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Quantum rules for planar boron nanoclusters 

Athanasios G.Arvanitidis,a Truong Ba Tai, a Minh Tho Nguyen, a  and Arnout 
Ceulemans a 

This article presents the use of free particle models to obtain quantum rules for planar boron 
clusters, with nuclearities in the range from seven to twenty. The information obtained from 
the models is being compared with electronic structure calculations based on the DFT 
method. Separate rules for in-plane and out-of-plane bonding are derived. In-plane bonding 
is precise on the cluster boundary and forms a network of alternating triangular 3c-2e bonds 
on the inside. The out-of-plane bonding is strongly delocalized and only depends on the 
global shape and size of the cluster.  
 

 

1. Introduction 

In quantum systems boundary conditions are responsible for 
quantization of eigenenergies. In the case of lattice structures 
periodic boundaries apply, but in the case of nanoscopic 
systems the actual physical boundaries, determined by the 
shape and size of the system, are of paramount importance. In 
the present contribution we overview a family of boron 
nanoclusters, Bn, with n ranging from 7 to 20(1–4). These 
clusters exhibit a planar structure and a circular or elongated 
shape(5–8). They have been the subject of extensive quantum 
chemical computations(9–16) and are claimed to correspond to 
the principal peaks in the mass spectra obtained by laser 
evaporation of a boron target. Evidence from photo-electron 
spectra(17,18) has allowed to confirm the planar structures for the 
mono-anions of B19 and B16

(19–22). In previous papers the 
concept of disk aromaticity(23,24) was introduced to explain the 
electronic structures of these nanoclusters. This approach 
compares the molecular orbitals of the clusters with the 
eigenfunctions of a particle in a circular box. We extend here 
this comparison to an entire series of boron clusters. The 
comparison also includes elongated shapes which often 
compete with circular shapes. So far clear quantum rules for the 
prediction of the bonding in these families of clusters are 
lacking. The aim of our comparison is to find answers to two 
essential questions on the structure and bonding of these 
nanoclusters: 
i) What is the relative importance of out-of-plane or π-bonding 

versus in-plane or σ-bonding?  
ii) What is the difference between bonding in clusters with 

elongated shapes versus disk-like clusters? 
 

aDepartment of Chemistry, University of Leuven, Celestijnenlaan 200F, 
B-3001 Leuven, Belgium, Fax: (+32)16-327992) 

E-mail: arnout.ceulemans@chem.kuleuven.be 

2. Computational Methods 

Electronic structure calculations are carried out using the 
Gaussian09(25) suite of programs. Geometry optimization and 
calculation of the harmonic vibrational frequencies are  
performed using density functional theory (DFT) with the 
hybrid functional B3LYP, in conjunction with the 6-
311+G(d,p)(26,27) basis set. The MO shapes of boron clusters 
are plotted by using the B3LYP/6-311+G(d,p) densities. 

3. The particle on a disk model 

The quantum mechanical model of a particle confined to a 
circular disk(28) is solved by the well known cylindrical Bessel 
functions. The solutions are characterized by two sets of 
quantum numbers: a radial quantum number, n = 1,2,3 … , 
referring to the order of the Bessel function, and a ring quantum 
number, m = 0,±1,±2 …, corresponding to the angular 
momentum in the plane of the disk. The ring quantum levels are 
usually denoted by the symbols  σ, π, δ, ϕ…. The eigenenergies 
are given by: 

( )22

,

2
, with: 1, 2, 3, ...   0, 1, 2, 3, ...

