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 A new exchange-correlation functional free of delocalization and static correlation errors 
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Abstract 

Predicting the correct binding curves of H2
+
 and H2 systems presents a great challenge in 

current applications of electronic density functional theory. Here we report a new functional for 

the exchange-correlation energy based on the weighted density approximation and the classical 

mapping method. With the exact sum rule for the exchange-correlation hole and accurate 

correlation functions of uniform electrons as the input, the new functional is free of 

delocalization and static correlation errors. It yields the exact results for any one-electron 

systems and the correct asymptotic limit of the binding energy between hydrogen atoms.  
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Since proposed in the 1960s,
1, 2

 the Kohn-Sham density functional theory (KSDFT) has 

evolved into one of the most powerful computational tools for predicting the properties of multi-

body electronic systems.
3-14

 The main idea behind KSDFT is to construct a virtually non-

interacting reference system that reproduces the electronic structure of the target system of 

practical concern. While the mathematic procedure is formally exact, KSDFT calculations hinge 

on various approximations for the so-called exchange-correlation energy, Exc[], which accounts 

for multi-body correlation effects arising from addition of electrostatic interactions to the 

reference. Although KSDFT has been remarkably successful, all existing functionals fail to 

capture the asymptotic limit of binding energy even for systems as simple as H2
+
 and H2.

15
 In this 

work, we introduce a new exchange-correlation functional by utilizing the exact sum rule for the 

exchange-correlation hole and accurate radial distribution functions of uniform electron gases at 

all densities. The new functional is free of delocalization and static correlation errors and yields 

the correct binding behavior. The numerical performance of the new functional has been 

calibrated with exact results for the hydrogen test set (HTS). 

Formulation of an accurate functional for Exc[] has been a perennial pursuit in the 

theoretical development of KSDFT.
16-21

 Up to now, popular exchange-correlation functionals are 

almost exclusively based on the local density approximation (LDA) plus corrections with various 

forms of the generalized gradient approximation (GGA).
4-6

 LDA represents Exc[] in terms of 

that corresponding to a uniform electron gas (UEG) at the local density: 

 LDA UEG

xc xc[ ] [ ( )]dE     r r   (1) 
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 3 

Notwithstanding its simplicity, LDA performs surprisingly well for many electronic systems.
3
 

One possible reason for such good performance is that LDA obeys the exact sum rule for the 

exchange-correlation hole 
  
r

xc
(r

1
,r

2
) 22

  

 
  

r
xc

(r
1
,r

2
)dr

2ò = -1  (2) 

While this important sum rule is preserved in various improvements of LDA, often through 

introduction of empirical parameters, one major limitation of existing exchange-correlation 

functionals, LDA and its GGA modifications included, lies in the erroneous inclusion of the self-

interaction energy, i.e., the interaction of an electron with itself.
23

 Unless the exchange-

correlation energy exactly cancels the spurious electron-electron interaction, KSDFT is deemed 

to have the delocalization error as plainly manifested in one-electron systems such as H2
+
.  

 The exchange-correlation energy and the exchange correlation hole are formally related 

through, in atomic units (a.u.),   

 xc
xc

( ) ( , ')1
d d '

2 | ' |
E

 



r r r

r r
r r

  (3) 

According to the adiabatic connection for the exchange-correlation energy,
22, 24, 25

 the exchange-

correlation hole is given by  

 
   
r

xc
(r,r ') = r(r ')h(r,r ';l)dl

0

1

ò º r(r ')h(r,r ')  (4) 

where 
   h(r,r ';l) represents the two-body density correlation function of a reference system with 

the electron density profile identical to that of the real system but with the Coulomb potential 

scaled by a factor of  0 £ l £1 .  When  l = 0, we have non-interacting Fermions; and  l = 1 

corresponds to the real system under consideration. Eq.(4) can be derived from a functional 
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 4 

integration of the exchange-correlation energy with respect to the two-body Coulomb potential 

between electrons.  

In terms of correlation functions, LDA amounts to the approximation of the exchange-

correlation hole with that of a uniform system: 26
  

 
(LDA)

xc ( , ') ( ) (| ' |; ( ))h   r r r r r r   (5) 

where 
  
h(r) = h(r,l)dl

0

1

ò  
is the average density correlation function of a uniform electron gas 

with local density 
  r(r) . With an accurate expression for the correlation functions of uniform 

electron systems, LDA naturally satisfies the sum rule given by Eq. (2). In conventional 

weighted density approximations (WDA), 
27-30

 the average pair correlation function of the 

inhomogeneous electron gas is expressed in terms of that a uniform system with a locally 

weighted density  

 UEG( , ') [| ' |; ( )]h h  r r r r r   (6) 

In Eq.(6), the weighted density, ( ) r , is defined by the exchange-correlation sum rule, viz. 

Eq.(2), and the density correlation functions of uniform electron systems are typically obtained 

from either the random phase approximation 
3
 or quantum Monte Carlo simulations (QMC)

31
. 

