PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

Cite this: DOI: 10.1039/c0xx00000x

PAPER

Electrochemical conversion of CO_2 to fuels: Tuning of reaction zone using suitable functional group in solid polymer electrolyte

Leela Manohar Aeshala, Ramagopal Uppaluri, and Anil Verma*

Received (in XXX, XXX) XthXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX 5 DOI: 10.1039/b000000x

The electrochemical reduction of gaseous CO₂ is studied for the first time using sterically hindered bulky quaternary ammonium ion in solid polymer matrix at room temperature and atmospheric pressure in a developed electrochemical reactor. Some new insights are developed for the effective reaction process. It is found that the reaction zone can be tuned in a great extent with the help of fixed functional groups ¹⁰ attached in the solid polymer. To illustrate the concept, solid polymer electrolytes with the same backbone and different fixed functional groups are synthesized. It is found that only change in functional group in the membrane can dramatically change the efficiency and selectivity of the reaction products.

Moreover, the suitable groups may increase the mass transfer of CO_2 at the reaction interface and may help as a co-catalyst. This work may open a new approach for the development of next generation process 15 for gaseous CO_2 electroreduction to fuels, which is a present need.

Introduction

The excessive anthropogenic emissions of CO₂ resulting from the combustion of fossil fuels are causing the climate change.¹ Current Intergovernmental Panel on Climate Change (IPCC) ²⁰ projections reports that atmospheric CO₂ concentrations will increase over this century, reaching 730–1020 ppm by the year 2100. Major technological approaches to deplete CO₂ from the atmosphere follow either capture and sequestrate CO₂ or convert CO₂ to fuel.²⁻⁴ In recent years, CO₂ conversion using ²⁵ electrochemical reduction of CO₂ (ERC) has attracted great attention for its several advantages: (i) the process can be carried out at room temperature and pressure⁵; (ii) overall chemical consumption can be minimized to simply water or wastewater for the proton source⁶; (iii) renewable energy may be used to drive ³⁰ the process, which can ultimately be stored as reaction products⁷; (iv) the compact electrochemical system can easily be scaled-up;

(iv) the compact electrochemical system can easily be scaled-up, and (v) the by-product (H₂) of ERC may be minimized.

Over the last several decades, the research is being focused especially on electrode materials using absorbed CO₂ in aqueous ³⁵ and non-aqueous electrolytes and various reviews are published.⁸⁻

- ¹⁷ It is studied and reported that the electrocatalystsplay a critical role on the product distribution and Faradaic efficiency in the ERC. It has been reported that formation of CO_2 anion radical (CO_2^{-}) is the rate determining step for the reduction of CO_2 . The
- ⁴⁰ electrical potential for CO₂/CO₂⁻ is -1.9V vs. SHE through single electron pathway. However, the requirement of this much high energy may be reduced by proton or hydroxyl ion assisted multi-electron reduction of CO₂.¹⁸ However, it is well known that hydrogen evolution reaction (HER) is competitive to CO₂ ⁴⁵ electroreduction in the presence of aqueous electrolyte solution.
- The electrochemical reduction of CO_2 in aqueous solutions has

been reported by many authors.¹⁹⁻²¹ A few authors studied the role of liquid electrolyte for ERC and found that the ions (cations or anions) in the electrolyte and supporting salts influence the ⁵⁰ ERC greatly.²²⁻²⁵