2

m n
a

E n m
Rμ

= = = ± ± ±


 

where μ is the electron mass and R is the radius of the disk. The 
dimensionless am,n parameters are the zeroes of the Bessel 
functions. The sequence of these zeroes dictates the Aufbau 
order of the disk waves. This order is independent of the disk 
radius. Table 1 reproduces a list of the lowest roots. 
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Table 1: The lowest n,m roots of Bessel functions 

n σ π δ φ γ η 

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386 

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002 

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178 

The assignment of the molecular orbitals of the disk-like 
clusters under consideration is simply based on counting the 
radial and angular nodes. The number of times a function 
changes sign along the radius corresponds to n-1, while the 
number of times the sign changes upon completing a full 
rotation along the perimeter is equal to 2m.  In this way most of 
the MO’s of our clusters could be identified unequivocally.  As 
a result of the planar geometry of most of the structures under 
investigation, the MO's are divided into two separate series: in-
plane (σ) and out-of plane (π) orbitals. The out-of-plane orbitals 
are based on the atomic 2pz functions on boron, while the in-
plane orbitals are based on 2s, 2px, 2py atomic basis functions. 
Both series follow the particle-on-a-disk Aufbau,  implying that 
not only the order but also the actual energy values of DFT 
orbitals correlate well with the eigenenergies of the box model. 
The two separate series are modeled by the following parameter 
expressions: 

( )

( )
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The plots of the calculated DFT orbital energies versus the 
corresponding 

,n mEσ and 
,n mEπ are adjusted to a straight line by a 

least square fit, and subsequently the slope of this line is 
adjusted to 45° by adopting effective radii, labeled as Rσ and Rπ. 
These effective radii are larger than the radius of the outer 
boron ring, indicating that the actual boundary of the particle 
waves lies beyond the outer ring.  
The σ-orbital series starts at lower energy in view of the partial 
2s character. The E0 parameters are an offset which must be 
chosen in such a way that the 1σ ground level of the σ-series in 
the model coincides with the DFT result. This starting point is 
taken as the zero-point of energy. The E0

π parameter adjusts the 
1σ ground level of the π-series to the corresponding DFT result.  
 
 
 
 

4. The particle on a rectangle model 

As mentioned planar boron clusters can also adopt a triangular 
array with an elongated shape. A crude but efficient quantum 
mechanical model for these structures is offered by the model 
of a particle confined to a rectangle. The solutions are 
characterized by two sets of quantum numbers: nx and ny,  with 
nx, ny = 1,2,3, … . The eigenenergies are given by: 

2 22 2

, 2 2
+ 

8 8x y

yx
n n

h nh n
E

a bμ μ
=

 

As before μ is the electron mass. The x-direction is taken as the 
longitudinal direction, with a long-axis length a. Similarly the 
short-axis length along the transversal y-direction is denoted as 
b. Again both σ- and π-series occur. Approximate values for the 
effective length parameters are be obtained from the main 
longitudinal and transversal sequences: 
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where energy differences are expressed in Hartree, and a0 is the 
Bohr radius. 
 

5. Results 

5.1 Electronic structure of small disk-like boron clusters. 
Boron clusters with numbers of atoms ranging from seven to 
twenty have been investigated. The number of the electrons – in 
-plane and out-of-plane – for the cluster series are shown in 
Table 2. Nearly for all the valence structures of σ-type, radial 
and angular disk quantum numbers can be assigned 
unequivocally on the basis of the orbital plots. The complete 
list of orbital plots for all clusters is provided in the Supporting 
Information. The assignments create the basis for a comparison 
between the particle-on-a-disk states to the orbital energies 
obtained from DFT calculations. 
  
The boron clusters that will be discussed as representative 
examples are: B7(0), B13(+) (for B18(0),B20(-) see 
supplementary material). For each system we compare the σ- 
and π-orbital energies to the scaled eigenvalues of the particle-
on-a-disk model, and show the corresponding correlation 
diagram. We also show MO plots of the occupied orbitals with 
the maximum number of cylindrical and radial quantum 
numbers. 
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5.1.1 B7(0):   

For  this system the resulting energies (in Hartree), relative to 
the ground root are given in Tables 3 and 4 for σ and π orbitals 
respectively. 
 
Table 3.Correlation of DFT σ-orbital energies and particle-on-
a-disk spectrum. 

 

 
 
 
The correlation between DFT and scaled model energies is 
shown in Figure 1, while Figure 2 provides orbital plots of the 
orbitals with maximal numbers of nodes.  
 
