashed line) the density of NP's was higher than on the other surfaces (~ 0.9 / 23 nm²). Following instead annealing at 700 K and 800 K, the densities of Pt NP's decreased on SR-TiO₂

and TiO₂ (771) even further to $\sim 0.5 / \text{nm}^2$ and $\sim 0.3 / \text{nm}^2$, respectively. A similar monotonic decrease 1 2 in NP density was observed for the TiO₂ (870) surface. However, on this surface the density of Pt NP's 3 was still ~ 0.5 / nm² even after annealing at 800 K. On HR-TiO₂, the measured density of Pt NP's 4 following annealing at 700 K was still the same as found following annealing at 600 K (~0.65 / nm²). 5 This value coincides with the NP density found on the (870) surface following annealing at 700 K. 6 Following annealing at 800 K, the NP densities on the HR-TiO₂ and TiO₂ (870) surfaces were 7 comparable within error bars. A comparison in total numbers of Pt NP's per 60 nm \times 60 nm STM 8 image (right axis) illustrates that the differences were significant between HR-TiO₂ and TiO₂ (870) on 9 the one hand (~180 NP's per STM image), and SR-TiO₂ and TiO₂ (771) on the other hand (~110 NP's 10 per STM image).

11 In a more detailed analysis it was also considered where exactly the Pt particles appeared upon 12 annealing on the four TiO₂ surfaces considered (Fig. 8). It was distinguished between step edges 13 (yellow bars), terraces (blue bars) and, in the case of the TiO₂ (771) surface, strands (grey bars). In the 14 latter case, it was further distinguished whether the Pt NP's resided at the end of the strands (light grey 15 bars) or on top of the periodic centre-parts (dark grey bars). Figure 8(a) presents the corresponding Pt 16 NP densities for each sample and annealing temperature, whereas Fig. 8(b) shows the relative NP 17 densities, i.e. which percentages of the Pt NP's were found at step edges, terraces and strands, 18 respectively. Figure 8(b) shows that the NP distributions were similar on the two flat TiO_2 (110) 19 surfaces and that most of the Pt NP's appeared on the terraces on these two surfaces at all temperatures 20 (only ~15% of the Pt NP's were found at step edges). In case of the two stepped surfaces, TiO_2 (870) 21 and TiO₂ (771), significant higher percentages of 45-50% of NP's resided at step edges disregarding 22 the annealing temperature. Because of the much higher density of step edges on these vicinal TiO₂ 23 surfaces this result was expected. On the TiO_2 (771) surface, strands cover the narrow terraces and

1 thus, the percentages of Pt NP's on terraces and on strands on the TiO_2 (771) surface need to be 2 compared with the percentage of NP's on terraces on the TiO₂ (870) surface without strands. 3 Annealing the samples did not lead to remarkable changes of the NP distributions on the two flat TiO_2 4 (110) surfaces and the TiO_2 (870) surface. The number of Pt NP's decreased with increasing annealing 5 temperature [Fig. 7 and Fig. 8(a)] but the percentages of NP's at step edges and on terraces remained 6 the same on these three surfaces. However, the NP distribution on the TiO₂ (771) surface changed 7 considerably upon annealing. Interestingly, the percentage of Pt NP's at step edges increased slightly 8 up to $\sim 60\%$ after annealing at 600 K and 700 K and then dropped to $\sim 50\%$ following annealing at 800 9 K. The percentage of Pt NP's on terraces decreased monotonically from ~20% to ~5%, whereas the 10 percentage of Pt NP's on strands increased from $\sim 30\%$ to $\sim 45\%$. This means that most of the Pt NP's 11 on the TiO₂ (771) surface appeared at step edges or strands following annealing at 800 K. Furthermore, 12 a significant change was found regarding the Pt NP's on the strands on the TiO_2 (771) surface. Directly 13 after evaporation at RT, Pt NP's were found both on the centre-parts and on the end-structures with a 14 ratio of about 3 : 2. Following annealing at elevated temperatures, this ratio decreased monotonically as 15 a function of the temperature to ~1 : 8 following annealing at 800 K, meaning that finally most Pt NP's 16 on strands on the TiO_2 (771) surface appeared at the end-structures of the strands. Note, however, that 17 the total number of Pt NP's at strand end-structures was constant in all the experiments [Fig. 8(a), light 18 grey bars, ~50 Pt particles per (60 nm²) image or ~0.014 / nm²], whereas the total number of Pt NP's on 19 the (771) surface decreased remarkably with increasing annealing temperature. 20 It can be inferred from these results that Pt from the NP's on the terraces on the TiO_2 (771) surface have diffused to $[1\overline{1}1]$ step edges, there forming larger NP's, while Pt from the NP's on the strand 21

