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We present an application of the recently introduced Localized Pair Model (LPM) [Z. A. Zielinksi and J. K. Pearson, Comput.
Theor. Chem., 2013, 1003, 7990.] to characterize and quantify properties of the chemical bond in a series of substituted ben-
zoic acid molecules. By computing interelectronic distribution functions for doubly-occupied Edmiston-Ruedenberg localized
molecular orbitals (LMOs), we show that chemically intuitive electron pairs may be uniquely classified and bond strength may
be predicted with remarkable accuracy. Specifically, the HF/u6-311G(d,p) level (where u denotes a complete uncontraction of
the basis set) is used to generate the relevant LMOs and their respective interelectronic distribution functions can be linearly
correlated to the well-known Hammett σp or σm parameters with near-unity correlation coefficients.

1 Introduction

Predicting chemical properties and reactivity is an important
challenge in computational quantum chemistry and to do so
from first principles generally requires detailed knowledge of
potential energy surfaces (PESs) including minima and often
first-order saddle points. An accurate and detailed PES yields
invaluable knowledge about the reactive pathways accessible
to a given molecular structure, and the precise mechanism of
how chemical bonds may be broken and formed throughout
a reactive process. This information can subsequently be uti-
lized for the purposes of explaining chemical behaviour and
the rational design of novel chemical structures with tuned
chemical properties. Though one can often employ so-called
“chemical intuition” to assess the strength of a network of
bonded atoms in a molecular structure, bond strength is more
rigorously defined in terms of the bond dissociation energy
(BDE). The heterolytic BDE refers to the enthalpy (per mole)
required to heterolytically break a given bond of a specific
molecular structure.1

BDE(A−B) = ∆ f H0
298(A

−)+∆ f H0
298(B

+)−∆ f H0
298(A−B)

(1)
It is an important thermodynamic quantity accessible by com-
putational quantum chemical methods if one can obtain suffi-
ciently accurate thermochemical data on the relevant station-
ary states. The required accuracy depends on the desired ap-
plication but generally one is forced to employ sophisticated
electronic structure theories2–7 that can scale prohibitively for
large systems. It would therefore be highly advantageous if
one could reliably assess the strength of chemical bonds from
a single inexpensive ground state electronic structure model,

though it is not obvious how one should proceed in doing so.
It is tempting, however, to approach the problem from the
perspective of electron pair models because since the seminal
work of Lewis8 and later by others,9 the concept of the elec-
tron pair has been a central theme in chemistry that is used
to predict chemical structure and reactivity among many other
properties of interest. The question is then how to unite intu-
itive and practical concepts of electron pairs in bonding with
rigorous electronic structure theory.

The high dimensionality of the electronic wave function,
Ψ(x1, . . . ,xN), where xi = (ri,si) denotes the combined spa-
tial and spin coordinates of electron i, prevents it from be-
ing readily interpretable in terms of practical chemical con-
cepts. Even within the Born-Oppenheimer approximation,10

the wave function will explicitly depend on 4N coordinates
(three spatial and one spin coordinate for each of the N elec-
trons) and quickly becomes intractable for chemical systems
of even modest size. The electron density

ρ(r) = N
∫
|Ψ(x1, . . . ,xN)|2 ds1 dx2 . . .dxN (2)

is a common alternative quantity from which all observable
ground state properties are available11 and is attractive due
to its comparatively modest complexity. Interestingly though,
neither of these fundamental quantities in quantum chemistry
explicitly makes use of the ubiquitous concept of the electron
pair, even despite the bielectronic character of the molecular
Hamiltonian.

To explicitly consider electron pairs from an ab initio per-
spective en route to predicting accurate ground state properties
would require the second order reduced density matrix, or 2-
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matrix as it is commonly known, given by12

ρ2(r1,r2) =
N(N−1)

2

∫
|Ψ(x1, . . . ,xN)|2 ds1 ds2 dx3 . . .dxN

(3)
and there exists several emerging techniques with ρ2(r1,r2)
as the fundamental variable13–15. Perhaps then, employing
ρ2(r1,r2) and explicitly considering the electronic structure of
a chemical system in terms of its electron pairs may provide a
fruitful alternative model for chemical bond properties.16

