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Two-dimensional films of semiconductors can be patterned into super-lattices with a nanoscale periodicity, using top-down

(lithography) or bottom-up approaches. In particular, square and honeycomb lattices of semiconductor nanocrystals have been

recently synthesized using oriented attachment. We have performed atomistic tight-binding calculations of the conduction bands

of super-lattices of CdSe. We consider spherical nanocrystals connected by horizontal cylinders and we investigate the band

structure between two extreme limits, the uniform two-dimensional film, and the assembly of disconnected nanocrystals. Using

this model system, we explain how rich band structures emerge from the periodic nano-geometry, including Dirac cones and non-

trivial flat bands in honeycomb lattices. The possibility to build non-conventional band structures using multi-orbital artificial

atoms (nanocrystals) opens up new prospects.

1 Introduction

Two-dimensional (2D) semiconductors grown for example by

molecular beam epitaxy are widely employed to fabricate

diode lasers, High Electron Mobility Transistors (HEMT) or

photo-detectors.1 In addition, the 2D electron gases which can

be formed in these structures exhibit very interesting physical

properties2,3 like the quantum Hall effect.4 Recently, the inter-

est for 2D materials has been considerably renewed thanks to

the discovery of graphene5 which motivated research in differ-

ent directions, for example on silicene6 and MoS2.7 Graphene

and silicene have a honeycomb lattice and therefore present in

their band structure very interesting features like Dirac cones

which have no counterpart in usual 2D semiconductors. In-

spired by these discoveries, it was proposed to impose a hon-

eycomb pattern on a 2D semiconductor by using lithography

or arrays of metallic gates as, in analogy with graphene,8–11

linear E(~k) relationships were predicted close to the K points

in the Brillouin zone.

Band engineering of 2D semiconductor materials is also

thinkable following a bottom-up approach since the build-

ing blocks are already available in the form of semiconductor

nanocrystal (NC) quantum dots. Semiconductor NCs are char-

acterized by discrete energy levels close to their bandgap. It

is therefore tempting to assemble these artificial atoms to fab-

ricate new materials with non-conventional properties. As a

matter of fact, NC solids obtained by self-assembly have been

reported many times.12–18 However, the NCs in these assem-

blies are separated by an organic or inorganic barrier, resulting

a IEMN - Dept. ISEN, UMR CNRS 8520, Lille, France; Tel: +33 3 20 30 40

53; E-mail: christophe.delerue@isen.fr

in a weak coupling between the NCs which prevents the for-

mation of true electronic bands. A real breakthrough in the

field came from the discovery of the oriented attachment of

NCs19–25 which produces atomically-coherent semiconductor

nanostructures which can be lead, in the best cases, to single-

crystalline super-lattices. Remarkably, square24,25 and honey-

comb24 lattices of PbSe NCs have been recently synthesized

by this technique and their transformation into super-lattices

of CdSe NCs by a Cd-for-Pb cation exchange has been demon-

strated.24 Calculations that we have performed recently for

square26 and honeycomb27 lattices of (PbSe) CdSe NCs pre-

dict band structures which strongly deviate from that of gen-

uine 2D semiconductors.

Thus, we are in a situation where top-down and bottom-

up approaches are available to produce semiconductor super-

lattices in which the dimensionality can be varied from 2D

(uniform sheets) to 0D (arrays of weakly coupled NCs). Our

objective in this paper is to explore fundamentally the evolu-

tion of the band structure between these two limits. In Refs.

26,27, we investigated lattices formed by the oriented attach-

ment along 〈100〉 (square) or 〈110〉 (honeycomb) facets of

NCs in the shape of truncated nanocubes. However, the ex-

act shape of the NCs after oriented attachment and cation

exchange is not exactly known. In situ Transmission Elec-

tron Microscopy (TEM) experiments28 and atomistic simula-

tions29 show that important atomic reorganization takes place

during the attachment process. Therefore, in this paper, we

consider square and honeycomb lattices with another structure

consisting of spherical NCs connected by horizontal cylinders.