22 centre-parts diffused to NP's at the end-structures. Once the Pt reached the end-structures they

Physical Chemistry Chemical Physics

1 remained there and the NP's increased in size. Indeed, the largest Pt NP's on the TiO_2 (771) surface 2 following annealing at 800 K [Fig. 3(m)] were the ones at the end-structures rather than those at the 3 step edges. In the annealing experiments on the other TiO₂ surfaces such obvious diffusion from 4 terraces to step edges was not observed. Thus, the strand end-structures on TiO_2 (771) are preferred 5 sites for Pt NP's.

6

4 Discussions 7

8 4.1. Pt Nucleation at RT

9 For the following discussion, the characteristic differences of the four TiO₂ surfaces need to be taken into account. As mentioned above, the $[1\overline{1}1]$ step edges dominate the TiO₂ (771) surface, exposing a 10 high density of O vac.'s. Note that O vac.'s (both on the terraces, i.e. Obr vac.'s, and at step edges) are 11 generally known as preferential sites for adsorption of molecules^{21-25, 64, 65} and nucleation sites of small 12 metal NP's,^{5, 31, 33} respectively. In contrast, the [001] step edges that dominate the TiO₂ (870) surface 13 are not reduced.⁶⁵⁻⁶⁷ However, even though the TiO₂ (771) surface offers a large number of O vac.'s no 14 15 clear difference between the different surfaces was seen in the STM images acquired after Pt 16 evaporation [Fig. 3(a)-(c)], and the Pt nucleation on the two stepped surfaces was very similar, as seen 17 from the densities (Fig. 7) and the particle distributions (Fig. 8). Furthermore, the differences in relative 18 Pt NP density between the stepped surfaces and the flat TiO₂ (110) surfaces, i.e. 45-50% of Pt at step 19 edges compared to ~15%, can be best explained by the higher densities of step edges on the two former surfaces. From these observations it is concluded that O vac.'s along the $[1\overline{1}1]$ step edges on the TiO₂ 20 21 (771) surface did not act as preferred nucleation sites for Pt at RT.

hysical Chemistry Chemical Physics Accepted Manuscript

The two flat TiO₂ (110) surfaces differed in their reduction states, resulting in different quantities of 1 ${\rm Ti}^{3+}$ excess charge in the near surface region and different ${\rm O}_{br}$ vac. densities on the terraces. If the ${\rm O}_{br}$ 2 vac.'s and the Ti³⁺ excess charge had a direct influence on the nucleation of Pt at RT, a clear difference 3 4 between the STM images in Fig. 4(a) and (b) would be expected, and also the NP distributions (Fig. 8) should be different. Nonetheless, no such differences were observed at our samples, indicating that Ti³⁺ 5 excess charge and O_{br} vac.'s are not of high relevance for the nucleation of Pt at the chosen conditions. 6 7 Furthermore, the presence of strands on the TiO_2 (771) surface did not have impact on the Pt nucleation 8 at RT. Following Pt evaporation at RT, Pt NP's covered the TiO₂ (771) surface homogeneously without 9 any preference or disfavour for nucleation at the strands [Fig. 3(c)]. However, strand end-structures 10 were found to be preferred sites for Pt NP's after annealing at 800 K, a result that bears similarity to a previous report by Gan *et al*,³⁴ where preferential nucleation of Pt NP's on a reconstructed TiO₂ (110)– 11 (1×2) surface was observed following Pt deposition at RT.³⁴ 12 The STM data presented here do not allow drawing clear-cut conclusions as to whether O_{br} vac.'s serve 13

14 as nucleation sites for Pt nucleation. As described above, the surface reduction state and the density of 15 Obr vac.'s did not influence the nucleation of Pt at RT [cf. HR-TiO₂ and SR-TiO₂ (110) surfaces in Fig. 16 $4(a)_{t}(b)$, Fig. 7 and Fig. 8], which does not support the hypothesis of preferential Pt nucleation at O_{br} 17 vac.'s. However, the possibility exists that very small Pt NP's can be stabilized at Obr vac.'s and that different preparations than applied here are needed to prepare them. Hence, whether Obr vac.'s can 18 serve as preferred nucleation sites for small Pt NP's³⁸ remains to be clarified. For the Pt NP's studied 19 here, characterized by apparent STM heights of 0.33 ± 0.04 nm, the role of O_{br} vac.'s as nucleation 20 21 sites seems to be negligible.