Saeki et al.,²⁴ studied the effect of supporting electrolytes on the ERC in CO₂+methanol system. CO with a Faradaic efficiency of 86% was the major CO₂ reduction product when tetrabutylammonium (TBA) salts were used as supporting 55 electrolyte in ERC. Methylformate was the major CO₂ reduction product when lithium salts were used as the supporting electrolyte with a significant amount of H₂ generation. Grace et al.,26 investigated ERC in TBA perchlorate in methanol electrolyte, where HCOOH and CH₃COOH were found primarily 60 with Faradaic efficiencies of 30.4% and 63.0%, respectively. Liquid electrolytes were used, which offered large ohmic resistance, leakage from the reactor, liquid product dilution or complex separation of the products, as well as significant hydrogen evolution. Therefore, researchers are investigating solid 65 polymer electrolytes to overcome these challenges of the liquid electrolyte.²⁷⁻³² Not only the above challenges may be overcome but the solid polymer electrolye (SPE) may be tuned as per the requirement. It has been found that the SPE affect the ERC process. In our earlier study, it was found that cationic and 70 anionic SPEs have some effect on the efficiency of the ERC.²⁸However, neither know-how of the process is clear nor the potential effect on the selectivity is known. Therefore, this paper is aimed to find out whether the functional groups on the SPE affect the ERC and the possible reason. Novelty of this paper is to $_{75}$ use the knowledge of amines (in SPE) for the CO₂ absorption, which might be useful to capture the CO₂ at the functional group, and simultaneously convert the CO2 to the product with high efficiency due to enhanced mass transfer pertaining at the reactive site. Thus here we report for the first time, the solid polymer electrolyte having suitable functional groups, which can affect the product selectivity to accomplish efficient ERC using gaseous CO_2 .

- To verify the proposed novel approach, branched polyethylenimine (PEI) having amine groups was chosen forsynthesizing quaternized PEI (QPEI) in order to prepare anionic SPE. However, PEI does not have the film forming ability. Thus poly(vinyl alcohol) (PVA) was used as a polymer
- ¹⁰ matrix so as to form SPE membrane. Two different SPEs were developed and evaluated for ERC. One SPE was developed with direct blending of PEI with PVA and doped with KOH (PEI/PVA/KOH), whereas the other one was developed with blending of quaternized PEI with PVA and doped with KOH
- ¹⁵ (QPEI/PVA/KOH). Gaseous CO₂ instead of solubilized CO₂ was used in the electrochemical study. The product distribution, Faradaic efficiency, and selectivity of the products were evaluated to understand the rationale behind the process to generate reaction products along with the reaction mechanism.

20 Experimental

Materials

Polyethyleneimine (7,50,000 g.mol⁻¹) and polyvinyl alcohol (1,15,000 g.mol⁻¹) were procured from Sigma Aldrich, India. Pt/C (40wt.%) was procured from Electro-Chem., USA. Porous carbon

²⁵ paper (TGP-H-120) from Torayca was used as a support for electrode preparation. Other chemicals like bromopropane, glutaraldehyde, dimethylsulfoxide (DMSO) and potassium hydroxide (KOH) were procured from Merck, India. All the chemicals were used without further purification unless otherwise ³⁰ specified and de-ionized water was used in all the experiments.

Method

Synthesis of PEI/PVA/KOH and QPEI/PVA/KOH

Solutions (5wt.% each) of branched PEI and PVA were ³⁵ prepared in suitable solvents. The obtained solutions were mixed in 1:2 ratio of PEI and PVA. Then 10wt.% of glutaraldehyde (GA) solution was added as crosslinking agent for PVA. The membranes (thickness around 100µm) were prepared by solution casting technique. The prepared membranes were doped with VOU solution for the solution and provide the solution of the solution.

- ⁴⁰ KOH solution for atleast 24h and washed several times with deionized water to obtained alkaline SPE (PEI/PVA/KOH) as shown in Figure 1A. In a similar way, QPEI/PVA/KOH was synthesized. However, the PEI was first quaternized by adding bromopropane solution into PEI solution under stirring at 60 °C u until alear homogeneous solution of quaternized PEI was
- ⁴⁵ until clear homogeneous solution of quaternized PEI was obtained. Thereafter, the QPEI/PVA/KOH was synthesized in a similar way as PEI/PVA/KOH.

Characterization

The SPEs were characterized using different techniques to so ascertain the quaternization as well as their suitability for the ERC process. FTIR spectra were recorded in 4 cm⁻¹ of spectral resolution in the range of 510–4000 cm⁻¹ using a Perkin Elmer, Spectrum One, Fourier Transform Infrared Spectrometer. Through plane ionic conductivity was measured by AC ss impedance technique over a frequency range of 10 kHz to 100 mHz using a potentiostat (CHI6002B, CH Instruments, USA) in an ionic conductivity test apparatus as described elsewhere.³³ Ion exchange capacity, water uptake, and swelling of the SPEs were evaluated as per the standard test procedures given elsewhere.³⁴

60 (A)

(B)

The tensile strength of the membrane samples was evaluated as per ASTM D-882 at ambient condition using universal testing machine.

