PCCP

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/pccp

www.rsc.org/xxxxxx

Enhanced photocatalytic performance at Au/N-TiO₂ hollow nanowire array by combinatorial light scattering and reduced recombination

P. Sudhagar,^{a,c} Anitha Devadoss,^{b,c‡} Taeseup Song,^{b‡} P. Lakshmipathiraj,^c Hyungkyu Han,^b Volodymyr V. Lysak,^d C. Terashima,^c Kazuya Nakata,^c A. Fujishima,^c Ungyu Paik,^{a,b}* and Yong Soo Kang^a*

s Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

We demonstrate one-step gold nanoparticles (AuNPs) coating and the surface nitridation on TiO_2 nanowires (TiO_2 -NWs) to amplify the light photon reflection. The surface nitridation on TiO_2 -NWs array maximizes the AuNPs anchoring and the subsequent band gap reduction from 3.26 eV to 2.69 eV affords

¹⁰ visible light activity. The finite-difference time-domain method (FDTD) simulation clearly exhibits the enhancement in the strengths of localized electric field between AuNPs and NWs, which significantly improves the photocatalytic (PC) performance. Both nitridation treatment and AuNPs decoration on TiO₂-NWs result in beneficial effects in high (e^-/h^+) pair separation through healing of the oxygen vacancies. The combinatorial effect of visible light harvesting photons and reduced recombination in Au/N-doped

¹⁵ TiO₂-NWs, unprecedentedly, promotes the photocatalytic activity towards degradation of methyl orange ~4 fold (1.1 x 10^{-2} min) higher than TiO₂-NWs (2.9 x 10^{-3} min⁻¹). The proposed AuNPs decoration on nitrated TiO₂-NWs surface can be transformed to wide range of n-type metal oxides for photoanodes in photocatalytic applications.

Introduction

- ²⁰ The seminal report on photosynthetic oxidation of water by Fujishima and Honda¹ opened a new paradigm in researching artificial photosynthesis for energy conversion solar fuel cells,²⁻⁴ photocatalytic biosensors,^{5, 6} carbon dioxide reduction,⁷ selfcleaning coatings⁸ and organic pollutant removal⁹. The merits in
- ²⁵ recovering and recycling the semiconductor photocatalytic electrodes are more viable and economic compared to suspended photocatalyst in environmental water purification application. In this line, simultaneous energy conversion (collection of photoelectrons) from photocatalytic electrodes during organic dye
- ³⁰ pollutant removal process is a land-mark advent, which provides the futuristic platform to obtaining useful carbon fuels from hazardous pollutant treatment.^{10, 11} Particularly, solar light driven photocatalytic substances find great deal of attention for achieving renewable and low-cost organic pollutant treatment.
- ³⁵ The semiconductor photocatalytic substance generates photocarriers (electrons and holes) under light irradiation (band gap illumination). The resultant photoholes at valence band (VB) form OH radicals, which further degrade the target pollutant components through a series of radical reactions. Whereas, the
- ⁴⁰ photoelectrons at conduction band (CB) gets converted into either O₂ radical in the pollutant medium or may be collected through the external circuit for useful fuel generation.¹² In general, the

photocatalytic performance at pollutant removal relies on several factors such as substantial charge separation, electrode stability 45 against photocorrosion, and more importantly the light photons harvesting at solar visible spectrum for solar driven photocatalytic performance.

Among the variety of photocatalysts, titanium dioxide (TiO₂) nanostructures incited considerable attention in the field of 50 photocatalytic decolourization of organic pollutants owing to their chemical stability and substantial photocatalytic response. The VB position of TiO₂ (~3.0-3.2 eV NHE) is far from the water oxidation potential (1.2 eV NHE), which offers more energetic pathways in forming OH radicals, an indispensable parameter for 55 organic dye pollutant degradation. However, the minimal access of visible light due to its intrinsic wide band gap 3.2 eV (absorbs only 3-5% of solar light photons) and the high rates of electronhole pair recombination at surface states limit the photocatalytic efficiency.¹³ A wide range of research has been devoted to 60 promote the visible light photocatalytic activity of TiO₂ through minimized charge recombination via doping and decorating cophotocatalysts. In the case of doping strategy, metal ions (Fe, Cr, Cu)^{14,15,16,17}, metal clusters (Fe (III) and Cu (II))^{18, 19}, non-metallic elements (N,S and C)^{20,21,22} and inducing defects in crystallite 65 lattice^{23, 24} at TiO₂ had shown efficient result in extending visible light performance. Primarily, these doping carries introduce the sub-bands above the valence band (VB) of TiO₂ (band gap narrowing) that could facilitate the visible light activity below 3.2

ARTICLE

eV band gap energy. Alternatively, amplifying the light photons reception at TiO_2 by light scattering mechanism would be a prominent alternative to improve the activity without altering the electronic structure of TiO_2 . Utilizing 1-D nanostructures such as

- ⁵ nanowire, nanofibers and nanotubes etc., are of interest in promoting light scattering behaviour at electrode geometry owing to the multiple photons scattering in between 1-D channels; thus, retarding the light attenuation at the electrode.^{25, 26} The efficient charge transport through 1-D geometry supports the electron
- ¹⁰ supply to the donor counter parts compared to nanoparticulate architecture.