22

23

14

1 4.2. Pt Sintering upon Vacuum-annealing

Following vacuum-annealing at 800 K, Pt NP's on the TiO₂ (771) surface appeared almost exclusively 2 along $1\overline{1}1$ step edges and at strand end-structures. Within a particle or atom migration sintering model 3 on TiO₂ $(110)^{39}$ a possible explanation of this result is a variation of the diffusion probabilities of Pt 4 5 NP's or atomic species on the TiO_2 (110) terraces depending whether they diffuse along or 6 perpendicular to the [001] direction. Assuming a higher diffusion probability along the [001] direction, i.e. along the Ti and O_{br} rows, the sintering of Pt should be different depending on the surface 7 8 morphology. In case of the TiO_2 (870) surface, Pt diffusion on the terraces would be facilitated parallel 9 rather than perpendicular to the [001] step edges. As a result, upon annealing Pt can diffuse longer 10 distances on the terraces before hitting a step edge. In contrast, Pt on the TiO₂ (771) surface would diffuse almost perpendicular to the dominating $[1\overline{1}1]$ step edges and thus, reach step edges more 11 frequently than on the TiO₂ (870) surface. Once Pt reached a $\begin{bmatrix} 1 & \overline{1} & 1 \end{bmatrix}$ step edge, it may be more strongly 12 13 bound than on a regular terrace site, or be sterically hindered from further diffusion. This scenario is in 14 line with the increased percentage of Pt NP's at step edges after annealing at 600 K on the TiO_2 (771) 15 surface [see Fig. 8(b)]. Comparing the Pt NP distributions obtained after annealing at 700 K and 800 K. it can be speculated that Pt that already resided at step edges on the TiO₂ (771) surface diffused along 16 the $[1\overline{1}1]$ step edges, leading to agglomeration of larger NP's. Following annealing of the Pt/TiO₂ (870) 17 surface at 800 K [Fig. 3(1)], about half of the Pt NP's residing at step edges were found at short $[1\overline{1}1]$ 18 step edges (data not shown), even though the [001] step edges clearly dominate the TiO₂ (870) surface. 19 20 This result also supports that the diffusion of Pt is most facile along the [001] direction.

Of particular interest is the prevailing mechanism for Pt sintering in the annealing experiments
 conducted in vacuum. In a previous study by Behafarid and Roldan Cuenya³⁹ it has been concluded

that diffusion-coalescence rather than Ostwald ripening is the dominant sintering mechanism of Pt 1 2 NP's on TiO₂ (110). As outlined above, a model based on diffusion-coalescence allows explaining that Pt NP's on the TiO₂ (771) surface appeared almost exclusively along $[1\overline{1}1]$ step edges following 3 4 annealing at 800 K. The question remains whether all the NP densities obtained in the annealing 5 experiments (Fig. 7) can be explained within the framework of this model. Following annealing at 600 6 K, the TiO₂ (870) surface showed a smaller decline in NP density (blue dashed line) than the TiO₂ 7 (771) surface and the two flat TiO_2 (110) surfaces, resulting in a higher NP density. This difference 8 may be explained considering that the proportion of Pt NP's on or close to [001] step edges is larger on 9 this TiO₂ surface compared to the other three surfaces and that the mobility of Pt NP's close to these 10 step edges is diminished.

11 Comparing the Pt NP densities obtained following vacuum-annealing at 600 K, 700 K and 800 K, the 12 NP densities on the TiO₂ (870), TiO₂ (771) and SR-TiO₂ surfaces decreased in a similar fashion (Fig. 13 7). In contrast, the NP densities on the HR-TiO₂ surface (black solid line) following annealing at 600 K 14 and 700 K were identical, and a decrease on this surface comparable to those on the other surfaces was 15 observed only after annealing at 800 K. We argue that this difference occurred because of the larger amount of Ti³⁺ excess charge available on this surface compared to the other three TiO₂ surfaces that 16 were characterized by smaller GS's, i.e. smaller amount of Ti³⁺ excess charge. However, even though 17 the amount of Ti³⁺ excess charge influences the kinetics of a specific sintering mechanism for Pt NP's 18 19 on TiO₂, it appears unlikely that the sintering mechanism itself changes because of the higher amount of Ti³⁺ excess charge on HR-TiO₂. 20