Though one might intuitively harbour ideas regarding the
relative distribution of electron pairs within chemical bonds
or lone pairs, one is required to first define such entities from
a quantum mechanical standpoint and then distill relevant in-
terelectronic information from some fundamental quantity, for
example ρ2(r1,r2), to properly model such distributions. We
have recently introduced the Localized Pair Model (LPM),17

which accomplishes this by determining interelectronic dis-
tribution functions for individual localized molecular orbitals
(LMOs).18–20 LMOs are the so-called “chemically intuitive”
orbitals, which capture the notion of localized electron pairs in
quantum mechanics by adhering to a unitary transformation of
the canonical molecular orbitals (or Kohn-Sham orbitals). The
localized pair model seeks to produce qualitative and quantita-
tive data regarding electron pair distributions within the intu-
itive chemical constructs given by LMOs. One could consider
geminals as a natural alternative choice for electron-pair den-
sity analyses, however most electronic structure codes utilize
one-electron orbitals, making LMOs somewhat more accessi-
ble and these are sufficiently general for our purposes. One
could also employ Kohn-Sham LMOs to make LPM predic-
tions using density functional theory and this could, in prin-
ciple, offer an exact treatment of the electronic structure for
doubly-occupied LMOs.

This procedure was first proposed by Thakkar and Moore21

and has since been applied to understanding the nature of bond-
ing in p-block hydrides, saturated main group compounds,
fluorinated species, N→B dative structures, and small cyclic
molecules.17 In our original work, we demonstrated that ex-
perimental bond dissociation energies (BDEs) among p-block
hydrides could be reproduced with very good accuracy by con-
sidering any one of several properties of the interelectronic
distribution function for the LMO representing that bond type.
Notably, this could be accomplished utilizing nothing more
than the Hartree-Fock LMOs of a single stationary point rep-
resenting the minimum energy ground state along the reaction
coordinate of the bond dissociation.

In the current work, we extend the application of the LPM
to an alternative range of compounds to more generally as-
sess its ability to characterize covalent bonds from the ground
state electronic structure. Specifically, we turned our attention
to Hammett systems because they represent one of the most
widely used scaffolds for studying quantitative aspects of or-

R = NMe2, 
NH2, OH, 
CH3, H, F, 
Cl, COOH, 
COCH3, CN, 
NO2

Fig. 1 The series of substituted benzoic acid derivatives studied in
the current work. In the text, all molecules are referred to as either
p-R or m-R, where R is the substituent at the para (p) or meta (m)
position.

ganic reaction mechanisms and there is a wealth of experimen-
tal data22–25 and complementary theoretical work26–30 avail-
able for comparison.

We refer to the Hammett parameter, σp or σm, as a straight-
forward indicator of bond strength but strictly speaking, they
are of course a direct measure of the relative free energies of
(in our case) para- or meta-substituted benzoic acid deriva-
tives and their deprotonated analogues as compared to that of
the unsubstituted benzoic acid, all in water at 25oC.

log
(

Kp/m

KH

)
= σp/m (4)

Kp/m is the acid dissociation constant for the appropriate sub-
stituted benzoic acid and KH is the corresponding ionization
constant for the unsubstituted benzoic acid. We chose the set
of para- and meta-substituted benzoic acids so as to avoid the
conflation of steric and electronic effects as would be the case
with the ortho-substituted derivatives. In the following sec-
tions, we provide details regarding the LPM as well as a com-
parison between it and other methods of electronic structure
analysis over a series of 11×2 = 22 benzoic acid derivatives
(see Figure 1). We discuss the features of the LPM that make
it an intuitive and useful interpretive tool in quantum chem-
istry and show that it can reliably predict σp/m. Atomic units
are used throughout unless otherwise indicated.

2 Methods

The geometries of a series of substituted benzoic acid deriva-
tives (shown in Figure 1) were optimized at the Hartree-Fock
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(HF) level and were confirmed as minima on their respec-
tive potential energy surfaces by a harmonic frequency anal-
ysis. Subsequently, the canonical molecular orbitals were lo-
calized using the Edmiston-Ruedenberg scheme,18 which we
have found is particularly suitable for application to the LPM.17

The basis sets employed were completely uncontracted Pople
6-311G(d,p) and 6-311G(2d,2p) basis sets (referred to herein
as u6-311G(d,p) and u6-311G(2d,2p)), which have been bench-
marked for our purposes.17 The latter has been used only to
assess the level of convergence of our calculated properties
with respect to the number of basis functions. All optimiza-
tions, frequency calculations, and orbital localizations were
performed using either the General Atomic and Molecular Elec-
tronic Structure Software (GAMESS) package31 or Q-Chem.32

The canonical and localized orbitals were first identified and
characterized using the MacMolPlt 33 program before they were
submitted to our own in-house code for the LPM analysis (vide
infra).