In addition to 1-D nanostructures, plasmonic nanoparticles (NPs) also exhibits strong light scattering property due to localized surface plasmon resonance (LSPR), which originates from

- ¹⁵ collective oscillation of surface electrons.^{27, 28} Several plasmonic photocatalysts were tested in photocatalytic decolourization of dyes and realized their substantial stability in the aqueous medium.²⁹⁻³¹ It is found that AuNPs can effectively promote the organic pollutant degradation rate of TiO₂ by inhibiting the
- $_{20}$ recombination of photogenerated electron-hole pairs. 32 , 33 It is anticipated that decorating AuNPs onto TiO₂ surface as an antenna produces light scattering that could effectively promote the light photons at near-UV band, which perhaps enhances the TiO₂ absorption in the same region. 28 , 34 Thus, decorating TiO₂
- $_{25}$ nanostructures with light scattering plasmonic nanoparticles has opened a new means of improving the light absorption activity of TiO_2 in visible light region to improve the photocatalytic efficiency. $^{35, \, 36}$

Though successful immobilization of AuNPs on oxide surfaces

- ³⁰ has been demonstrated previously^{37, 38} they generally suffer from monodispersity, owing to the direct reduction of metal salts on TiO₂, and on the other hand, maintaining the stability and functionality of the hybrid materials remain challenging due to the adverse changes in the chemical environment of the oxide
- ³⁵ support. Particularly, there are no reports on facile one-step assembly of AuNPs onto metal oxide surface. Thus, formulating a straightforward method to assemble stable AuNPs on oxide surfaces seems imperative. Herein, we report a trouble-free onestep assembly technique for immobilizing AuNPs on one-
- ⁴⁰ dimensional N-doped TiO₂ nanowires (N-TiO₂-NWs). We found that the Au/N-TiO₂-NWs exhibit excellent catalytic activity towards photocatalytic decolourization of methyl orange (MO). Furthermore, the synergistic effect of N-doping and localized light scattering centres of AuNPs on the photocatalytic dye ⁴⁵ degradation were elucidated.

Results and discussion

The crystallite phase of pristine and nitridated TiO_2 -NWs were studied using X-ray diffraction spectra (See supporting information Fig. S1). The TiO_2 -NWs show anatase phase and no

- ⁵⁰ rutile phase was observed. The monolayer protected AuNPs with 4-Dimethylaminopyridine (DMAP) were synthesized using a facile phase transfer protocol (See Experimental section). Fig.1ad shows the electron microscopic images of AuNPs, N-TiO₂-NWs, Au/TiO₂-NWs and Au/N-TiO₂-NWs electrodes,
- 55 respectively. Colloidal AuNPs exhibit superior monodispersity with a mean diameter of 4.5±0.5 nm (Fig.1a). The electrophoretic mobility measurements on AuNPs yielded an average ζ-potential

2 | *Journal Name*, [year], **[vol]**, 00–00

of +17.3 mV, which arises from the partial protonation of the exocyclic nitrogen that extend away from the NPs surface toward 60 the solvent. Fig. 1b shows the vertically aligned N-TiO₂-NWs. The vertically aligned TiO₂-NWs and N-TiO₂-NWs have a mean diameter of ~200 nm. Comparing Fig.1 (c) and (d), it is found that the TiO2-NWs (Fig.1c) surface shows lower distribution of immobilized AuNPs than N-TiO₂-NWs (Fig.1d). This may be 65 ascribed to the high affinity of DMAP functionalized Au towards nitrogen atom. It is reported that the isoelectric point (ISP) of TiO_2 surface turned from positive (zeta potential ~15.5 at pH 5.5) to highly negative by nitrogen doping (zeta potential -49.9 at pH 5.5).³⁹ This implies that highly negative ISP value of N-TiO₂ 70 surface allows more positively polarized Au NPs decoration. The surface doping of N carriers at TiO₂-NWs is confirmed by X-ray photoelectron spectroscopy (See supporting information S2). Graciani et al. demonstrated that the surface adhesion energy of Au nanoparticles on TiO2 surface has promoted the nitrogen 75 implantation through improving the electron transfer from the Au 6s levels toward the N 2p levels.40 Similarly, plasma nitridation (Fig.1d) on TiO_2 facilitated the interaction between TiO_2 and AuNPs. Further the high magnification TEM image of Au/N-TiO₂-NW and the elemental mapping confirms the existence of 80 individual elements (Fig.1f) (also see supporting information Fig.

S3 for clear visibility of elemental mapping).

Figure 1: Electron microscope images of (a) DMAP-protected colloidal ⁸⁵ AuNPs (inset: selected area diffraction pattern), (b) N-TiO₂-NWs array, (c) Au/TiO₂-NWs and (d) Au/N-TiO₂-NWs. (e) and (f) shows the high magnification and elemental mapping of Au/N-TiO₂-NWs, respectively.