Recently, empirical means has also been proposed for best representation of the pair correlation 

functions of uniform electrons.
32

 Eqs.(6) and (2) result in a complicated expression for the 

exchange-correlation potential  
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 5 

 

UEG UEG

xc 1 1 1
1 1

1

UEG UEG

1 2 12 1 1 1
1 2UEG

13 112 1
3 3

1

(| |, ( )) (| |, ( ))
( ) ( ) d

( ) 2 | |

( ) ( ) ( , ( )) (| |, ( ))1
d d

( , ( ))2 ( )
( ) d

( )

xc

E h h
v

h r h

h rr

  




   






  
 



 











r r r r r r
r r r

r r r

r r r r r r
r r

rr
r r

r

  (7) 

 Whereas introduction of the weighted density improves the numerical performance of 

LDA, KSDFT calculations based on Eq. (7) are computationally much more demanding in 

comparison to those based on GGA.  More important, Eq.(7) gives an incorrect asymptotic limit 

for the exchange-correlation potential, i.e., it predicts xc ( ) 1/ 2v rr  instead of   1/ r  as  r®¥. 

This inconsistency is due to the lost of symmetry between r and r’ in equation (6), which has 

once been treated by some specific methods. 29, 30
 We can avoid both limitations using a simple 

weighted density  approximation 
27, 28

  

 

   

v
xc

(r) » r(r
1
)

h UEG (|r - r
1
|,r(r))

| r - r
1
|

dr
1ò   (8) 

where 
  r(r)  is determined from the sum rule the exchange-correlation hole 

 
   
r

xc
(r,r ') » r(r ')hUEG (|r - r ' |;r(r))  (9) 

Apparently, Eq.(8) satisfies the asymptotic limit at large  r  and is computationally much simpler. 

The detailed algorithm of this method is presented in the supporting information. 

To calculate the weighted density at each position, we need an efficient way to predict the 

radial distribution functions (RDFs) of uniform electrons at all densities. Toward that end, we 

use the classical mapping method.
33, 34

 As shown in our previous work,
35, 36

 classical mapping is 

computationally efficient and numerically accurate for predicting the RDFs in good agreement 

with QMC.  For example, Figure 1 shows the theoretical predictions of   g(r) º h UEG (r) +1 for 
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 6 

three uniform electron gases with the Wigner-Seitz radius 
  
r
s
= (3/ 4pr)-1/3 =  1, 10 and 40 a.u., 

representing high, medium and low electron densities, respectively. While these functions look 

similar in dimensionless length scales (Fig 1a), we like to emphasize that they are drastically 

different in absolute units (Fig 1b). For rs = 40 a.u., g(r) is essentially 0 at the range of r < 10 a.u.. 

As discussed below, the disappearance of g(r) at low density is critically important to describe 

the asymptotic behavior of chemical binding energy.  

For systems containing only a single electron (such as H2
+
 binding), there is no electron-

electron interaction. In this case, the exchange-correlation energy must cancel the Coulomb 

interaction 

 xc eeE E    (10) 

Conventional functionals for xcE  do not exclude the self-interaction because Eq.(10) is not 

satisfied. By contrast, as demonstrate below, our new functional is exact for any one-electron 

systems. Figure 2 shows that the new functional is able to reproduce the whole binding curve of 

H2
+ 

predicted by the Schrödinger equation. The H2
+ 

system has been a benchmark to calibrate the 

delocalization error of new exchange-correlation functionals.   

The perfect match of the results from the KSDFT and the Schrödinger equation for one-

electron systems is not a coincidence. For one-electron systems, the electron density satisfies the 

normalization condition 

 ( )d 1  r r   (11) 

 Comparing Eq.(11) with the sum rule 
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 7 

 
   

r(r ')h UEG (|r - r ' |,r(r))dr 'ò = -1  (12) 

we find that the only solution for Eq.(12) is 
  r(r) = 0. Because    h

UEG (r;r(r) = 0) = -1, Eq.(10) is 

exactly satisfied and thus the KSDFT calculation leads to the correct results. The conventional 

exchange-correlation functionals, including previous WDA methods 29, 32
, fail for one-electron 

systems because they do not automatically capture the correct behavior of xc ( , ')h r r , viz. 

xc ( , ') 1h  r r , at the one-electron limit. Apparently, the classical mapping method provides 

accurate descriptions of the pair correlation functions at the low density limit, leading to the 

exact prediction of one electron system.  

For the H2 system, the asymptotic limit of binding energy is related to the spin 

degeneracy of electrons, i.e., due to the static correlations. Such degeneracy effect is not 

automatically captured in conventional KSDFT calculations. However, our new exchange-

correlation functional is immune to the statistic correlation fallacy. Figure 3 shows the binding 

energy for H2 from this work in comparison with those from alternative methods in the literature. 