The topology of the electron density was studied with the
AIMALL program34 using the HF/u6-311G** wave functions
and the interelectronic probability distributions were plotted
and characterized using the Mathematica package.35

2.1 Localized Pair Model (LPM): Theory

Interelectronic distribution functions, first popularized by Coul-
son and Neilson,36 describe the relative distribution of a pair
of electrons in space and are often referred to as intracules.
A position intracule, P(u), is the probability distribution for
u = |r2− r1|, and therefore yields the likelihood of a pair of
electrons being separated by a distance u

P(u) =
∫

ρ2(r1,r2)δ (r12−u)dr1 dr2 dΩu (5)

where δ is the one-dimensional Dirac delta function and dΩu
indicates integration over the angular components of the u vec-
tor. As such, P(u) is often referred to as the “spherically av-
eraged” intracule density. In the case of a restricted single-
determinant wave function, ρ2(r1,r2) may be calculated for
two electrons within the same spatial orbital (say, orbital k;
ψk) by

ρ
k
2(r1,r2) = |ψk(r1)|2|ψk(r2)|2. (6)

If ψk is expanded in a linear combination of one-electron Gaus-
sian basis functions, then substituting (6) into (5) yields

Pk(u) = ∑
µνλσ

Γ
k
µνλσ

(µνλσ)P (7)

where Γk
µνλσ

is the HF two-particle density matrix (which in
this case reduces to CµkCνkCλkCσk, where Cµk are the LCAO
coefficients for the kth localized orbital) and (µνλσ)P are the
resultant integrals over the Gaussian primitives indexed by µ ,

ν , λ and σ . Pk(u) is therefore an intracule describing a single
pair of electrons (which are represented by orbital k) and thus
the full ρ2(r1,r2) need not be used.

The integrals (µνλσ)P have been solved analytically37

with Gaussian primitives of general angular momentum using
an Obara-Saika type recurrence relation.38–41

Interestingly, equation (6) also allows us to relate the LMO
intracule density directly to the electron density by the so-
called Coulomb component, defined as42

J(u) =
1
2

∫ ∫
ρ(r)ρ(r+u)dr dΩu. (8)

This affords one the opportunity to apply the LPM analysis
within the framework of Kohn-Sham density functional theory
(which can, in principle, provide exact electronic structures)
and this is the subject of ongoing research.

Equation (7) indicates that the generation of Pk(u) for-
mally scales as K4, where K is the number of basis functions;
however, given that we work in a space of LMOs, increas-
ing the size of the molecule does not significantly increase the
computational cost since many of the LCAO coefficients will
be zero or near zero in regions far from the LMO of interest.

In addition to the qualitative features of Pk(u), we also
extract quantitive information from the interelectronic distri-
bution. Generally, Pk(u) for a single LMO is a unimodal dis-
tribution with a global maximum near 1 or 2 a.u. As such, it
is appropriate to expect that metrics describing where the in-
tracular densities peak and the breadth of their distribution are
reasonably universal tools to characterize the distribution of
electron pairs. The peak positions (i.e. most probable inter-
electronic separations) are given by umax but we also consider
the gradient of Pk(u) near the origin, ∇Pk(0.1).

The degree to which the electron pair is likely to deviate
from umax (i.e. the breadth of the density) is given by the cur-
vature of the intracule about its maximum, which is explicitly
measured by the value of the Laplacian of the intracule at that
point

δP = ∇
2Pk(umax) (9)

A relatively high value of δP (since we are generally con-
cerned with maxima, δP will always be negative and therefore
a value close to 0 is considered high) indicates a high degree
of fluctuation in the interelectronic distance between the elec-
trons. Conversely, a relatively low value indicates a low degree
of fluctuation in the interelectronic distance.

Additionally, several moments of the intracules are useful
characterization metrics and we employ

Pm =
∫

∞

0
Pk(u)umdu (10)

where m = {−1,0,1}. P−1 is directly equated to the Coulomb
repulsion energy of an electron pair14,42 (EJ), while P1 cor-
responds to the average interelectronic separation. Finally,
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P0 =
N(N−1)

2 = 1 is the total number of electron pairs described
by Pk(u) and is a necessary condition to ensure our densities
are properly normalized.