Experimental Setup

65

Figure S1 shows an experimental setup for ERC in which CO₂ gas (99.995%) was fed at the cathode (Cu₂O electrodeposited on carbon paper) side of the electrochemical reactor through a humidifier with a flow rate of 20 ml.min⁻¹.²⁸ Deionized water was fed as a reactant at the anode (Pt/C) side of the electrochemical ⁷⁵ reactor using peristaltic pump with a flow rate of 1.5 ml·min⁻¹. The cathode and anode outlets were connected to gas/liquid

separators to separate the gas and liquid reaction products. The ERC was conducted at different electrical voltages for 25 minutes in pulse mode (chronoamperometry - pulse width 5 s). During the off-cycle of the voltage pulse, the current reduced to zero and

- ⁵ thus because of no reaction, the formed products diffuse out easily.²⁸ The reaction productscollected from cathode outlet were analyzed by gas chromatograph (GC).All the experiments were performed at room temperature (25°C) and atmospheric pressure. Each experiment was performed with fresh electrodes as well as
- 10 with a fresh SPE to rule out any side effect such as influence of ageing or poisoning of the electrode and SPE.

Analysis of Products

Products formed during ERC were analyzed using custom made GC (Figure S2). The H₂ and CO₂ gases were detected using ¹⁵ thermal conductivity detector (TCD), CO (after passing through methanizer), and hydrocarbons (CH₄, C₂H₄, and C₂H₆) were detected using flame ionization detector (FID). The liquid product like methanol was analyzed by GC using packed column (Porapak-Q) in FID. The products from the ERC reactor were

- ²⁰ collected during 0-5, 5-10, 10-15, 15-20, and 20-25 minutes. The collected products for the stated time span were quantified by GC with the help of standard calibration curves (Figure S3). Total amount of the products collected during 25 min. is also shown while discussing the relevant figure. The Faradaic efficiency was
- ²⁵ calculated by determining the charge passed to produce a particular product with respect to the total charge passed during the experiment (sampling time).

Results and Discussion

SPEs Characterization

- FTIR spectra of PEI/PVA and QPEI/PVA are shown in Figure
 In both the cases due to the crosslinking of glutaraldehyde, a peak at 2836 cm⁻¹ corresponding to C–H stretching related to aldehydes and another strong peak from carbonyl group (C=O) is observed at 1716 cm⁻¹. In the case of PEI/PVA SPE,a peak
 shown at 1635 cm⁻¹ represents the formation of imine (C=N) linkage, which confirm that crosslinking was taken place between NH₂ sites of PEI polymer and crosslinked polyvinyl alcohol.³⁵ The quaternization of the PEI is confirmed by the disappearance of imine linkage at 1635 cm⁻¹ and an increased intensity of the C–40 H stretching and deformation vibration bands at 1656 and 1461
- cm^{-1} and the quaternary ammonium absorption band can be seen at 916 cm⁻¹.³⁶

Figure 3 shows the different properties of PEI/PVA/KOH and 45 QPEI/PVA/KOH. The ionic conductivity and ion exchange capacity of the SPEs are important properties. The ionic conductivity indicates the ease of the hydroxyl ion to transport from cathode to anode through the SPE, whereas ion exchange capacity signifies the replaceable ions (meq./gm of polymer) in the SPE. The hydrokled OPE use integrates that do in the

- ⁵⁰ the SPE. The branched QPEI was interpenetrated in the crosslinked PVA chains to form the semi-interpenetrating polymer network (s-IPN) structure as shown in the Figure 1. Therefore, the quaternization has a dominant influence on the ionic conductivity and tensile strength of the membranes (Figure ⁵⁵ 3). The ionic conductivity of QPEI/PVA/KOH was 10 times than
- the PEI/PVA/KOH. It may be because quaternary ammonium

cation can have higher amount of loosely held hydroxide ions, which led to the higher ionic conductivity through Grotthuss mechanism in the electric field. It can be seen in the Figure 3A 60 that the IEC of the SPE is affected by the quaternization and it increased significantly after quaternization. It may be due to the bulky quaternary ammonium ion has higher anion activation