Table 4.Correlation of DFT π-orbital energies and particle-on-
a-disk spectrum 
 

B7(0) MO DFT Particle in a 

circular box 

  Label E(Ha) Label E(Ha) 

17 HOMO 1π 0.5321 1π 0.5321 

12 HOMO-5 1σ 03874 1σ 0.3874 

 
 

Table 2. Electron distribution of valence electrons over σ and π 
orbitals, symmetries and energy in a.u. 

 
Boron 
cluster 

In-plane 
orbitals(Nr

of 
Electrons) 

 
Out-of-
plane 

orbitals(Nr. 
Electrons) 

 
Sym
metry 

 
Energy(au) 

 
E(au)/Nr 

Boron 
atoms 

 

      
B7(0) 9(18) 2(3) C2v -173.71022 -24.81574 
B7(+) 9(18) 1(2) C2v -173.79753 -24.82821 
B7(-) 9(18) 2(4) C2v -173.41786 -24.77398 
B8(0) 9(18) 3(4) D7h - 198.59679 -24.82459 
B8(+) 11(22) 2(3) C2v -198.59619 -24.82452 
B8(-) 10(20) 3(5) C2v -198.69938 -24.83742 
B9(0) 11(21) 3(6) C2v -223.41003 -24.82333 
B9(-) 11(22) 3(6) D8h -223.53574 -24.83730 
B12(0) 15(30) 3(6) C3v -298.02690 -24.83557 
B12(+) 15(29) 3(6) Cs -297.70655 -24.80887 
B12(-) 15(30) 4(7) Cs -298.10203 -24.84183 
B13(0) 16(32) 4(7) C2v -322.59506 -24.81500 
B13(+) 16(32) 3(6) C2v -322.85432 -24.83494 
B14(0) 16(32) 4(8) C2v -347.70072 -24.83576 
B14(+) 16(34) 4(7) C2v -347.41429 -24.81530 
B14(-) 16(35) 4(8) C1 -347.72691 -24.83763 
B15(0) 19(37) 4(8) C1 -372.54513 -24.83634 
B15(+) 18(36) 4(8) Cs -372.22778 -24.81518 
B15(-) 19(38) 4(8) C1 -372.66170 -24.84811 
B18(0) 23(46) 4(8) C3v -446.95953 -24.83108 
B18(-) 23(45) 5(10) C3v -447.23286 -24.84627 
B19(0) 23(45) 6(12) Cs -471.95082 -24.83951 
B19(-) 24(46) 6(12) C2v -472.10126 -24.84743 
B20(-) 25(49) 6(12) C2v -496.91257 -24.84562 
B20(2-) 25(50) 6(12) C2v -496.90977 -24.84548 

B7(0) MO DFT Particle in circular 
box 

  Label E(Ha) Label E(Ha) 

16 HOMO-1 2π 0.4885 2π 0.4364 

15 HOMO-2 2π 0.4831 1φ 0.3509 

14 HOMO-3 2σ 0.4350 1φ 0.3509 

13 HOMO-4 1φ 0.4241 2σ 0.2179 

11 HOMO-6 1δ 0.3638 1δ 0.2068 

10 HOMO-7 1δ 0.3493 1δ 0.2068 

9 HOMO-8 1π 0.1706 1π 0.0774 

8 HOMO-9 1π 0.1505 1π 0.0774 

7 HOMO-10 1σ 0.0000 1σ 0,0000 
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6.3 Quantum rules for the π subband 

 
It seems that the formation of the in-plane σ-frame is the 
determining step for the allocation of the number of σ-
electrons. The surplus is then assigned to the π subband. One 
indication for this hypothesis is that the HOMO frequently (but 
not always) is of π-type. The number of occupied levels of the π 
subband is a slowly but steadily rising function of nuclearity 
(see Table 1). It is clear that this subband consists of highly 
delocalized orbitals which are distributed over the framework 
and form a slowly increasing series, which basically only 
depends on the shape and size of the cluster, and not on the 
detailed structure. This explains why an analogy could be 
drawn with conjugated planar carbon systems, which are not 
isoelectronic but only analogous as far as shape and size are 
concerned. For circular shapes the π-orbitals are close to the 
solutions of the disk model, while for elongated shapes the 
simple model of a particle in a narrow rectangular box is 
already sufficient. 
 