Additionally, the breadth of an intracule may also be mea-
sured by u95, which is defined as the limit of integration such
that

u95∫
0

Pk(u)du = 0.95
N(N−1)

2
(11)

The value of u95 provides a numerical measure of the max-
imum interelectronic separation one is likely to observe for the
particular electron pair (i.e. only 5% of the probability distri-
bution exists beyond u95).

Our code uses LMO coefficients {Cµk} to generate Γµνλσ

and subsequently contract it with (µνλσ)P integrals accord-
ing to (7). The portion of our code that calculates (µνλσ)P
was modified from an earlier version written by Hollett and
Gill.37 The output is Pk(u) calculated over a series of u points
on a radial quadrature grid defined by Mura and Knowles.43

With this grid, a total of imax grid points are chosen such that

ui =−R log

(
1−
[

i
imax +1

]3
)

(12)

where R is a scaling parameter that allows the user to control
the span of u space. The resultant data is then interpolated for
further analysis using the Mathematica package.35 R and imax
must therefore be chosen such that the interpolated P(u) have
converged and we find that R = 3.0 and imax = 250 affords a
suitable grid density.

3 Results and Discussion

3.1 An LPM description of benzoic acid

2 4 6 8 10 12 14
u

50

100

150

200

250

300

350

PHuL

Fig. 2 The total molecular intracule, P(u) for the benzoic acid
molecule.

We begin with an example of the total molecular intracule
(given by equation 5) for the prototypical benzoic acid sys-
tem, shown in Figure 2, indicating the probability of observ-
ing any pair of electrons separated by a distance u. Its rich
topology is related to the complexity of the electronic struc-
ture44 of benzoic acid in terms of electron pairs. It is difficult
to glean much information about individual pairs of electrons
from this figure because it represents the probability distribu-
tion for all N(N − 1)/2 = 2016 unique pairs, since benzoic
acid has N = 64 electrons. The LPM replaces Ψ in equation
3 with a specific LMO, effectively reducing the resultant P(u)
to a distribution of a single electron pair, localized to the re-
gion of the LMO. The LPM is therefore an orbital decompo-
sition of intracule functional theory, introduced by Gill and
coworkers.15 While one is free to choose any orbital represen-
tation scheme they like, we find that it is particularly instruc-
tive to focus on the localized set of Edmiston and Reudenberg
(ER)17,18 and illustrated in Figure 3 are a subset of valence ER
LMOs for benzoic acid.

Borrowing terms from Valence Bond Theory, we may iden-
tify a σ LMO as one formed predominantly by head-on over-
lap of neighbouring atomic orbitals, while a π LMO is gen-
erally formed by a bimodal side-on overlap of it’s constituent
atomic orbitals. Furthermore, there exist non-bonding LMOs
(which we label n), formed primarily from atomic orbitals on
a single atomic center. Depicted in the red area of Figure 3 are
the σ LMOs. The aromatic ring gives rise to π LMOs and a
representative example is shown in the blue area of Figure 3.
There are three roughly equivalent analogues of such orbitals
in all of our phenyl rings, as expected. The carbonyl group
orbitals are also shown in the blue area of the figure and are
neither strictly characteristic of σ nor π . Though formally a
σ and a π bond from the perspective of valence bond theory,
each of the two carbonyl bonds in our localized set is equiva-
lent (equal but opposite in sign as defined by their respective
molecular orbital coefficients) and thus neither are purely σ

nor π in nature having significant side-on p orbital contribu-
tions as well as head-on overlap of s and p atomic orbitals.
The nonbonding orbitals are presented in the green area of the
figure and one example of each of the O atom lone pairs is
shown.

The intracules for each of these orbitals are plotted in the
figure for the purposes of comparison and some associated
data is presented in Table 1. All of our LPM distributions
exhibit a unimodal peak and are (by definition) normalized to
N(N− 1)/2 = 1 for a single electron pair. Generally, Pk(u)
peaks near 1 atomic unit, with the obvious exception of πCC,
whose relatively delocalized distribution results in an average
electronic separation that is significantly larger (e.g. umax =
2.901). The πCC intracule is a significant outlier in all of the
listed metrics in Table 1. This case exhibits about half of the
repulsion energy between electrons and a much higher δP, in-
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1 2 3 4
u

0.1

0.2

0.3

0.4

0.5

PHuL

sCHsOH sCO sCC sCC’

pCC bCO bCO

nO1 nO2

Fig. 3 The set of ER localized orbitals and their associated intracules, Pk(u).