21 Rather, it can be assumed that the diffusion of Pt NP's or Pt atoms is hindered on HR-TiO₂ (110) 22 because of the higher density of O_{br} vac.'s. However, if this picture is valid, it is not clear as to why the

Physical Chemistry Chemical Physics Accepted Manuscript

1 sintering behaviour following annealing at 600 K was comparable on SR- and HR-TiO₂ surfaces. 2 Rather, differences in the sintering behaviours were found only following annealing at 700 K (Fig. 7). 3 One possible explanation is that the diffusion of larger Pt NP's is stronger influenced by O_{br} vac.'s and Ti³⁺ than of smaller Pt NP's. However, this scenario is against chemical intuition, since it is known 4 from Au / TiO₂ (110) that a single O_{br} vac. can stabilize, at maximum, Au₃.³¹ Accordingly, we favour 5 6 another possible explanation, in which the TiO₂ substrate is considered to behave more dynamic. 7 Specifically, we revert to observations in annealing-experiments on oxidized TiO_2 (110) surfaces, 8 where the substantial re-appearance of O_{br} vac.'s was found only for vacuum-annealing at temperatures 9 higher than 600 K (see Fig. S2). Accordingly, assuming for Pt / TiO₂ (110) that O vacancies can be 10 accumulated beneath of Pt NP's, the decreased sintering of Pt NP's following vacuum-annealing at 700 11 K and 800 K could be understood. Such an accumulation of O vacancies beneath of Pt NP's may 12 precede the encapsulation of Pt NP's by a TiO_x over-layer, as known from the SMSI effect. Further studies are required to better understand the influence of O_{br} vac.'s and Ti³⁺ on the sintering of Pt NP's. 13 14 Finally, the SMSI effect has to be considered when discussing the annealing experiments. If the SMSI effect occurred as expected for all Pt NP's upon annealing at 700 K and 800 K^{43, 45, 47} the resulting Pt 15 16 NP's would increase in height to at least ~0.6 nm (~about two atomic layers on TiO₂ (110), i.e. one 17 layer Pt and one layer TiO_x over-layer). However, a large density of small NP's with a maximum 18 height of one atomic layer (0.33 nm) still existed on all four TiO₂ surfaces, even after annealing at 700 19 K [Fig. 3(g)-(i) and Fig. 4(e),(f)] and 800 K [Fig. 3(k)-(m) and Fig. 4(g),(h)], respectively. 20 Accordingly, if the SMSI effect occurred it did not occur for all Pt NP's, or the Pt NP's were 21 simultaneously buried. Furthermore, an encapsulation of Pt by a TiO_x over-layer should cause changes 22 to the XPS spectra. Following vacuum-annealing, the Pt 4f peak would decrease while the Ti 2p signal 23 would increase. As can be seen in Fig. S1, this was not the case in our experiments. The Pt 4f peak was found to be the same before and after annealing at 800 K. Thus, at the chosen experimental conditions
 no clear evidence for encapsulation was observed.

3

4 5 Conclusions

The nucleation, growth and sintering of Pt NP's on four different TiO₂ (110) surfaces were studied by STM. Two vicinal TiO₂ (110) surfaces were studied, namely TiO₂ (870) and TiO₂ (771) surfaces. These vicinal surfaces were characterized by high densities of [001] step edges [TiO₂ (870)], and $[1\overline{1}1]$ $/ [1\overline{1}\overline{1}]$ step edges [TiO₂ (771)], respectively. In addition, two flat TiO₂ (110) surfaces of different reduction states were studied. This approach made it possible to compare the nucleation and sintering

10 of Pt NP's depending on the surface morphology and the surface reduction state.

No differences were observed for the nucleation of Pt on these surfaces following Pt evaporation at RT.
On all surfaces, on average ~0.33 nm high Pt NP's were found to be homogeneously distributed, and
their densities were comparable irrespective of the surface reduction state and the surface morphology.
Thus, the nucleation and growth of Pt on TiO₂ at RT is insensitive to surface defects such as O_{br} vac.'s,
strands and the presence of Ti³⁺ excess charge beneath the terraces.

Following vacuum-annealing of the samples at 600 K, 700 K and 800 K, respectively, the Pt NP's increased in size and their number decreased considerably as a result of sintering. Whereas the distributions of NP's on the two flat TiO₂ (110) surfaces and the TiO₂ (870) surface remained homogeneous even after annealing at 800 K, Pt NP's on the TiO₂ (771) surface were almost exclusively found along the $[1\overline{1}1]$ and $[1\overline{1}\overline{1}]$ step edges and on strand end-structures following annealing at 800 K. It is inferred that Pt diffuses preferentially along the [001] direction, i.e. along the Ti and O_{br} rows. Furthermore, strand end-structures serve as preferred sites for Pt NP's following
 annealing at 800 K, where Pt NP's "extend" the strands towards the next step edge.