Such a geometry can be seen not only as a model system but

also is compatible with TEM observations of the lattices after
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cation exchange.24 Another interest of this geometry is that

we can tune the electronic structure continuously between two

extreme limits, the isolated NCs and the uniform 2D film, al-

lowing to interpret its evolution in a simple manner. We will

show that patterning 2D semiconductors into square or honey-

comb super-lattices leads to non-conventional band structures,

beyond what was anticipated in early works.8–11 In particu-

lar, we will understand how Dirac cones and non-trivial flat

bands can be formed under the honeycomb nano-geometry.27

In the following, we focus our study on the conduction bands

of CdSe super-lattices which exhibit a very rich behaviour, far

from the simple isotropic conduction band of bulk CdSe.

2 Methodology

The band structure of square and honeycomb super-lattices

of CdSe is explored through atomistic tight-binding calcula-

tions. In accordance with experimental observations,24 the

atoms inside the NCs and the cylinders are positioned at the

same atomic sites as in bulk zinc-blende CdSe. Each atom is

described by a double set of sp3d5s∗ atomic orbitals including

the spin degree of freedom. The orbitals are assumed to be

orthogonal and the matrix elements between two orbitals are

restricted to first nearest-neighbor interactions. The Hamil-

tonian is written as a function of parameters (given in Ref.

26) which are adjusted in order to get the best band structure

for bulk CdSe compared to ab initio calculations and experi-

mental data.26 There is no free parameter in the calculations.

Spin-orbit coupling is included even if its influence is weak

in the conduction band of CdSe. Surfaces are saturated by

pseudo-hydrogen atoms to avoid gap states induced by surface

dangling bonds. Due to the large size of the systems that we

have considered (up to 104 atoms per unit cell), the numerical

methods described in Ref. 30 are used to calculate near-gap

states. Throughout the paper, the zero of energy corresponds

to the top of the valence band of bulk CdSe.

Self-energy corrections are known to provide noticeable

corrections to band structures of semiconductors.31–33 In bulk,

they mainly result in a rigid shift of conduction bands with re-

spect to valence bands. This effect is implicitly included in our

tight-binding parameters fitted on the experimental bandgap.

In quantum confined systems, additional size-dependent self-

energy corrections must be considered32,33 but, once again,

they mainly induce a rigid shift of empty levels with respect

to occupied ones.33,34 Therefore, in the present work, since

we are not interested in the absolute position of the conduc-

tion bands of the super-lattices, self-energy corrections are ne-

glected. Similarly, optical properties (and therefore excitonic

effects) are not considered here.

3 Square lattices

We consider square lattices built from spherical NCs of diam-

eter D (Fig. 1a). We set the centre-to-centre distance a be-

tween nearest-neighbour NCs equal to D, i.e., the spheres are

tangential. Between each pair of neighbours, we add a cylin-

der of atoms that serves as a bond. The cylinders are oriented

along 〈100〉 crystallographic directions. All Cd and Se atoms

contained in the spheres and the cylinders are included in the

structure. Depending on the size, it results in slightly facetted

shapes (Fig. 1b). When we change the cylinder diameter d

from 0 to D, we will see that we vary considerably the cou-

pling between NCs. The number (Nat) of atoms in a plane

perpendicular to a cylinder is approximately equal to 4.3d2

where d is in nanometer.

Typical conduction band structures are presented in Fig. 1e-

g. They are composed of successive mini-bands, a quite

general behaviour in super-lattices, for example made by the

successive growth of thin semiconductor wells and barriers.3

However, we will see that the nanoscale patterning offers

much more possibilities of band engineering.

In order to interpret these results, it is worth considering the

super-lattices as though they were obtained by a top-down ap-

proach, starting from bulk CdSe characterized by an isotropic

conduction band (red dotted line in Fig. 1c). We first form

a 2D film and, second, a super-lattice. In a uniform film of

CdSe, the quantum confinement along one dimension leads to

the formation of subbands whose dispersion is presented in

the extended zone scheme in Fig. 1c. When a square super-

lattice is created from the 2D film, the first effect which must

be taken into account is the increased size of the super-cell.