Table 1 Calculated properties of valence ER LMOs in benzoic acid (see text for a description of each parameter). Values in parenthesis are the
absolute differences between each parameter obtained with the u6-311G(d,p) and u6-311G(2d,2p) basis sets. All values are in atomic units
unless otherwise stated.

LMO umax ∇Pk(0.1) P−1 P1 δP u95 r (Å)
σOH 1.2198 (0.0009) 0.2464 (0.0010) 0.8583 (0.0007) 1.5982 (0.0006) -1.2365 (0.0023) 3.16 0.95
σCO 1.2373 (0.0016) 0.2430 (0.0005) 0.8609 (0.0002) 1.5900 (0.0013) -1.2987 (0.0010) 3.20 1.33
σCC 1.4775 (0.0013) 0.1382 (0.0005) 0.7366 (0.0004) 1.8060 (0.0016) -0.9322 (0.0026) 3.43 1.49
σCC′ 1.4266 (0.0028) 0.1485 (0.0013) 0.7504 (0.0013) 1.7902 (0.0024) -1.0069 (0.0008) 3.49 1.39
σCH 1.4955 (0.0030) 0.1308 (0.0010) 0.7137 (0.0009) 1.8763 (0.0010) -0.7913 (0.0043) 3.59 1.07
πCC 2.9010 (0.0029) 0.0321 (0.0000) 0.3954 (0.0002) 3.4324 (0.0002) -0.1394 (0.0004) 6.34 1.39
bCO 1.2839 (0.0016) 0.2129 (0.0005) 0.7936 (0.0015) 1.7766 (0.0057) -0.9014 (0.0099) 3.62 1.18
nO1 1.1481 (0.0003) 0.2714 (0.0008) 0.8440 (0.0018) 1.7075 (0.0042) -1.0563 (0.0105) 3.54 n/a
nO2 1.1386 (0.0001) 0.2795 (0.0003) 0.8633 (0.0003) 1.6491 (0.0004) -1.1487 (0.0015) 3.36 n/a
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dicating a wide range of probable interelectronic distances.
With respect to the σ intracules, there appear to be three

qualitatively distinct types. The σOH and σCO intracules show
similar characteristics, peaking at small u and having the nar-
rowest distributions in the set (u95 = 3.2). This is due to the
similar electronegativities of C and H, and consequently the
similar differences in electronegativity between the bonded
atoms in each of the σOH and σCO LMOs.45 This causes the
pair of bonding electrons to be contracted toward the more
electronegative O atom, causing a narrow distribution of in-
terelectonic distances with small umax. The second type of σ

intracule observed is exhibited by σCC and σCC′ , whose in-
tracules are also nearly identical. Apparently, the presence
of additional π electrons has a negligible effect on the elec-
tronic distribution within σCC′ and the small difference that is
observed between it and σCC can be attributed to the small dif-
ference in their respective bond lengths. The σCC′ bond, being
marginally shorter, exhibits a smaller umax and consequently a
steeper initial gradient, more Coulomb repulsion, and a lower
δP than σCC, though each of these differences is minor. Fi-
nally, the σCH intracule exhibits one of the broadest densities
of the entire set, despite having one of the shortest bonds. This
is a result of the relatively equal electronegativities of C and
H coupled with the fact that σCH is a terminal bond, allowing
the electron pair to be more evenly distributed throughout the
space of the LMO.

Similarly broad intracule densities are observed for bCO
and nO, although these are for qualitatively different reasons.
In the case of bCO, the interorbital repulsion between the two
equivalent bonding LMOs forces the spatial distribution out
perpendicularly from the bond axis. This has the effect of in-
creasing the available space for each electron pair because the
orbital is effectively less “bounded” by the adjoining atoms as
in the case of σ LMOs. Likewise, each of the nO LMOs is
also “unbounded” from the perspective that the electrons they
describe are not confined to an interatomic region and this re-
sults in broad intracular densities. Though broad, each of these
intracules exhibits a somewhat contradictory early maximum
and steep initial gradient in Pk(u), characteristic of all cases
regarding LMOs containing a significant amount of O charac-
ter.

Comparison between the u6-311G(d,p) and u6-311G(2d,2p)
data indicate that our LPM parameters are generally converged
to 10−3 but are often converged beyond that level.