Figure 2. FTIR spectra of PEI/PVA and QPEI/PVA polymer

Figure 3. (A) Ionic conductivity and ion exchange capacity, and (B) water uptake, swelling and tensile strength of PEI/PVA/KOH and QPEI/PVA/KOH SPEs

stability due to the longer distance between cation and anion and ⁷⁰ thus hydroxyl ions are loosely held with the quaternary ammonium ion and enhances the ion exchange capacity.³⁷ The electrostatic attraction between cation and anion will be weaker, resulting in more nucleophilic nature of the anion. In the case of PEI/PVA/KOH, solvation effects of primary and secondary ⁷⁵ amines increase the electron density on the amine nitrogen to a greater extent leads to higher water uptake and swelling. The hydrophilicity of the QPEI/PVA/KOH was reduced by introducing alkyl groups via quaternization, resulting in a slight decrease in water content as shown in Figure 3B. Therefore, the ⁸⁰ above results show that the membranes chosen for the ERC are suitable to be used as SPEs and thus evaluated in the electrochemical reactor and discussed in the further sections.

Influence of Functional Groups in SPE on dERC

The gaseous CO₂ was fed into the electrochemical reactor and ⁸⁵ various products were obtained at different applied voltages in the range of 1.8 V to 3 V. Figure 4 shows the current density and the amount of the products formed as a function of applied voltage in the direct electrochemical reduction of CO₂ (dERC). It can be seen that the increase in voltage directly influences the ⁹⁰ current density and amount of product formed. However, the current density and amount of CH₄ formed increases upto a certain voltage depending upon the SPE used and on further voltage increase, CH₄ formation decreases and corresponding current density. In case of PEI/PVA/KOH (Figure 4A), CH₄ was the main product, whereas C_2H_6 and CH₄ were the major products for the QPEI/PVA/KOH (Figure 4B) along with ⁵ comparatively minor quantities of CO, and CH₃OH in both the cases. Hydrogen gas was formed due to water electrolysis (a competitive reaction at the cathode) in both the cases as a byproduct. However, the generation of H₂ gas was reduced as high as upto 50% when quaternized SPE was used for the dERC.

Figure 4. Current density and product distribution obtained as a function of applied voltage in the ERC using (A) PEI/PVA/KOH and (B) QPEI/PVA/KOH SPEs during 25min of electrolysis

- ¹⁵ Figure 4 shows that the current density increases with the increase in the applied voltage for both the SPEs, which indicate that the rate of the reactions increase with the increase in the applied voltage. The increased reaction rate corresponds to the increased electrical charge consumed by the various
 ²⁰ electrochemical reactions at the electrodes. In case of PEI/PVA/KOH SPE, current density increases from 2.42 mA.cm⁻² at 1.8 V to 5.83 mA.cm⁻² at 3 V, whereas 1.42 mA.cm⁻² at 1.8 V to 4.81 mA.cm⁻² at 3V are obtained using QPEI/PVA/KOH. Higher current density was observed for PEI/PVA/KOH as
- ²⁵ compared to QPEI/PVA/KOH at any of the voltages. However, it is interesting to note that though the experimental conditions were same except the functional group but the product formation was greatly influenced.

Based on the results, the process being conceptualized along ³⁰ with the reaction mechanism and is depicted in Figure 5. Figure

5A shows a representative cartoon of membrane electrode assembly having anode-SPE-cathode structures. In order to have good contact among these components, the assembly was

fabricated using hot press method. It can be seen that due to the hot press process, the SPE bulges in between the catalyst particles and can be seen in Figure 5A. The FESEM micrograph of the electroplated cathode on the carbon paper (Cu₂O/C) is shown