6.3 Elongated structures 

A crude rectangular box model was found to be able to 
rationalize the orbital shapes in the elongated structures, except 
for a pair of orbitals which were strongly localized on the 
capping regions, at both ends of the longitudinal axis. For the σ 
subband the maximal number of nodes in the transversal 
direction cannot be greater than four. This corresponds to three 
nodal planes which are coincident with the three arrays of the 
nuclear positions. These modes are indeed realized by 
combinations of the 2py-orbitals which define nodal planes 
through the nuclear positions. In the longitudinal direction the 
highest quantum number is 6 for B16 and 7 for B19. This count 
depends on the number of atoms along the perimeter, not taking 
into account the capping atoms. In this way one counts 10 
perimeter atoms for B16, and 12 for B19. Combinations of in-
plane orbitals which are nodal at these atoms indeed yield the 
(6,1) and (7,1) orbitals shown in Figure 5. 

7. Conclusions 
In this article free-particle models have been considered in 
order to obtain quantum rules for boron clusters with 
nuclearities from seven to twenty. In view of the near-planarity 
of the clusters the electronic structure separates into σ and π 
subbands. These incorporate different bonding rules.  
As for the in-plane σ-bonding, since boron is electron deficient 
it cannot form electron-precise bonds. Quite remarkably it 
nevertheless invests sufficient electron pairs to form a closed 
ring of electron-precise bonds around the full perimeter of the 
cluster. The remaining σ-orbitals form a triangulated network of 
3c-2e bonds corresponding approximately to half the number of 
triangles inside. As an example, in B20(2-), there are 25 
occupied σ-orbitals, 13 of which are needed for the perimeter 
bonding. The inner structure contains 23 triangles and one 
square. The remaining 12 orbitals will form delocalized bonds 

over this inner network, in approximate agreement with half the 
number of triangles. This bonding scheme is confirmed by the 
particle-on-disk model in that the highest angular momentum 
mode is dictated by the number of bonds in the outer ring. If 
this number is even, 2m, there is one occupied orbital 
transforming as cos(mφ). If the number is odd, 2m+1, there is a 
pair of cyclic orbitals transforming  as cos(mφ) and sin(mφ). 
Moreover, the highest radial quantum number is equal to the 
number of concentric rings plus one (atoms in the center should 
not be counted in). The remarkable feature of the disk model is 
that it not only accounts for the Aufbau of the σ-subband, but 
that there is also a semi-quantitative correspondence. This is the 
more remarkable, since the orbital basis consists of 2s and 2px,y 

orbitals with different nodal characteristics. However both 
orbital types hybridize so as to form the waves that are 
characteristic for a particle in a disk. Of course towards the 
frontier region of the band, the actual molecular geometry 
becomes more important and deviations from the model start to 
show up.  
The π subband has different characteristics. The orbitals are 
much more delocalized, forming shells which principally 
depend on the overall size of the system. As can be seen the 
electron counts corresponding to the quantum rule for this 
subband tend to comply with the shell structure of the disk 
model, and are to be considered as the magic numbers of disk 
aromaticity. The smaller clusters in Table 2 often have 6 π-
electrons corresponding to the usual aromatic (1σ)2(1π)4 sextet, 
while larger clusters have a preference for 12 π-electrons, 
occupying (1σ)2(1π)4(1δ)4(2σ)2. 
In conclusion our systematic study of planar boron clusters at 
low nuclearities has provided rules that apparently dictate the 
bonding. They provide an answer to the first question in the 
introduction, concerning the relationship between the in-plane 
and out-of-plane subbands. In contrast the second question on 
the relationship between elongated and circular isomers does 
not seem to receive a clear answer, since both alternatives can 
be very close in energy, and the boron valence shell shows 
enough flexibility to adapt to both bonding topologies. 
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