3 The decline of the Pt NP density as function of the annealing temperature differed for the four TiO_2

4 surfaces depending on the surface morphology and surface reduction state. These differences can be

5 explained invoking a sintering model dominated by either particle diffusion/coalescence, or ripening.

6 Considering previous studies on the Pt/TiO₂ system, encapsulation of Pt NP's is expected to occur upon

7 annealing the samples at 700 K and 800 K because of the SMSI effect. However, at the chosen

8 experimental conditions in the present study no sign for particle encapsulation was observed.

9

10 Acknowledgements

11 This work was supported by the Danish Research Agency, the Strategic Research Council, the Villum

12 Kahn Rasmussen Foundation, the Lundbeck Foundation, the Carlsberg Foundation, and the European

13 Research Council through an Advanced ERC grant (F.B.).

14

15 **References**

16

- 17 1. M. Bäumer and H.-J. Freund, *Prog. Surf. Sci.*, 1999, **61**, 127–198.
- 18 2. C. T. Campbell, *Surf. Sci. Rep.*, 1997, 27, 1–111.
- **19** 3. A. T. Bell, *Science*, 2003, **299**, 1688–1691.
- 4. M. Chen and D. W. Goodman, in *The Chemical Physics of Solid Surfaces*, ed. D. P. Woodruff,
 Elsevier B.V., 2007, vol. 12, pp. 201–269.
- 22 5. Q. Fu and T. Wagner, *Surf. Sci. Rep.*, 2007, **62**, 431–498.
- 23 6. G. A. Somorjai, H. Frei and J. Y. Park, J. Am. Chem. Soc., 2009, 131, 16589–16605.
- 24 7. R. M. Heck and R. J. Farrauto, Appl. Catal. A.-Gen., 2001, 221, 443–457.
- 25 8. B. A. A. L. van Setten, M. Makkee and J. A. Moulijn, *Catal. Rev.*, 2001, 43, 489–564.
- 26 9. H. S. Gandhi, G. W. Graham and R. W. McCabe, J. Catal., 2003, 216, 433–442.
- 27 10. L. M. Petkovic, D. M. Ginosar, H. W. Rollins, K. C. Burch, P. J. Pinhero and H. H. Farrell,
 28 Appl. Catal. A.-Gen., 2008, 338, 27–36.