- s in the Figure 5A. The discontinuous nature (porous surface) of the electrodes was prepared to transport the reactants and products. The bulging of the polymer around the electrocatalyst is infact an added advantage as it provides high and effective three-phase boundary for electrochemical reactions. Figure 5B shows the
- ¹⁰ PEI/PVA/KOH as SPE (having primary, secondary, and tertiary amines as shown in the Figure 1A). CO₂ reaching to the interface is absorbed by the amine group and its linear stable structure bends by forming the carbamate via intermediates possibly composed of the loosely-bound encounter complex and ¹⁵ zwitterion.^{38, 39} Moreover, the electrocatalyst present at the
- interface along with the solvated water molecules form the reaction product and hydroxyl ion. These hydroxyl ions move from cathode to the anode and transform to water and O_2 gas in the presence of the anode electrocatalyst. The quaternized SPE
- ²⁰ (QPEI/PVA/KOH) (Figure 5C) having bulky alkyl groups hinders the water molecules to get associated with the quaternary group and thus decreases the solvation effect due to weaker electrostatic interactions.⁴⁰ In case of QPEI/PVA/KOH SPE having bulky alkyl groups (Figure 1B), the incoming CO₂ does
- ²⁵ not form carbamate but ammonium group increases the CO₂ absorption capacity by forming an ion pair and/or bicarbonate.²⁴ The observations (Figure 4) to get low H₂production (by-product of ERC) for the quaternized SPE as well as formation of C₂H₆ by C-C coupling was might be due to low water availability at the
- ³⁰ interface. It is interesting to observe that the maximum amount of formation of CH₄ (peak value) shifted to the lower potential (2.5 V for QPEI/PVA/KOH as compared to 2.75 V for PEI/PVA/KOH) due to higher ionic conductivity (10 times more than PEI based SPE) and co-catalyzation effect of quaternized
- ³⁵ SPE. The other reason may be the difference in covalent bond formation (in carbamate) and ions-pair formation energy differences.

It is interesting to note (Figure 4) that increasing the applied voltage up to a certain extent increases the product formation.

- ⁴⁰ However, further increase in the applied voltage enhances the H_2 evolution whereas the product formation reduces. It is further course of study to find out the reason but the probable reason may be as follows; at significantly higher applied voltages the reaction kinetics were higher and more amount of water formed in anode
- ⁴⁵ due to anodic reaction as well as electroosmotic drag. It significantly imbalances water concentrations in the anode and cathode, which results in the diffusion of the water from anode to the cathode. Therefore, cathode catalyst layer floods with the water and the applied voltage is primarily used up for the
- $_{50}$ hydrogen generation and the ERC hampers due to low solubility of gaseous $\rm CO_2$ in the liquid water which is formed on the electrocatalyst. In addition to that the H_2 escapes from the reaction site and pushes back and dilute the incoming CO_2.

Based on the above discussion, it may be agreed that ⁵⁵ quaternary ammonium ion in the QPEI/PVA/KOH helps as a mediator or co-catalyst in the reduction of CO₂. It may also be suggested that electrostatically attracted quaternary ammonium ion of the QPEI/PVA/KOH to the negative cathode also assist the electron flow from cathode to CO_2 in the electrolysis. Once 60 CO_{2ads}^{\bullet} is formed, the remaining reaction pathways to produce the products in the electroreduction of CO_2 are proposed by several authors.⁴¹⁻⁴³ However, the pathway for the formation of C_2H_6 is not available. Therefore, the reaction pathway is being extended and proposed in the Figure 5C, in which the formation of C-C 65 coupling might be formed through 2 molecules of :CH_{3ads} to generate C₂H₆.

The cathode reactions for the different products are shown in the eq. (1-4) along with the standard half-cell potentials. The halfcell potential for the C_2H_6 formation was not available in the 70 literature and thus standard calculation procedure (using bond strength, enthalpy change, Gibb's free energy change) was opted to find the standard half-cell potential.⁴⁴ It may be noted that the CH₄ and C_2H_6 have almost similar standard electrode potentials (E°) and that may be the other probable reason that the one forms 75 at the expense of other even when a slight change in the interface environment occur