Figure 2 (a) shows the optical absorbance of TiO_2 -NWs and N-TiO₂-NWs before and after decorating with AuNPs, which

implies that N-doping has shifted the absorbance edge of TiO₂ from UV to visible light wavelength due to the occupancy of Nions in sub-surface states of TiO₂. This forms a sub-band gap above the valence band of TiO₂ and thus, facilitates the visible s light activity.⁴¹ The optical density (OD) of the pure and modified

- TiO₂ electrodes has been estimated as $F(R)^{1/2} = [(1-R^2)/2R]^{1/2}$ in Kubelka-Munk units (Fig.2b).⁴² The optical density of TiO₂ is markedly enhanced at UV as well as visible light wavelength region owing to band gap narrowing and light reflection by N-
- ¹⁰ doping and AuNPs decoration, respectively. Further in order to ensure the band gap narrowing effect at N-TiO₂ NWs, the valence band maximum position was estimated from ultraviolet photoelectron spectroscopy (See supporting information S4). The VBM position is found to be \sim 3.26 eV and \sim 2.69 eV for TiO₂-
- ¹⁵ NWs and N-TiO₂-NWs, respectively. This implies that N-doping carriers are creating sub-bands or defects above the VB of TiO₂.

Figure 2. Optical absorbance spectra of different electrodes [normalized solar spectrum at AM 1.5 is compared in the Figure]; (b) band gap energy of different electrodes estimated from diffused reflectance spectra.

The strong shoulder peak around 530 nm observed (Fig. 2(a) and (b)) for Au/TiO₂-NWs and Au/N-TiO₂-NWs electrode arises from the LSPR of AuNPs. The augmented absorption at Au/N-²⁵ TiO₂-NWs confirms its enhanced visible light activity than Au/TiO₂-NWs. As compared using the solar spectrum at AM 1.5 in Fig.2 (a), the major fraction of light absorbance is from visible light wavelength region than that of UV region. In this line, Au/N-TiO₂-NWs showed large absorbance cross section than ³⁰ undoped TiO₂. According to Du et al, ³³ interaction among AuNPs afford scattering enhancement in the near-UV band, which promotes the TiO₂ absorption enhancement in the same region. The large amount of Au NPs decoration at N-TiO₂ surface (Fig.1d), further enhance the light scattering between AuNPs ³⁵ result high absorbance at near-UV band.

The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution at Au decorated TiO₂-NWs and N-TiO₂-NWs. Fig.3 shows the electric field (E-field) distribution in the perpendicular direction, across ⁴⁰ the AuNPs at TiO₂-NWs and N-TiO₂-NWs surface obtained from FDTD simulations. The permittivity of gold was analyzed using Lorenz-Drude dispersive model.⁴³

$$\varepsilon_r(\omega) = \varepsilon_{r,\infty} + \sum_{m=0}^5 \frac{G_m \Omega_m^2}{\omega_m^2 - \omega^2 + j\omega\Gamma_m} \tag{1}$$

where, $\varepsilon_r(\omega)$ is the relative permittivity at infinity frequency, G_m ⁴⁵ is the strength of each resonance term, Ω_m is the plasma frequency, ω and ω_m is the angular and resonant frequency, respectively, and Γ_m is the damping factor or collision frequency.

Figure 3. Comparison of the FDTD simulated E-field distributions of AuNPs on TiO₂-NWs and N-TiO₂-NWs. The number of AuNPs on TiO₂-NW (dimer with separation) and N-TiO₂-NW (triplet without separation) were assumed based on TEM observation (Figure 1 (d) and (e)).

50

From Fig.3b, E-field distribution shows strong localization of plasmon polaritons between AuNPs and N-TiO₂-NWs than pristine TiO₂-NWs, which resulted in higher optical absorbance at Au/N-TiO₂-NWs electrode. The intense electric field observed s at Au/N-TiO₂-NWs surface suggests that the loading of AuNPs could markedly influence the absorbance cross section at near UV region. In close proximity at N-TiO₂, the hot spot electric field distribution showed ~2nm around the AuNPs surface, predominantly scattering at two adjusting Au dimers. The similar

¹⁰ trend at Au/TiO₂ interfaces has been studied previously.⁴⁴⁻⁴⁶ This enhanced electromagnetic field induced by the LSPR effect is advantageous in photocatalyst for effective e-h⁺ charge separation at TiO₂/electrolyte interfaces, thus drives larger fraction of the photoinduced charge to diffuse to the catalytic surface and ¹⁵ contribute to catalysis.^{47,48}

Voc (V)

 $\label{eq:Figure 4. (a) $I-t$ photocurrent action spectra (under 0.5M Na_2SO_4 aqueous electrolyte, pH=5.9), (b) open-circuit voltage decay plots measured in 0.1 $$M Na_2SO_4$ electrolyte.$

²⁰ To get more insights into the influence of AuNPs on the photoelectrochemical performance, chronoamperometric *I-t* curves were measured (Fig. 4a) under the illumination (100 mWcm⁻²) of visible light at zero bias voltage. The three electrode cell is used in this study. It clearly evince that AuNPs markedly ²⁵ improve the photocurrent generation from ~25 μ Acm⁻² to ~32 μ Acm⁻² in TiO₂-NWs which may be attributed to the light scattering effect. As is discussed above, the AuNPs as light scattering centres promote light harvesting photons at near UV band gap region and thus enhance the electron-hole pair ³⁰ generation at TiO₂. Further, nitrogen doping at TiO₂ found to enhance the photocurrent to ~60 μ Acm⁻². This can be explained on the basis of band gap narrowing effect (Fig. 2b) enabling more visible light photons access to N-TiO₂.