- 1 11. A. Russell and W. S. Epling, *Catal. Rev.*, 2011, **53**, 337–423.
- 2 12. A. Boubnov, S. Dahl, E. Johnson, A. P. Molina, S. B. Simonsen, F. M. Cano, S. Helveg, L. J.
 3 Lemus-Yegres and J.-D. Grunwaldt, *Appl. Catal. B.-Environ.*, 2012, 126, 315–325.
- 4 13. P. Wynblatt and N. A. Gjostein, *Prog. Solid State Ch.*, 1975, **9**, 21–58.
- 5 14. C. H. Bartholomew, Appl. Catal. A.-Gen., 2001, 212, 17–60.
- 6 15. G. A. Somorjai, R. L. York, D. Butcher and J. Y. Park, *Phys. Chem. Chem. Phys.*, 2007, 9, 3500–3513.
- 8 16. C. T. Campbell and J. R. V. Sellers, *Faraday Discuss.*, 2013, **162**, 9–30.
- 9 17. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested and S. Helveg, J. Am.
 10 Chem. Soc., 2010, 132, 7968–7975.
- 11 18. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested and S. Helveg, J. Catal.,
 2011, 281, 147–155.
- 13 19. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, K. Meinander, T. N. Jensen, J. V. Lauritsen and S. Helveg, *J. Phys. Chem. C*, 2012, 116, 5646–5653.
- 15 20. T. L. Thompson and J. T. Yates, *Chem. Rev.*, 2006, **106**, 4428–4453.
- 16 21. U. Diebold, Surf. Sci. Rep., 2003, 48, 53–229.
- 17 22. C. L. Pang, R. Lindsay and G. Thornton, *Chem. Rev.*, 2013, **113**, 3887–3948.
- S. Wendt, R. Schaub, J. Matthiesen, E. K. Vestergaard, E. Wahlström, M. D. Rasmussen, P. Thostrup, L. M. Molina, E. Lægsgaard, I. Stensgaard, B. Hammer and F. Besenbacher, *Surf. Sci.*, 2005, **598**, 226–245.
- 21 24. Z. Dohnálek, I. Lyubinetsky and R. Rousseau, *Prog. Surf. Sci.*, 2010, **85**, 161–205.
- 22 25. M. A. Henderson, Surf. Sci. Rep., 2011, 66, 185–297.
- 26. S. Wendt, P. T. Sprunger, E. Lira, G. K. H. Madsen, Z. Li, J. Ø. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Lægsgaard, B. Hammer and F. Besenbacher, *Science*, 2008, 320, 1755–1759.
- 26 27. J. Matthiesen, J. Ø. Hansen, S. Wendt, E. Lira, R. Schaub, E. Lægsgaard, F. Besenbacher and
 27 B. Hammer, *Phys. Rev. Lett.*, 2009, **102**, 226101.
- 28. J. Matthiesen, S. Wendt, J. Ø. Hansen, G. K. H. Madsen, E. Lira, P. Galliker, E. K. Vestergaard,
 29 R. Schaub, E. Lægsgaard, B. Hammer and F. Besenbacher, *ACS Nano*, 2009, 3, 517–526.
- 29. E. Lira, J. Ø. Hansen, P. Huo, R. Bechstein, P. Galliker, E. Lægsgaard, B. Hammer, S. Wendt and F. Besenbacher, *Surf. Sci.*, 2010, 604, 1945–1960.
- 32 30. J. Ø. Hansen, P. Huo, U. Martinez, E. Lira, Y. Wei, R. Streber, E. Lægsgaard, B. Hammer, S.
 33 Wendt and F. Besenbacher, *Phys. Rev. Lett.*, 2011, **107**, 136102.
- 34 31. D. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Lægsgaard, B. Hammer and F.
 35 Besenbacher, *Science*, 2007, **315**, 1692–1696.
- 36 32. J. Ø. Hansen, E. Lira, P. Galliker, J. Wang, P. T. Sprunger, Z. Li, E. Lægsgaard, S. Wendt, B.
 37 Hammer and F. Besenbacher, *J. Phys. Chem. C*, 2010, **114**, 16964–16972.
- 38 33. E. Lira, J. Ø. Hansen, L. R. Merte, P. T. Sprunger, Z. Li, F. Besenbacher and S. Wendt, *Top. Catal.*, 2013, 56, 1460–1476.
- 40 34. S. Gan, Y. Liang, D. R. Baer and A. W. Grant, *Surf. Sci.*, 2001, 475, 159–170.
- 41 35. A. Sasahara, C. L. Pang and H. Onishi, J. Phys. Chem. B, 2006, 110, 13453–13457.
- 42 36. N. Isomura, X. Wu and Y. Watanabe, J. Chem. Phys., 2009, 131, 164707.
- 43 37. D.-e. Jiang, S. H. Overbury and S. Dai, J. Phys. Chem. C, 2012, 116, 21880–21885.
- 44 38. D. Çakir and O. Gülseren, J. Phys. Chem. C, 2012, 116, 5735–5746.
- 45 39. F. Behafarid and B. Roldan Cuenya, *Surf. Sci.*, 2012, **606**, 908–918.