3.2 Using the LPM to predict Hammett parameters

If one is to make use of the LPM in quantifying chemical
bond strength for these systems (Figure 1), then it becomes
necessary to know how the aforementioned properties should
change with respect to chemical substitution in the para po-
sition. The relative thermodynamic stability of the ionized

species is directly related to the electron withdrawing or do-
nating character of the substituent on the aromatic ring. As the
electron density migrates toward or away from the carboxyl
group, we should expect to observe a concomitant change in
electron-electron interactions throughout the system.

Though the site of substitution is well removed from the
dissociating O-H bond and localization procedures are largely
meant to isolate local electronic structure to retain transfer-
ability, some measurable changes must be sustained in σOH
(and/or neighbouring LMOs) for the LPM to be of use. In
general, we do indeed observe a small but significant change
in the properties of the relevant LMOs upon para or meta sub-
stitution and note that the magnitude of this change increases
in the order σOH < σCO < σCC. For example, in the para se-
ries of molecules, the average absolute change in umax for σCC,
σCO, and σOH are 2.24×10−3, 7.29×10−4, and 4.04×10−4,
respectively over the entire set. Likewise, the average absolute
change in P−1 is 8.57× 10−4, 6.27× 10−4, and 3.58× 10−4,
for the same respective LMOs. We chose to investigate σCO
and σCC in addition to σOH because we were interested in
quantifying the extent to which electronic structure changes
would be observable from distant regions of a molecule.

The differences between the various bond intracules are
illustrated in Figure 4, which shows plots of the intracules
for each of the σOH LMOs for every molecule in our para-
substituted test set (the analogous data for the meta-substituted
systems shows a qualitatively similar trend). The amount by
which these densities change after a para substitution is small
but not negligible and the magnitude of the change is resolved
within the inset plot in the figure.

2 4 6 8 10 12
u

0.1

0.2

0.3

0.4

0.5

PHuL

p-NO2
p-CN
p-COCH3
p-COOH
p-Cl
p-F
p-H
p-CH3
p-OH
p-NH2
p-NMe2

1.200 1.205 1.210 1.215 1.220 1.225 1.230
0.5640

0.5645

0.5650

0.5655

Fig. 4 Pk(u) of the σOH LMOs for each of the para-substituted
molecules with an inset to highlight their differences near the
maximum.
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Table 2 lists selected LPM metrics for each of the σCC,
σCO, and σOH LMOs. Upon inspection it can be seen that the
data approximately varies linearly throughout. We have there-
fore included linear correlation coefficients corresponding to
the empirical relationship between each of the LPM metrics
and the appropriate Hammett σ parameter.

Such a relationship may be rationalized by considering the
definition of the Hammett σ parameter46 given in equation
(4). The more stable the dissociated acidic O-H bond is upon
substitution at the para or meta position, the higher its asso-
ciated Kp/m will be relative to KH and the greater the value
of σp/m will be. One usually generalizes this effect according
to the electron withdrawing or electron donating ability of the
substituent. Electron withdrawing substituents, such as the p-
NO2 case will withdraw electron density from the carboxylic
acid moiety through the aromatic ring and the net result within
the terminal O-H bond would be that the σOH pair of electrons
would be contracted toward the oxygen atom. This would
decrease umax and consequently increase P−1. The opposite
would be true for electron donating substituents and this is in-
deed observed in Table 2. The trend is less obvious for σCO
and σCC but still present.

One can see that these data correlate very well, having
no R2 correlation coefficient less than 0.92 (with the obvi-
ous exception of σCC data, which isn’t correlated at all for
the meta derivatives ) and in one case achieving R2 = 0.9773.
We find that Hammett parameters may be predicted on aver-
age to within 0.05 considering only the average interelectronic
separation within the terminal OH bond. The supposition that
electron pair properties are related to bond strengths is appar-
ently well justified. The various LPM metrics for σCC and
σCO show a different relationship to σp/m, though both are
also strongly correlated as shown in Table 2 and Figure 5. In
fact, the best quantum mechanical predictor of Hammett σp/m
parameters for benzoic acid derivatives that we are aware of is
P1 for the σOH bond.