The energy level of Au is located below the CB of TiO₂ and 35 may also participate in the electrocatalytic water oxidation in addition to the Pt counter electrode which overlap with resultant photocurrent of the cell.⁴⁹ This implies that the electron pathway is feasible from TiO2 CB to electrolyte through AuNPs.50 Unprecedentedly, the Au/N-TiO₂-NWs show excellent ⁴⁰ photocurrent generation of about \sim 70 μ Acm⁻². Such drastic improvement (~2.5 fold) in photocurrent density is ascribed to the synergistic effect of strong light scattering effect from AuNPs with the visible light driven contribution from N-doping carriers. In close proximity, photocurrent decay at light off-condition is 45 very sharp in TiO₂-NWs and Au/TiO₂-NWs. In contrast, N-TiO₂-NWs showed exponential photocurrent decay trend that is ascribed to the lower recombination rate of (e^{-}/h^{+}) pair at oxygen vacancy sites. Further, the recombination kinetics at electrode/electrolyte interfaces and the minority carrier life time 50 (e) of different electrodes were qualitatively studied under 0.5M Na₂SO₄ electrolyte using open circuit voltage decay (OCVD) techniques.51

The electron lifetime, τ_n was calculated using Eq.2 and the resultant $\tau_n vs V_{oc}$ spectra is presented at Fig.4b.

$$\tau_{n} = (K_{B}T/e)[(dV_{oc})/dt]^{-1}$$
 (2)

where, V_{oc} is open circuit voltage and other parameters has their own inference.

Figure 5. Nyquist plots measured under dark condition in 0.1 mM aqueous Ru(bpy)₃Cl₂.

60

As anticipated, Fig.4b clearly supports that AuNPs has

Page 5 of 9

markedly improved the electron life time of TiO₂-NWs.³³ Further, τ_n is drastically promoted under N-doping compared to pristine TiO₂-NWs and Au/TiO₂-NWs electrodes. The reaction kinetics and rate of photocatalytic dye degradation process greatly s depends on e⁻ and h⁺ charge transfer through solid–solid interface

- and/or solid–liquid interface. Hence, the feasibility of interfacial charge transfer at electrode/electrolyte interface was evaluated using electrochemical impedance spectra (EIS). Fig.5 shows the Nyquist plots and the excellent theoretical fitting generated using
- ¹⁰ the equivalent circuit model. 0.1 mM aqueous Ru(bpy)₃Cl₂ was used as the electrolyte. The charge transfer resistance (R_{ct}) at electrode/electrolyte interfaces at TiO₂-NWs electrode is ~9573 Ω and is substantially reduced to ~7363 Ω at Au/TiO₂-NWs, due to the formation of schottky junction that promotes the electron
- ¹⁵ transfer at electrode/electrolyte interfaces. Further, the R_{ct} is reduced to ~6226 Ω upon N doping, owing to the hindered recombination pathways at N-TiO₂-NWs as discussed previously. Interestingly, a drastically decreased R_{ct} is observed at Au/N-TiO₂-NWs electrode (~2087 Ω), which is ~4 fold lesser than that
- ²⁰ observed at TiO₂-NWs. The drastic reduction of R_{ct} at electrode/electrolyte interface causes effective space charge layer formation with high C_{μ} =79.9×10⁻⁶ F in this electrode. The larger $C\mu$ at Au/N-TiO₂-NWs electrode than TiO₂-NWs (C_{μ} =4.1×10⁻⁶ F) indicates the high feasibility of charge transfer from electrode
- ²⁵ to electrolyte with reduced recombination which in-turn could facilitate the PC dye degradation performance. The prolonged decay at N-TiO₂-NWs validated the high (e^-/h^+) pair charge separation rate due to the blocked recombination pathways (oxygen vacancies) in TiO₂.²⁰ High carrier lifetime along with the ³⁰ simultaneous improvement in reducing oxygen vacancies at Au/N-TiO₂-NWs is responsible for high photocurrent observed in
- these electrodes (Fig.4a).
- The photocatalytic efficiencies of different electrodes were investigated through measuring the decolourization of methyl ³⁵ orange (MO) under visible light irradiation (λ >400 nm). In the absence of catalyst, MO is stable under visible light irradiation and after introducing the pure and modified TiO₂ nanostructured electrodes the PC degradation rate of MO increased monotonically as a function of the electrode performance. The ⁴⁰ photocatalytic efficiencies of different electrodes were investigated through measuring the decolourization of methyl orange (MO) under visible light irradiation (λ >400 nm). It is apparent from Fig.6 that 92% of MO was degraded at Au/N-TiO₂ NWs within 3 hrs of visible light irradiation, whereas only 73%
- ⁴⁵ decolourization was noticed in the absence of AuNPs. This is ascribed to the existence of strong LSPR between AuNPs and N-TiO₂-NWs. The TiO₂-NWs and Au/TiO₂-NWs exhibit only 44% of decolourization under identical conditions. The catalytic performance of pristine TiO₂-NWs under visible light irradiation
- ⁵⁰ is due to the one-dimensional structure of TiO_2 -NWs.³⁰ It is worth noticing that the Au/TiO_2-NWs show no change in photocatalytic efficiency despite the presence of AuNPs. This could be due to weak interaction between AuNPs and TiO_2-NWs. The degradation of MO follows the pseudo first order kinetics
- ss and the rate constant for Au/N-TiO₂-NWs $(1.1 \times 10^{-2} \text{ min})$ is ~4 folds higher than TiO₂-NWs $(2.9 \times 10^{-3} \text{ min}^{-1})$ and ~2 folds higher than N-TiO₂-NWs $(7.0 \times 10^{-3} \text{ min}^{-1})$.