- 1 40. F. Pesty, H. P. Steinrück and T. E. Madey, *Surf. Sci.*, 1995, **339**, 83–95.
- 2 41. O. Dulub, W. Hebenstreit and U. Diebold, *Phys. Rev. Lett.*, 2000, **84**, 3646–3649.
- 3 42. S. Bonanni, K. Aït-Mansour, H. Brune and W. Harbich, ACS Catal., 2011, 2, 385–389.
- 4 43. S. Bonanni, K. Aït-Mansour, W. Harbich and H. Brune, J. Am. Chem. Soc., 2012, **134**, 3445– 3450.
- 6 44. H. Iddir, M. M. Disko, S. Öğüt and N. D. Browning, *Micron*, 2005, **36**, 233–241.
- 7 45. H. Iddir, S. Öğüt, N. Browning and M. Disko, *Phys. Rev. B*, 2005, **72**, 081407.
- 8 46. H. Iddir, V. Komanicky, S. Öğüt, H. You and P. Zapol, J. Phys. Chem. C, 2007, 111, 14782–
 9 14789.
- 47. O. Ozturk, J. B. Park, S. Ma, J. S. Ratliff, J. Zhou, D. R. Mullins and D. A. Chen, *Surf. Sci.*, 2007, 601, 3099–3113.
- 12 48. J. B. Park, S. F. Conner and D. A. Chen, J. Phys. Chem. C, 2008, 112, 5490–5500.
- 49. S. Bonanni, K. Aït-Mansour, W. Harbich and H. Brune, J. Am. Chem. Soc., 2014, 136, 8702–
 8707.
- 15 50. S. J. Tauster, S. C. Fung and R. L. Garten, J. Am. Chem. Soc., 1978, 100, 170–175.
- 16 51. S. J. Tauster, Accounts Chem. Res., 1987, 20, 389–394.
- 17 52. A. Berkó, I. Ulrych and K. C. Prince, J. Phys. Chem. B, 1998, 102, 3379–3386.
- 18 53. A. Berkó, J. Szökő and F. Solymosi, *Surf. Sci.*, 2003, **532-535**, 390–395.
- 19 54. M. Bowker, P. Stone, P. Morrall, R. Smith, R. Bennett, N. Perkins, R. Kvon, C. Pang, E. Fourre and M. Hall, *J. Catal.*, 2005, 234, 172–181.
- 21 55. Z. Qin, M. Lewandowski, Y. Sun, S. Shaikhutdinov and H. Freund, *J. Phys. Chem. C*, 2008, 112, 10209–10213.
- 23 56. A. Berkó, O. Hakkel, J. Szökő and F. Solymosi, Surf. Sci., 2002, 507-510, 643–648.
- 24 57. R. Bechstein, H. Kristoffersen, L. Vilhelmsen, F. Rieboldt, J. Stausholm-Møller, S. Wendt, B.
 25 Hammer and F. Besenbacher, *Phys. Rev. Lett.*, 2012, **108**, 236103.
- 58. F. Rieboldt, R. Bechstein, F. Besenbacher and S. Wendt, *J. Phys. Chem. C*, 2014, 118, 3620–3628.
- 28 59. E. Lira, S. Wendt, P. Huo, J. Ø. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Lægsgaard and F. Besenbacher, *J. Am. Chem. Soc.*, 2011, 133, 6529–6532.
- B. Lira, P. Huo, J. Ø. Hansen, F. Rieboldt, R. Bechstein, Y. Wei, R. Streber, S. Porsgaard, Z. Li,
 E. Lægsgaard, S. Wendt and F. Besenbacher, *Catal. Today*, 2012, 182, 25–38.
- 32 61. D. Briggs and M. P. Seah, *Practical Surface Analysis*, 2 edn., Wiley, New York, 1990.
- K. D. Schierbaum, S. Fischer, M. C. Torquemada, J. L. de Segovia, E. Román and J. A. MartínGago, *Surf. Sci.*, 1996, 345, 261–273.
- 35 63. U. Martinez, L. Vilhelmsen, H. Kristoffersen, J. Stausholm-Møller and B. Hammer, *Phys. Rev.*36 *B*, 2011, 84, 205434.
- 37 64. U. Martinez, J. Ø. Hansen, E. Lira, H. H. Kristoffersen, P. Huo, R. Bechstein, E. Lægsgaard, F.
 38 Besenbacher, B. Hammer and S. Wendt, *Phys. Rev. Lett.*, 2012, **109**, 155501.
- 39 65. H. H. Kristoffersen, J. Ø. Hansen, U. Martinez, Y. Y. Wei, J. Matthiesen, R. Streber, R.
 40 Bechstein, E. Lægsgaard, F. Besenbacher, B. Hammer and S. Wendt, *Phys. Rev. Lett.*, 2013, 110, 146101.
- 42 66. T. P. Hardcastle, C. R. Seabourne, R. M. D. Brydson, K. J. T. Livi and A. J. Scott, *J. Phys.*43 *Chem. C*, 2013, 117, 23766–23780.
- 44 67. J. Stausholm-Møller, H. H. Kristoffersen, U. Martinez and B. Hammer, J. Chem. Phys., 2013,
 45 139, 234704.