As an additional comparator, we have also collected data
for the one-electron density at the bond critical point (BCP)
between the bonded atoms in σOH . This value of the density,
ρBCP, is a popular Quantum Theory of Atoms in Molecules
(QTAIM)47,48 bond descriptor and has been applied to our
systems previously.26,30 Figure 6 illustrates an example of our
results for ρBCP for the σOH , σCO, and σCC bonds in each of
our substituted benzoic acids. We find that ρBCP for the σOH
and σCO bonds are also well correlated to the Hammett σ pa-
rameters, in good agreement with earlier work by Mandado et
al.,26 Kégl30 et al., and Popelier.28

Interestingly, the ρBCP data varies with umax in the case of
the σOH bond but in the opposite direction of umax for the σCO
and σCC bonds. This can be explained by considering the rela-
tive location of the BCPs between the atomic maxima in ρ(r).
In the case of σOH , the BCP is near the H atom and the vast
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Fig. 5 Linear correlations between Hammett σp/m and umax, P−1,
and P1 for a-c) σOH , d-f) σCO, and g-i) σCC.

majority of the electron density is associated with the O atomic
basin according to QTAIM. So an additional shift in electron
density toward the O atom would only further rob the H atom
and the value of ρBCP would decrease, consequently decreas-
ing umax because the electron pair is effectively in a smaller
space (i.e. near the O atom). The opposite is true for σCO
and σCC because these are bonds between two heavy atoms
whose BCPs are closer to the centre of the internuclear axis
and having larger maxima in ρ at each atomic coordinate. As
such, there is significant electron density on “either side” of
the BCP and this results in a relatively high probability of ob-
serving u near the internuclear distance. An increase in ρBCP
would signify a greater probability of finding electrons in the
internuclear region and therefore a greater probability of ob-
serving smaller umax. A smaller ρBCP would indicate a lower
probability of observing electrons in the internuclear region
and thus the electron density would remain relatively isolated
on each nucleus and umax would increase. Such intuitive ob-
servations stem from the connection between the LPM and
the electron density (vide supra), therefore the most probable
interelectronic distances are directly related to the distances
between regions of high electron density.

The connection of the LPM to experimental bond proper-
ties is a particularly promising result considering that HF is
incapable of accurately capturing the free energy change as-
sociated with a heterolytic cleavage of the O-H bond. The
LPM essentially bypasses the shortcomings of HF by deduc-
ing the relationship between the ground state electronic dis-
tribution and the BDE. Though our test set of molecules span

1–10 | 7

Page 7 of 12 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



Table 2 The umax, P−1, and P1 values for σCC, σCO and σOH of the substituted benzoic acid derivatives. Also listed are the linear correlation
coefficients.

σCC σCO σOH
Molecule σp/m umax P−1 P1 umax P−1 P1 umax P−1 P1

p-NMe2 -0.83 1.4717 0.7390 1.8001 1.2389 0.8596 1.5931 1.2204 0.8577 1.5994
p-NH2 -0.66 1.4725 0.7386 1.8015 1.2387 0.8598 1.5926 1.2202 0.8579 1.5991
p-OH -0.37 1.4743 0.7378 1.8032 1.2379 0.8604 1.5911 1.2199 0.8581 1.5985
p-CH3 -0.14 1.4762 0.7371 1.8047 1.2377 0.8606 1.5907 1.2199 0.8581 1.5985
p-H 0 1.4775 0.7366 1.8060 1.2373 0.8609 1.5900 1.2198 0.8583 1.5982
p-F 0.06 1.4766 0.7369 1.8053 1.2374 0.8609 1.5899 1.2196 0.8584 1.5980
p-Cl 0.23 1.4778 0.7365 1.8061 1.2370 0.8612 1.5891 1.2194 0.8586 1.5977
p-COOH 0.44 1.4796 0.7358 1.8074 1.2365 0.8616 1.5882 1.2194 0.8586 1.5975
p-COCH3 0.50 1.4791 0.7361 1.8068 1.2365 0.8615 1.5883 1.2194 0.8586 1.5975
p-CN 0.66 1.4799 0.7356 1.8081 1.2363 0.8618 1.5876 1.2190 0.8589 1.5970
p-NO2 0.78 1.4808 0.7353 1.8085 1.2361 0.8620 1.5867 1.2189 0.8590 1.5968
m-NMe2 -0.16 1.4789 0.7359 1.8080 1.2377 0.8605 1.5910 1.2199 0.8581 1.5986
m-NH2 -0.09 1.4788 0.7359 1.8078 1.2375 0.8607 1.5905 1.2199 0.8582 1.5983
m-OH 0.13 1.4792 0.7358 1.8078 1.2368 0.8613 1.5889 1.2197 0.8584 1.5979
m-CH3 -0.06 1.4779 0.7364 1.8067 1.2374 0.8607 1.5904 1.2199 0.8582 1.5984
m-H 0 1.4775 0.7366 1.8060 1.2373 0.8609 1.5900 1.2198 0.8583 1.5982
m-F 0.34 1.4790 0.7359 1.8074 1.2367 0.8614 1.5885 1.2194 0.8586 1.5975
m-Cl 0.37 1.4790 0.7358 1.8093 1.2367 0.8615 1.5884 1.2193 0.8587 1.5975
m-COOH 0.35 1.4780 0.7364 1.8061 1.2363 0.8617 1.5878 1.2194 0.8586 1.5976
m-COCH3 0.36 1.4783 0.7363 1.8065 1.2362 0.8618 1.5876 1.2194 0.8586 1.5976
m-CN 0.62 1.4791 0.7358 1.8082 1.2363 0.8618 1.5875 1.2189 0.8589 1.5971
m-NO2 0.71 1.4792 0.7359 1.8076 1.2359 0.8621 1.5867 1.2188 0.8591 1.5968
R2 (para only) 0.9791 0.9780 0.9659 0.9936 0.9955 0.9920 0.9439 0.9691 0.9835
R2 (meta only) 0.1679 0.0979 0.0326 0.9112 0.9299 0.9421 0.9820 0.9915 0.9920
R2 0.7793 0.7472 0.6665 0.9562 0.9620 0.9646 0.9236 0.9596 0.9773
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Fig. 6 Linear correlations between Hammett σp/m and ρBCP for a)
σOH , b) σCO, and c) σCC.