Figure 6. photocatalytic degradation of MO at various photoelectrodes for different time course [symbols ' Δ ' and ' \bullet ' represents the experiments under dark condition and absence of photocatalyst, respectively].

The mechanism of enhanced photocatalytic degradation of MO is illustrated in Scheme 1, which can be explained as follows: Under visible light irradiation, photogenerated electron-hole pairs 65 are formed in AuNPs due to surface plasmon resonance. The photoexcited electrons at N-TiO₂ conduction band electrons scavenge the oxygen molecules and form highly reactive superoxide radicals (O2-); then on protonation yields HOO radicals. Owing to the formation of schottky barrier at Au/TiO₂ 70 interface, part of the photoelectrons is transferred from CB of TiO₂ to AuNPs. These injected electrons also forming highly reactive superoxide radicals (O_2^{-*}) . The resultant HOO' radicals combines with the trapped electrons forming H₂O₂, finally forming OH^{.52} These active species (OH^{*}) results in the 75 degradation and mineralization of MO. Meanwhile, the holes in TiO₂ VB scavenge the surface adsorbed water to form highly reactive hydroxyl radicals (OH). All these radicals are highly active towards degradation of MO resulting in enhanced photocatalytic degradation rates upon visible light irradiation. ⁸⁰ Similarly, the holes at the valence band of N-TiO₂ effectively reach water forming hydroxyl radicals (OH'). The collective generation of hydroxyl radicals by N-TiO2-NWs and additional superoxide radicals at AuNPs, undoubtedly, enhances the photocatalytic dye degradation performance. It is presumed that 85 the increase in the amount of AuNPs loading could further enhance the photocatalytic dye degradation performance. However, the maximum photocatalytic activity might not be achieved at the highest loading since there exist a trade-off between the improved photocatalytic activities owing to the 90 enhanced charge separation and decreased light absorption by the host photocatalyst due to increased AuNPs loading. One of the critical issues on quantifying the PC performance through decolourization of dye molecules is physical adsorption of MO

Physical Chemistry Chemical Physics Accepted Manuscrip

dye molecules on Au/N-TiO₂ electrode (dye sensitization).^{53, 54} However the quantity of dye molecules physically adsorbed onto Au/N-TiO₂ electrode is extremely lesser than that of photocatalytically bleaching dye molecules (dye loading test ⁵ after experiments is carried out using 0.1 M NaOH solution, not presented in the manuscript). It is anticipated that the analysis of photocatalytic decomposition of colourless substances could be a better choice to preclude the undesirable issues involved in quantifying the PC performance.

10

 $\label{eq:scheme1.} \begin{array}{l} \mbox{Scheme1. Schematic mechanism of organic dye pollutant degradation} \\ & \mbox{on Au NPs decorated N-TiO}_2 \ nanowire. \end{array}$

15 Conclusions

Enhanced visible light activity of high surface area, vertically grown TiO_2 -NWs was demonstrated using N-doping as well as assembling AuNPs using a simple one-step process. The subsequent effect of (a) high charge-pair separation, (b) extended

- ²⁰ visible light absorption driven by N-doping and (c) light scattering effect from AuNPs, fostered Au/N-TiO₂-NWs as futuristic electrodes with superior photocatalytic activity toward organic dye pollutant removal. Our significant findings on enhancing the photocatalytic activity of TiO₂ through N-doping
- ²⁵ and AuNPs immobilization render Au/N-TiO₂-NWs electrode, a promising photoanode for collecting the photoelectrons remotely for simultaneous hydrogen generation or CO₂ reduction.