We have therefore redrawn the band structure of the uniform

film in the restricted zone scheme (Fig. 1d), by folding the

bands into the Brillouin zone (inset of Fig. 1g) of the super-

lattice. The second effect comes from the potential induced by

the formation of holes in the super-lattice which scatter peri-

odically the electronic waves. It opens gaps in particular at the

centre and at the edges of the Brillouin zone, exactly like when

we consider quasi-free electron bands starting from free elec-

tron ones.33,35 This is exactly the behaviour that we predict

for d/D = 1 (Fig. 1e), i.e., when there are periodic holes in the

layer but the bonds between neighbour NCs are strong. When

d/D is reduced (Fig. 1f), the effect of the scattering potential

increases and the bands strongly deviate from the 2D film case.

In particular, absolute gaps appear, separating a lowest band

and a set of three bands from the higher-energy bands (all the

bands are spin-degenerate). In addition, all the bands shift to

higher energy due to the stronger quantum confinement when

the holes are created. Finally, when d/D→ 0, the coupling be-

tween NCs becomes vanishingly small and the bands collapse

at the energy levels of the individual NCs (Fig. 1g).

It is also instructive to discuss the results from a bottom-
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up perspective, i.e., starting from the limit of individual NCs

(d/D = 0.1, Fig. 1g). Due to the strong confinement in the

three directions of space, each NC is characterized by discrete

levels, a spin-degenerate electron state with a 1S envelope

wave function as a ground state, and three spin-degenerate

1P excited states higher in energy. By increasing slightly the

value of d/D, the lowest manifolds of bands arise from the

coupling between the 1S and 1P states of neighbour NCs, re-

spectively (Fig. 1f). In the limit where the coupling Vssσ (no-

tations of Ref. 36) between neighbour 1S states is small com-

pared to the 1S− 1P splitting, the 1S band can be described

by an effective model of s orbitals on a square lattice. In this

effective model, the 1S band energy is given by

Es(~k) = Es +2Vssσ [cos(kxa)+ cos(kya)] (1)

where Es is the onsite 1S energy (xOy is the lattice plane). The

energy dispersion of the 1P bands can be calculated similarly

if we consider σ (Vppσ ) and π (Vppπ ) interactions between

neighbour 1P states. Taking into account that the problem for

the 1Px, 1Py and 1Pz bands can be decoupled, we get

Ex(~k) = Epx +2Vppσ cos(kxa)+2Vppπ cos(kya)

Ey(~k) = Epx +2Vppσ cos(kya)+2Vppπ cos(kxa)

Ez(~k) = Epz +2Vppπ [cos(kxa)+ cos(kya)] (2)

where Epx (Epz ) is the onsite 1Px (1Pz) energy (by symmetry,

Epx = Epy). The 1S and 1P bands in Fig. 1f are well described

by Eqns. 1 and 2. The π coupling is much smaller than the σ

coupling, explaining why the 1Pz band is basically flat. Higher

energy bands shown in Fig. 1f originate from 1D and 2S states

of the NCs.

When the coupling (i.e., d/D) between neighbour NCs is

increased (Fig. 1e), the width of the bands increases as well

as the hybridization between 1S and 1P states (or 1P and 1D).

As already discussed above, when d/D → 1, we recover a sit-

uation close to the uniform 2D case. Between the extreme

limits, the dimensionality of the super-lattices can be referred

to as being below two, since the electrons move on a 2D lattice

but their properties are governed by the confinement on each

site which can be seen as a multi-orbital atom.

4 Honeycomb lattices

We consider honeycomb lattices built similarly from tangen-

tial spherical NCs connected by cylinders (Fig. 2a). The cylin-

ders are along 〈110〉 crystallographic directions (Nat ≈ 6.0d2).