As indicated by Cohen et al., 15
 LDA, Becke, three-parameter, Lee-Yang-Parr (B3LYP) and 

Hatree-Fock (HF) all predict erroneous binding energy at large separation. The static correlation 

error arises from the degeneracy of the spin states [ ,0]  and 
1 1

[ , ]
2 2
   for an isolated H atom. 

For the H2 system, the electron spin densities are always identical, ( ) ( ) 
 

r r . At infinite 

separation, each H atom has the energy of 
1 1

[ , ]
2 2

E   . Because we consider two isolated H 

atoms, each with only one spin type of energy [1 ,0 ]E   , as the reference state for H2 binding, 

the asymptotic limit of binding energy should be 
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 8 

 
1 1

( ) 2 [ , ] [1 ,0 ] 0
2 2

E r E E
 

          
 

  (13) 

Eq.(13) is not automatically satisfied in conventional KSDFT calculations, leading to the 

incorrect asymptotic limit for the binding energy.  

Our new functional captures the correct asymptotic limit of the H2 binding energy 

because the classical mapping allows us to calculate the density correlation function accurately at 

very low electron densities. In classical mapping 
37

, the fractional spin effect is accounted for in 

the average pair correlation function 
UEG

xc ( , , )h r   :  

 

2 22
UEG UEG UEG UEG

xc

1 1 1
( ; , ) ( ; , ) ( ; , ) ( ; , )

2 2 2
h r h r h r h r

  
       

  

     
     
   

  (14) 

where  is the spin polarization. When 0  , the asymptotic limits for 
UEG ( , , )h r  


 , 

UEG ( , , )h r  


 , and 
UEG ( , , )h r  


 become identical and independent of . As a result, the low-

density limit of 
UEG

xc ( , , )h r    is spin independent and approaches the exact result 

 
UEG

xc
0

lim ( , , ) 1h r


 


    (15) 

As discussed above for one-electron systems, a combination of Eq.(15) with the exchange-

correlation sum rule, Eq.(2), leads to the exact results for both 
1 1

[ , ]
2 2

E    and [1 ,0 ]E   . In 

other words, our new functional is free from the static correlation error due to the theoretical 

construction rather than coincidence or artifact.   

In spite of the correct asymptotic behavior, we must admit that our new functional yields 

the well depth of the binding curve not as accurate as that from B3LYP. The numerical error is 
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 9 

introduced mainly in the approximation of the density correlation function of inhomogeneous 

systems, xc ( , ')h r r , with those of reference uniform systems, 
   
h

xc

UEG (r,r) . We believe that the 

numerical performance may be further improved by using a more sophisticated approximation 

for xc ( , ')h r r . Figure 4 presents the exchange-correlation hole calculated from Eq. (4) and (6). 

The results may be compared with those from alternative methods (e.g., Figures 5 and 6 in 

reference 
29

). We find that the uniform density approximation overestimates xc ( , ') r r  when 

| ' |r r  is large, implying too strong long-range correlations. At rH-H = 1.4 bohr, xc ( , ') r r  from 

this work is similar to that from LDA (Fig 4a); while at rH-H = 5 bohr, our result is close to that 

by Giesbertz et al. using the SX version of WDA. 29
 The difference in the exchange-correlation 

hole explains why our prediction of the binding energy is much better than that by Giesbertz et al. 

29
 

 In summary, we have proposed a new functional for the exchange-correlation energy 

based on the weighted density approximation and classical mapping. The new functional is free 

of the delocalization and static correlation errors commonly suffered in alternative methods. We 

have tested the numerical performance of the new functional for predicting both H2
+
 and H2 

binding curves, a standard test set for calibrating the strong correlations. For H2
+
, it exactly 

reproduces the whole binding curve; while for H2, the theory reduces the correct asymptotic limit 

when r  .  
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Figure 1. Radial distribution functions of three uniform electron gases with different densities. (a) 

distance in units of the Wigner-Seitz radius 
 
r

s
 ; (b) in atomic units, bohr.     
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Figure 2. Binding energy curves (atom units) for H2
+
 calculated from different versions of 

KSDFT. B3LYP, LDA and exact results are from reference 
15

. The binding length is referred to 

the center-to-center distance between the two H atoms. 

 

 

Page 12 of 15Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



 13 

0 2 4 6 8
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3


E

Binding length

 CM-WDA

 LDA

 B3LYP

 HF

 Exact

(a)

 

0 2 4 6 8
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2


E

Binding length

 CM-WDA

 Giesbertz et al. h
1

 Giesbertz et al. h
2

 Exact

(b)

 

Figure 3. Binding energy curves for H2 calculated from different methods (atom units). (a) 

Comparison of results from this work and those from alternative methods; 15
 (b) Comparison of 

the binding energy curve from this work with those from several recent WDA methods. 
29
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Figure 4 Exchange-correlation hole for the H2 system with binding length (a) 1.4 bohr and (b) 5 

bohr. The reference electron is set at 0.3 bohr to the left of the +z nucleus along z axis, i.e. (a) r’ 

= (0 ,0 ,0.4); (b) r’ = (0 ,0 ,2.2).  
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