ť

	\mathbf{O}
	1
	CD .
	σ
	0
	5
	\mathbf{O}
	×.
	0
	-
	S
	65
	0)
1	
1	
1	σ
1	ğ
1	ca
	Ca
	nical
	mical
	emical
	emical
	hemical
	hemical
	Chemical
	Chemical
	/ Chemical
	y Chemical
	ry Chemical
	try Chemical
	stry Chemical
	istry Chemical
	nistry Chemical
	mistry Chemical
	mistry Chemical
	emistry Chemical
	nemistry Chemical
	hemistry Chemical
	Chemistry Chemical
	Chemistry Chemical
	Chemistry Chemical
	al Chemistry Chemical
	al Chemistry Chemical
	cal Chemistry Chemical
	ical Chemistry Chemical
	sical Chemistry Chemical
	sical Chemistry Chemical
	ysical Chemistry Chemical
	iysical Chemistry Chemical
	hysical Chemistry Chemical
	hysical Chemistry Chemical

- 68. R. L. Kurtz, R. Stockbauer, T. E. Madey, E. Román and J. L. De Segovia, *Surf. Sci.*, 1989, 218, 178–200.
- 3
- 4
- 5

1 Figure Captions:

2

Fig. 1. Ball model of a TiO₂ (110) surface, illustrating the surface structure and the creation of vicinal surfaces. Slightly miss-cutting in $[1\overline{1}0]$ direction leads to surfaces with high densities of [001] step edges, i.e. TiO₂ (870). Miss-cutting in [001] direction leads to surfaces with high densities of $[1\overline{1}1]$ step edges, i.e. TiO₂ (771). Step edges, strands, surface atoms and point defects are indicated.

7

Fig. 2. (a)-(c) STM images (60 nm × 60 nm; insets: 10 nm × 10 nm) of clean TiO₂ (110), (870) and (771), respectively. Strands, which dominate the TiO₂ (771) surface, occasionally also appeared on the other two surfaces (black ellipses). The empty state STM images were acquired at 90–110 K in the constant current mode (~1.2 V, 0.1 nA). (d)-(f) Corresponding VB spectra (UPS He I), measured after ~40 cycles of sample preparation. The gap state (GS) is enlarged by a factor of 50. The dashed lines correspond to the GS's of the other two surfaces, respectively, and assist a direct comparison. Positions of the valence band maximum (VBM) and the Fermi energy (E_F) are indicated.

15

Fig. 3. STM images (60 nm \times 60 nm) of the HR-TiO₂ (110) surface and the vicinal TiO₂ (870) and (771) surfaces following evaporation of ~0.1 ML Pt at RT [(a)-(c)], and subsequent vacuum-annealing for 5 min at 600 K [(d)-(f)], 700 K [(g)-(i)] and 800 K [(k)-(m)], respectively. Note that the annealing experiments were conducted as separate experiments for each annealing temperature. In (k)-(m), black squares mark three Pt NP's with heights larger than 0.65 nm [two atomic layers of TiO₂ (110)].

21

Fig. 4. STM images (60 nm \times 60 nm) of the HR-TiO₂ (110) (left column) and the SR-TiO₂ (110) (right column) surfaces, obtained following evaporation of ~0.1 ML Pt at RT [(a),(b)], and subsequent annealing for 5 min at 600 K [(c),(d)], 700 K [(e),(f)] and 800 K [(g),(h)], respectively. Note that the annealing experiments were conducted as separate experiments for each temperature using the two described $TiO_2(110)$ samples. The dark lines in [001] direction occasionally appearing in the STM

images of the HR-TiO₂ surface are electronic artefacts that have been observed before.
Fig. 5. VB spectra (UPS He I) of HR- and SR-TiO₂ surfaces. The GS is enlarged by a factor of 50. The different integrated areas of the GS's, i.e. the amounts of Ti³⁺ excess charge, indicate the different surface reduction states of these two samples. Positions of VBM and E_F are indicated.

7

1

Fig. 6. STM images (23 nm × 23 nm) of (a) clean TiO₂ (771) and (b) after evaporation of ~0.1 ML Pt
at RT and subsequent annealing for 5 min at 800 K. Symbols in (b) indicate Pt NP's at [111] step edges
(circle), on top of the periodic strand centre-parts (diamond) and at strand end-structures (square),
respectively.

12

Fig. 7. Densities of Pt NP's on various TiO_2 (110) surfaces, obtained after Pt evaporation at RT and following annealing at 600 K, 700 K and 800 K, respectively. For each data point, six STM images (60 nm × 60 nm) were analysed. The error bars were calculated using the standard deviation for mean values.

17

Fig. 8. (a) Pt NP densities and (b) relative Pt NP densities on terraces (blue), step edges (yellow) and strands (grey) on various TiO_2 surfaces, obtained after Pt evaporation at RT and subsequent annealing at 600 K, 700 K and 800 K, respectively. For each column, six STM images (60 nm × 60 nm) were analysed.