Experimental Section

30 Photoelectrode fabrication

All materials were purchased from Sigma-Aldrich and were used as received. The TiO_2 -NWs array (~4µm thickness) is directly prepared on FTO substrate using pre-coated ZnO-NWs templates. Detailed description on the preparation of TiO_2 -NWs, N- TiO_2 -

³⁵ NWs and DMAP-protected AuNPs were described in our earlier reports.^{42, 55, 56} Au/TiO₂-NWs and Au/N-TiO₂-NWs were prepared by simply dipping the TiO₂-NWs and N-TiO₂-NWs

45 Characterization

The morphology of electrodes was observed using a field emission scanning electron microscope (FE-SEM, JEOL JSM-7600F) and field emission transmission electron microscope (FE-TEM, JEOL JEM-2100F). The optical absorption and diffused 50 reflectance spectra of the electrodes were recorded in the range of 350-900 nm using a V670 JASCO UV-Vis spectrophotometer. The electrochemical impedance (EIS) and photocurrent vs time (I-t) were recorded using three electrode electrochemical cells with a FRA-equipped PGSTAT-30 from Autolab. The EIS 55 measurements were carried out under dark condition with applying a 20 mV AC signal and scanning in the frequency range between 400 kHz and 0.1 Hz at 0.5V applied voltage.⁵⁷ The (*I-t*) measurements were performed at zero applied potential. The aqueous 0.5M Na₂SO₄ electrolyte was used as electrolyte. The 60 photocurrent measurements were recorded in 1 sun condition (100mWcm⁻²) with the visible light irradiation using a solar simulator with a 300 W xenon arc-lamp (Newport). The light intensity was calibrated using a silicon solar cell (PV measurements, Inc.)The permittivity of gold was analyzed using 65 Lorenz-Drude dispersive model with the aid of finite difference

time domain method (FDTD) simulation (Optiwave software package).⁵⁸

Photocatalytic activity measurements

A compact Xe light source with an emission of $\lambda > 350$ nm ⁷⁰ was used (ASAHI Spectra Co., Ltd, Japan, model HAL 320) as a source for visible light radiation. The light intensity was adjusted to 75 mWcm⁻² using Si-photodiodes (Asahai Spectra, model CS20). The distance between the visible light source and the photoelectrode was fixed at 5 cm in the photoelectrochemical ⁷⁵ reactor. Methyl orange (MO) dye was the model pollutant used to evaluate the PC performance of the photoelectrodes. The initial concentration of MO was 500 mg L⁻¹. The volume of MO used is 10 mL. A UV-Vis spectrophotometer (V670 JASCO) was used to analyze the concentration of MO during the course of ⁸⁰ photodegradation.

Acknowledgements

This work was supported by the Global Research Laboratory (GRL) Program (K20704000003TA050000310) and Korea through the National Research Foundation of Korea (NRF) ⁸⁵ funded by the Ministry of Science. This research was also supported by the Korea Center for Artificial Photosynthesis (KCAP, NRF-2012-M1A2A2671834), the Priority Research Centers Program (2011-0031407). One of the authors P.S. acknowledges the financial support from Japan Society for the ⁹⁰ Promotion of Science (JSPS) for providing a Postdoctoral Research Fellowship.

Ì	5	
	U,	
	\mathbf{D}	
1	\geq	
	O	
	1	
Ļ		
	0	
	D	
	C	
	ŏ	
	J.	
	()	
	0	
	6	
ſ		
	_	
	\mathbf{D}	
	0	
	0	
	ž	
	0	
	>	
		ĺ
1	H	
	5	
	0	
	Ē	
	Q	
	0	
	S	
	>	