	environnent occur.				
	$CO_{2(g)} + H_2O_{(l)} + H_2O_{(l)}$	$2e^{-} \rightarrow C$	$CO_{(g)} + 2OH^{-}$	$E^0 = -0.934 V$	(1)
	$CO_{2(g)} + 5H_2O_{(l)} +$	$6e^{-} \rightarrow 0$	$CH_3OH_{(1)} + 6OH$	E ⁰ =-0.812 V	(2)
	$CO_{2(g)} + 6H_2O_{(l)} +$	$_{8e^{-}} \rightarrow$	$CH_{4(g)}$ + $8OH^-$	$E^0 = -0.659 V$	(3)
0	$CO_{2(g)} + 10H_2O_{(l)} +$	- 14e ⁻ →	C2H6(g) +14OH	$E^0 = -0.685 V$	(4)

To quantify the preference of the product formation on others, selectivity was calculated for the CH₄ using PEI/PVA/KOH as SPE; CH₄ and C₂H₆ using QPEI/PVA/KOH as SPE at various ⁸⁵ applied voltages. Selectivity is defined as the amount of desired product to amount of total CO₂ reduction products obtained (based on the carbon content) during the reaction time of 25 min.⁴⁵ Maximum selectivity of 80% for CH₄ is obtained at 2.75V using PEI/PVA/KOH whereas, 77.3% for CH₄ at 2.5V in the case ⁹⁰ of QPEI/PVA/KOH. The Selectivity of C₂H₆ at 2.25V was 67.6% using QPEI/PVA/KOH, whereas the selectivity of CH₄ was reduced to around 16.4% as shown in table 1.

Table 1. Selectivity (%) of C_1 and C_2 products in dERC using SPEs during 25min.

	PEI/PVA/KOH	QPEI/PV	/A/KOH
Voltage (V)	CH_4	CH_4	C_2H_6
1.8	19.6	19.9	0
2	37.4	64	10.6
2.25	68.4	16.4	67.6
2.5	65.8	77.3	0
2.75	80	60.18	0
3	41.2	39.19	0

It was observed that the quaternization has strong role on the evolution of CH₄, C₂H₆, and H₂. However, the other minor reaction products were hardly influenced. Faradaic efficiency was calculated for different ERC products obtained using PEI/PVA/KOH and QPEI/PVA/KOH after 25min of electrolysis
 at different voltages (Figure S4). Therefore, in order to further understand, Faradaic efficiency was evaluated for CH₄, C₂H₆, and H₂ (for different time intervals instead of only at the end of 25 min. duration) using PEI/PVA/KOH and QPEI/PVA/KOH and QPEI/PVA/KOH and shown in the Figure 6. It may be noted that the voltage at which
 maximum product formation occur (using Figure 4) is used for the Figure 6. It can be seen that the Faradaic efficiency for CH₄ decreases, whereas Faradaic efficiency for H₂ increases at the

same voltage using PEI/PVA/KOH at 2.75 V as the time increases. However, on comparing these results with the QPEI/PVA/KOH, it can be noted that after quaternization of the membrane, the Faradaic efficiency of CH₄ and C₂H₆ increases ⁵ with the time or almost maintains the higher Faradaic efficiency as compared to its initial value at 5 min. The trend of the

Figure 6. Faradaic efficiency of CH₄, and H₂ obtained as a function of time in the ERC using both SPEs and C₂H₆ for QPEI/PVA/KOH at the maximum selectivity. (Solid lines QPEI/PVA/KOH and dotted lines PEI/PVA/KOH)

hydrogen Faradaic efficiency is also influenced by theQPEI/PVA/KOH SPE and reduced to 50% compared to PEI/PVA/KOH at all time intervals. The maximum Faradaic 15 efficiency of C₂H₆ is 17% using QPEI/PVA/KOH SPE at 2.25V during 25min.