a large range in the chemical space characterized by σp and
σm, they represent a very narrow band of quantum mechanical
free energy changes for the ionization of benzoic acid and its
derivatives, and therein lies the significant challenge of calcu-
lating such bond properties ab initio using methods such as HF
theory. Though unable to adequately describe the physics of
the bond-breaking process itself (ironically, due to the bielec-
tronic character of the Hamiltonian), HF theory is still able
to retain important differences in the ground state electronic
structure of each species in the current study. By exploit-
ing the intuitive relationships between ground state electronic
structure and bond strength descriptors (in this case, σp and
σm) one is able to fortuitously bypass these shortcomings of a
so-called ”non-correlated” model.

4 Conclusions

In the current work, we explored the Localized Pair Model
(LPM) as an interpretive tool in the analysis of the electronic

structure of a series of para- and meta-substituted benzoic acid
derivatives. Because the LPM predicts distributions of lo-
calized electron pairs representing chemically intuitive fea-
tures of electronic structure, it is a natural analytic tool and
potentially very useful for a variety of applications, namely
the characterization of chemical bond properties. Specifically
we sought to predict chemical bond strengths for the terminal
O-H group, which is experimentally captured using the well-
known Hammett parameter (σp or σm), by considering only a
single ground state Hartree-Fock reference structure. Though
HF suffers from an incorrect treatment of electron repulsion
and is therefore incapable of accurately describing the bond-
breaking process, we show that HF theory is still able to retain
important differences in the ground state electronic structure
of molecules that is sufficient to predict bond strength for the
chosen set of chemical systems. Of course, application of the
LPM is not restricted to HF electronic structures but it is an
illustrative example of the utility of intracular analysis.

By measuring properties of the σOH orbital such as the
average interelectronic separation or the Coulomb repulsion
energy, the bond strength (characterized by the Hammett pa-
rameter σp or σm) could be empirically predicted to within
0.05 on average. This is impressive considering the fact that
an explicit evaluation of bond strength using the underlying
HF/u6-311G** wave function is in error by almost three times
that much. Additionally, the σCO LMOs proved useful in the
prediction of bond strength but the σCC intracules did not due
to . We have also compared our analysis to that using the
Quantum Theory of Atoms in Molecules and note that their
respective performance is poorer, with ρBCP of the σCO bond
predicting σp/m on average to within 0.08.

The prediction of bond strengths or kinetic labilities49 a
priori, without complete knowledge of the electronic struc-
ture of the relevant critical points along a particular reaction
coordinate is of obvious utility. In the current work we have
shown that one can bypass the shortcomings of HF theory by
making use of characteristic ground state properties to achieve
relatively high accuracy via the LPM, which is an analogous
strategy to that employed within the broader intracule func-
tional models.15
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We present electron pair distributions within chemical bonds and show that these 

characterize and quantify chemical bond strength. 
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