Notes and references	60	Cui, J. W. Feng and Y. J. Zhu, J Renew Sustain Ener, 2012, 4.
^a Department of Energy Engineering, Hanyang University, Seoul 133- 791, Korea. E-mail:upaik@hanyang.ac.kr; kangys@hanyang.ac.kr		J. H. Park, S. Kim and A. J. Bard, <i>Nano Letters</i> , 2005, 6 , 24-28.
^b Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea.	23.	A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro and V. Dal Santo, <i>Journal</i>
^c Photocatalysis International Research Center, Tokyo University of Sainea 2641 Yamazaki Noda Chiba 278 8510 Japan	65	of the American Chemical Society, 2012, 134 , 7600-7603.
^d Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756	24.	X. Chen, L. Liu, P. Y. Yu and S. S. Mao, <i>Science</i> , 2011, 331 , 746-750.
(Korea)	25.	P. Sudhagar, V. Gonzalez-Pedro, I. Mora-Sero, F. Fabregat-
\dagger Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b00000x/	70	Santiago, J. Bisquert and Y. S. Kang, <i>Journal of Materials Chemistry</i> , 2012, 22 , 14228-14235.
‡ These authors contributed equally to this work.	26.	P. Sudhagar, T. Song, D. H. Lee, I. Mora-Seró, J. Bisquert, M. Laudenslager, W. M. Sigmund, W. I. Park, U. Paik and Y. S.
1. A. Fujishima and K. Honda, Nature, 1972, 238, 37-38.		Kang, The Journal of Physical Chemistry Letters, 2011, 2,
2. J. R. Bolton, Science, 1978, 202, 705-711.		1984-1990.
3. A. Fujishima, X. Zhang and D. A. Tryk, International Journal of	75 27.	P. Christopher, H. Xin, A. Marimuthu and S. Linic, <i>Nature</i>
Hydrogen Energy, 2007, 32 , 2664-2672.	• •	<i>Materials</i> , 2012, 11 , 1044-1050.
4. A. Kudo and Y. Miseki, Chemical Society Reviews, 2009, 38, 253-278.	28.	A. A. Harry and P. Albert, <i>Nature Materials</i> , 2010, 9, 205-
5. GJ. Chee, Y. Nomura, K. Ikebukuro and I. Karube, Biosensors and	20	
Bioelectronics, 2005, 21, 67-73.	29.	I. Paramasivam, J. M. Macak and P. Schmuki,
6. A. Devadoss, P. Sudhagar, S. Das, S. Y. Lee, C. Terashima, K. Nakata,	80	Liectrochemistry Communications, 2008, 10 , 71-75.
A. Fujishima, W. Choi, Y. S. Kang and U. Paik, ACS Applied	30.	and Interface Science 2013 403 22 28
Materials & Interfaces, 2014.	31	I M Arabatzis T Stergionoulos D Andreeva S Kitova S
7. I. Tooru, F. Akira, K. Satoshi and H. Kenichi, <i>Nature</i> , 1979, 277 , 637-	51.	G. Neophytides and P. Falaras, <i>Journal of Catalysis</i> , 2003,
638.	85	220 . 127-135.
8. W. Rong, H. Kazuhito, F. Akira, C. Makota, K. Elichi, K. Atsushi, S.	32.	A. Primo, A. Corma and H. Garcia, Physical Chemistry
Millsunide and W. Tosniya, <i>Nature</i> , 1997, 388 , 451-452.		Chemical Physics, 2011, 13, 886-910.
5030	33.	L. Du, A. Furube, K. Yamamoto, K. Hara, R. Katoh and M.
10 I Kim D Monllor-Satoca and W Choi Energy &		Tachiya, The Journal of Physical Chemistry C, 2009, 113,
Environmental Science. 2012. 5 . 7647-7656.	90	6454-6462.
11. P. Lianos, Journal of Hazardous Materials, 2011, 185, 575-	34.	SY. Du and ZY. Li, Opt. Lett., 2010, 35, 3402-3404.
590. 12 I Choi P Sudhagar P Lakshminathirai I W Lee A	35.	Z. Zhang, L. Zhang, M. N. Hedhili, H. Zhang and P. Wang, <i>Nano Letters</i> , 2013, 13 , 14-20.
Devadoss S Lee T Song S Hong S Fito C Terashima T	36.	D. B. Ingram and S. Linic, Journal of the American Chemical
H Han, J. K. Kang, A. Fujishima, Y. S. Kang and U. Paik	95	Society, 2011, 133, 5202-5205.
<i>RSC Advances</i> , 2014, 4 , 11750-11757.	37.	S. Oros-Ruiz, R. Zanella and B. Prado, <i>Journal of Hazardous Materials</i> , 2013.
13. P. Lianos, Journal of Hazardous Materials, 2011, 185, 575-	38.	E. Pedrueza, J. L. Valdés, V. Chirvony, R. Abargues, J.
14 S. Goorgo, S. Dokhrol, Z. Li, P. L. Hondarson, T. Xia, L. Li, L.		Hernández-Saz, M. Herrera, S. I. Molina and J. P. Martínez-
I4. S. George, S. Pokiller, Z. Ji, B. L. Heinderson, T. Aid, L. Li, J. I. Zink, A. F. Nel and I. Mödler, <i>Journal of the American</i>	100	Pastor, Advanced Functional Materials, 2011, 21, 3502-3507.
Chamical Society 2011 133 11270-11278	39.	M. Miyauchi, A. Ikezawa, H. Tobimatsu, H. Irie and K.
15 Z Yao F Jia S Tian C Li Z Jiang and X Bai ACS		Hashimoto, Physical Chemistry Chemical Physics, 2004, 6,
Applied Materials & Interfaces 2010 2 2617-2622		865-870.
16. H. Jie, H. Park, K. B. Lee, H. J. Chang, J. P. Ahn and J. K.	40.	J. Graciani, A. Nambu, J. Evans, J. A. Rodriguez and J. F.
Park, Surf Interface Anal, 2012, 44, 1449-1452.	105	Sanz, Journal of the American Chemical Society, 2008, 130,
17. H. Zhu, J. Tao and X. Dong, The Journal of Physical		12056-12063.
Chemistry C, 2010, 114, 2873-2879.	41.	H. Irie, Y. Watanabe and K. Hashimoto, Journal of Physical
18. H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk, T.		<i>Chemistry B</i> , 2003, 107 , 5483-5486.
Yokoyama and K. Hashimoto, The Journal of Physical	42.	P. Rodenas, T. Song, P. Sudhagar, G. Marzari, H. Han, L.
Chemistry C, 2009, 113, 10761-10766.	110	Badia-Bou, S. Gimenez, F. Fabregat-Santiago, I. Mora-Sero, J.
19. M. Liu, X. Qiu, M. Miyauchi and K. Hashimoto, Journal of		Disqueri, U. Paik and Y. S. Kang, <i>Aavanced Energy Materials</i> , 2012 3 176 192
the American Chemical Society, 2013, 135, 10064-10072.	12	2013, J, 1/0-102. A D Rakić A B Diuričić I M Elazor and M I Majawaki
20. P. Sudhagar, K. Asokan, E. Ito and Y. S. Kang, <i>Nanoscale</i> ,	ту.	Applied Optics, 1998, 37 , 5271-5283.