Conclusions

Study on branched polyethylenimine (PEI) having amine groups as well as quaternized PEI (QPEI) was conducted to study ²⁰ the effect of these functional groups on the tuning of reaction zone. It was found that the hindered quaternary ammonium group

- in SPE has strong effect on the direct electrochemical reduction of gaseous CO_2 to the formation of C_2H_6 . It was found that the QPEI/PVA/KOH SPE has great influence and on the reaction and as it worked as a co-catalyst for the EPC. This strike on the his decad
- ²⁵ it worked as a co-catalyst for the ERC. This study on the hindered quaternary bulky ammonium in the SPE was the first time in the application of dERC. It was interestingly found that under similar conditions the CH_4 was suppressed at a particular voltage and the C_2H_6 was formed only because of the fixed functional group. The
- $_{30}$ C₂H₆was selectively formed with a Faradaic efficiency of 17% using QPEI/PVA/KOH over 25 min. duration. It clearly proved that SPE influences the system performance probably due to bulky propyl quaternary ammonium ion of the QPEI/PVA/KOH electrostatically attracted to the negative cathode thus assist the
- ³⁵ electron flow from cathode to CO_2 in the electrolysis. These studies suggest that hindered quaternary ammonium ions can promote CO_2 reduction in two ways: (1) these fixed functional group can create a suitable micro environment at the electrode; and (2) can mediate the electroreduction of CO_2 . This study and
- ⁴⁰ the findings may open up research opportunities on solid electrolyte/polymer towards the sustainable generation of fuel

generation, CO2 reduction, and renewable energy storage.

Notes

45 Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India. Fax: +91 361 2582255; Tel: +91 361 2582291; E-mail: anil.verma@iitg.ernet.in #Eloctronia_Sumplementary_Information_(TSE)_____ilities. [http://

/*Electronic Supplementary Information (ESI) available: [details of any so supplementary information available should be included here]. See DOI: 10.1039/b000000x/

Acknowledgement

The authors gratefully acknowledge the financial support of the *Department of Science and Technology* (DST), Government of

⁵⁵ India, under its National Programme on Carbon Sequestration Research (NPCSR), for the above project (DST/IS-STAC/CO₂-SR-139/12(G).

References

- 1. M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. D. Harvey,
- S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G. Watts, T. M.
 L. Wigley and D. J. Wuebbles, *Nature*, 1998, **395**, 881-884.
- A. S. Agarwal, Y. M. Zhai, D. Hill and N. Sridhar, *ChemSusChem*, 2011, 4, 1301-1310.
- 3. D. P. Schrag, Science, 2007, 315, 812-813.
- 65 4. G. Centi and S. Perathoner, Green Carbon Dioxide: Advances in CO₂ Utilization, Wiley, 2014.
- 5. C. Delacourt, P. L. Ridgway, J. B. Kerr and J. Newman, J. *Electrochem. Soc.*, 2008, **155**, B42-B49.
- A. Dominguez-Ramos, B. Singh, X. Zhang, E. G. Hertwich and A. Irabien, *J. Cleaner Prod.*, 2013.
- D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1, 3451-3458.
- E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, *Chem. Soc. Rev.*, 2009, **38**, 89-99.
- 75 9. R. P. S. Chaplin and A. A. Wragg, J. Appl. Electrochem., 2003, 33, 1107-1123.
 - 10. M. Gattrell, N. Gupta and A. Co, *J. Electroanal. Chem.*, 2006, **594**, 1-19.
 - 11. Y. Hori, in Handbook of Fuel Cells, John Wiley & Sons, Ltd, 2010.
- 80 12. M. Jitaru, J. Univ. Chem. Technol. Metallurgy, 2007, 42, 333-344.
- E. V. Kondratenko, G. Mul, J. Baltrusaitis, G. O. Larrazabal and J. Perez-Ramirez, *Energy Environ. Sci.*, 2013, 6, 3112-3135.
- 14. Y. Oh and X. Hu, Chem. Soc. Rev., 2013, 42, 2253-2261.
- 15. J. Qiao, Y. Liu, F. Hong and J. Zhang, *Chem. Soc. Rev.*, 2014, **43**, 631-675.
- J. Schneider, H. Jia, J. T. Muckerman and E. Fujita, *Chem. Soc. Rev.*, 2012, 41, 2036-2051.
- M. A. Scibioh and B. Viswanathan, *Proc. Indian Natn. Sci. Acad.*, 2004, **70**, 1-56.
- 90 18. K. Kobayashi and K. Tanaka, Phys. Chem. Chem. Phys., 2014, 16, 2240-2250.
 - W. Lv, R. Zhang, P. Gao and L. Lei, J. Power Sources, 2014, 253, 276-281.

Page 8 of 8

Physical Chemistry Chemical Physics Accepted Manuscript

- S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734-1737.
- 21. J. D. Watkins and A. B. Bocarsly, ChemSusChem, 2014, 7, 284-290.
- M. R. Thorson, K. I. Siil and P. J. A. Kenis, J. Electrochem. Soc.,
 2013, 160, F69-F74.
- J. O. M. Bockris and J. C. Wass, J. Electrochem. Soc., 1989, 136, 2521-2528.
- 24. T. Saeki, K. Hashimoto, N. Kimura, K. Omata and A. Fujishima, J. *Electroanal. Chem.*, 1995, **390**, 77-82.
- 10 25. I. Taniguchi, B. Aurian-Blajeni and J. O. M. Bockris, J. Electroanal. Chem. Interfacial Electrochem., 1983, 157, 179-182.
- A. N. Grace, S. Y. Choi, M. Vinoba, M. Bhagiyalakshmi, D. H. Chu,
 Y. Yoon, S. C. Nam and S. K. Jeong, *Appl. Energy*, 2014, **120**, 85-94.
- 15 27. L. M. Aeshala, S. U. Rahman and A. Verma, Sep. Purif. Technol., 2012, 94, 131-137.
 - L. M. Aeshala, R. G. Uppaluri and A. Verma, J. CO2 Util., 2013, 3– 4, 49-55.
- 29. R. L. Cook, R. C. MacDuff and A. F. Sammells, J. Electrochem.
 20 Soc., 1988, 135, 1470-1471.
 - 30. D. Dewulf and A. Bard, Catal. Lett., 1988, 1, 73-79.
 - S. R. Narayanan, B. Haines, J. Soler and T. I. Valdez, J. Electrochem. Soc., 2011, 158, A167-A173.
- G. K. S. Prakash, F. A. Viva and G. A. Olah, J. Power Sources, 2013,
 25 223, 68-73.
 - L. Barbora, S. Acharya, R. Singh, K. Scott and A. Verma, J. Membr. Sci., 2009, 326, 721-726.
 - L. Barbora, S. Acharya and A. Verma, *Macromol. Symp.*, 2009, 277, 177-189.
- 30 35. P. Srinivasa Rao, B. Smitha, S. Sridhar and A. Krishnaiah, Sep. Purif. Technol., 2006, 48, 244-254.
 - I. Yudovin-Farber, N. Beyth, E. Weiss and A. Domb, J. Nanopart. Res., 2010, 12, 591-603.
 - 37. C. Starks, C. Liotta and M. Halpern, in Phase-Transfer Catalysis,
- ³⁵ Springer Netherlands, 1994, ch. 1, pp. 1-22.
- 38. X. Pan, G. Wang, C. L. Lay, B. H. Tan, C. He and Y. Liu, *Sci. Rep.*, 2013, 3.
- M. Czaun, A. Goeppert, R. B. May, D. Peltier, H. Zhang, G. K. S. Prakash and G. A. Olah, *J. CO2 Util.*, 2013, 1, 1-7.
- 40 40. H. N. Sarode, G. E. Lindberg, Y. Yang, L. E. Felberg, G. A. Voth and A. M. Herring, *J. Phys. Chem. B*, 2014, **118**, 1363-1372.
 - 41. K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, *Energy Environ. Sci.*, 2012, **5**, 7050-7059.
 - 42. X. Nie, M. R. Esopi, M. J. Janik and A. Asthagiri, Angew. Chem. Int.
- 45 *Ed.*, 2013, **52**, 2459-2462.
 - K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin and M. T. M. Koper, *Chem. Sci.*, 2011, 2, 1902-1909.
 - 44. J. A. Dean and N. A. Lange, Lange's Handbook of Chemistry, McGraw-Hill, 1999.
- 50 45. K. Ogura, H. Yano and T. Tanaka, Catal. Today, 2004, 98, 515-521.