- 15 ‡ These authors contributed equally to this
 - 1. A. Fujishima and K. Honda, Nature, 197
 - 2. J. R. Bolton, Science, 1978, 202, 705-71

5 Seoul 133-791, Korea.

10 (Korea)

20

- 3. A. Fujishima, X. Zhang and D. A. T Hydrogen Energy, 2007, 32, 266
- 4. A. Kudo and Y. Miseki, Chemical Society
- 5. G.-J. Chee, Y. Nomura, K. Ikebukuro Bioelectronics, 2005, 21, 67-73.
- 6. A. Devadoss, P. Sudhagar, S. Das, S. Y.
- A. Fujishima, W. Choi, Y. S. K 25 Materials & Interfaces, 2014.
 - 7. I. Tooru, F. Akira, K. Satoshi and H. Ke 638.
- 8. W. Rong, H. Kazuhito, F. Akira, C. Ma
- Mitsuhide and W. Toshiya, Natu 30
- 9. E. Stathatos, T. Petrova and P. Lianos 5030.
- 10. J. Kim, D. Monllor-Satoca Environmental Science, 2012, 5
- P. Lianos, Journal of Hazardov 35 11. 590.
- 12. J. Choi, P. Sudhagar, P. Lak Devadoss, S. Lee, T. Song, S. H H. Han, J. K. Kang, A. Fujish RSC Advances, 2014, 4, 11750-40
- 13. P. Lianos, Journal of Hazardov 590.
- 14. S. George, S. Pokhrel, Z. Ji, B. I. Zink, A. E. Nel and L. Mä Chemical Society, 2011, 133, 11 45
- Z. Yao, F. Jia, S. Tian, C. L 15. Applied Materials & Interfaces,
- 16. H. Jie, H. Park, K. B. Lee, H. Park, Surf Interface Anal, 2012,
- 50 17. H. Zhu, J. Tao and X. Don Chemistry C, 2010, 114, 2873-22
- 18. H. Irie, K. Kamiya, T. Shibanu Yokoyama and K. Hashimote Chemistry C, 2009, 113, 10761-
- 55 19. M. Liu, X. Qiu, M. Miyauchi the American Chemical Society,
- 20. P. Sudhagar, K. Asokan, E. Ito 2012, 4, 2416-2422.
- 115 44. 21. Q. Sun, J. Zhang, P. Q. Wang, J. Zheng, X. N. Zhang, Y. Z.

Z. Liu, W. Hou, P. Pavaskar, M. Aykol and S. B. Cronin,

60

70

75

85

90

95

100

105

110

Nano Letters, 2011, 11, 1111-1116.

45.	Z. Zhan, J. An, H. Zhang, R. V. Hansen and L. Zheng, ACS
	Applied Materials & Interfaces, 2014, 6, 1139-1144.
46.	Z. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima,
5	Journal of the American Chemical Society, 2013, 136, 458-
	465.

47. Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B. C. 65 Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Y.-J. Hsu and Y. Li, Nano Letters, 2013, 13, 3817-3823.

10 48. J. Qiu, G. Zeng, P. Pavaskar, Z. Li and S. B. Cronin, Physical Chemistry Chemical Physics, 2014, 16, 3115-3121.

49. W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol and S. B. Cronin, ACS Catalysis, 2011, 1, 929-936.

50. X. Zhang, Y. L. Chen, R. S. Liu and D. P. Tsai, Reports on Progress in Physics, 2013, 76. 15

51. A. Zaban, M. Greenshtein and J. Bisquert, ChemPhysChem, 2003, 4, 859-864.

52. X. Z. Li and F. B. Li, Environmental Science and Technology, 2001, 35, 2381-2387.

54. X. Yan, T. Ohno, K. Nishijima, R. Abe and B. Ohtani, Chemical Physics Letters, 2006, 429, 606-610.

25 55. H. Han, T. Song, J.-Y. Bae, L. F. Nazar, H. Kim and U. Paik, Energy & Environmental Science, 2011, 4, 4532-4536.

56. A. Devadoss, C. Dickinson, T. E. Keyes and R. J. Forster, Analytical Chemistry, 2011, 83, 2383-2387.

57. P. Sudhagar, V. González-Pedro, I. Mora-Seró, F. Fabregat-Santiago, J. Bisquert and Y. S. Kang, Journal of Materials 30 Chemistry, 2012, 22, 14228-14235.

58. A. D. Rakic, A. B. Djuri?ic, J. M. Elazar and M. L. Majewski, Appl. Opt., 1998, 37, 5271-5283.

35

40

45

50

55

5

Graphical abstract

N-TiO₂

Maximizing the Au nanoparticle decoration on TiO_2 nanowire through nitrogen doping for simultaneous enhancement in visible light scattering and electron-hole charge separation

15

10