For d of the order of 20-50% of D, we predict conduction

band structures very close to those obtained with truncated

nanocubes.27 There are two well-separated manifolds of two

and six bands (4 and 12 bands including spin). The lowest

bands have the same type of dispersion as the π and π∗ bands

in real graphene,5,37 in particular Dirac cones are present at

the K and K′ points of the Brillouin zone. In the second man-

ifold higher in energy, four bands have a small dispersion and

two others form very dispersive Dirac bands. The great simi-

larity of these results with those obtained for honeycomb lat-

tices of truncated nanocubes show that the exact shape of the

NCs is not a main factor determining the formation of band

structures with the same behaviour.

In order to understand the origin of these bands, it is once

again instructive to compare with the case where d/D is very

small, i.e. when the coupling between nearest-neighbour NCs

becomes negligible. As expected, Fig. 2b shows that all the

bands are totally flat for d/D ≈ 0.1 (D = 4.7 nm), they are

positioned at the energy levels of the individual NCs. By in-

creasing slightly the value of d/D, we see that the two man-

ifolds of bands in the honeycomb super-lattice arise from the

coupling between these 1S and 1P states of neighbour NCs,

respectively (Fig. 2c).

The bands in these systems are formed exactly like in

graphene except that the carbon atoms are replaced by multi-

orbital artificial atoms, the NCs. When the coupling between

nearest-neighbour NCs is weak (compared to the splitting

between discrete states), the effective Hamiltonian restricted

to the 1S orbitals is formally the same as for pz orbitals in

graphene,5,37 explaining why we recover 1S bands with ex-

actly the same behaviour as π−π∗ bands of graphene but with

renormalized hopping term:27

Es(~k) = Es ±Vssσ (3)

×

√

√

√

√3+2cos(
√

3kya)+4cos

(√
3

2
kya

)

cos

(

3

2
kxa

)

The dispersion at the K and K′ points is linear (Dirac points)

as imposed by the honeycomb nano-geometry.5,37 Like in the

case of square lattices, Fig. 2 shows that the width of each

band is directly linked to the strength of the bond joining each

neighbour NC. Remarkably, for d/D of the order of 0.5 and

above, bandwidths above 100 meV are obtained. Interestingly,

with this nanoscale geometry, the 1S and 1P bands never over-

lap, even for d/D = 1. However, for high values of d/D, the

shape of the bands is strongly deformed due to the coupling

between 1S and 1P states. For example, as it could be eas-

ily shown by perturbation theory, the effect of the S−P cou-

pling within the 1S manifold can be effectively described by a

second-nearest-neighbour coupling term between 1S orbitals.

This kind of term is known to induce asymmetry between the

π and π∗ bands of graphene.5 The same effect is clearly visi-

ble in our artificial graphene (Fig. 2f).

When the coupling is not too strong, the behaviour of the

1P bands can be described by a model of electrons moving
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on a honeycomb lattice with three p orbitals on each site.38,39

As shown in the inset of Fig. 2d, the coupling between 1Px,y

orbitals leads to the formation of four bands: two dispersive

bands with Dirac cones at K and K, and two flat bands, re-

spectively above and below the Dirac bands. These bands

are flat due to destructive interferences of electron hopping

induced by the honeycomb nano-geometry (non-trivial flat

band).38,39 The 1Pz states, oriented perpendicularly to the lat-

tice, are weakly coupled by π-like interactions (Vppπ ≈ 0) and

give rise to two flattened bands (trivial flat band). When Vppπ

is neglected, the 1P bands are approximately described by an

effective p-orbital Hamiltonian leading to38

Ez(~k)≈ Epz , (4)

E
(1)
xy (~k) = Epx ±

3

2
Vppσ ,

E
(2)
xy (~k) = Epx ±

Vppσ

2

√

3+2∑
i

cos(~k ·~ei),

where ~e1 = a
(

−
√

3
2
, 3

2

)

, ~e2 = a
(

−
√

3
2
,− 3

2

)

, ~e3 = a
(√

3,0
)

.

E
(1)
xy in the second line of Eq. 4 corresponds to the non-trivial

flat bands. When the coupling between NCs increases, the

higher 1P bands become more dispersive, in particular due

to the hybridization with 1D like bands (higher bands are not

shown). However, even for d/D ≈ 1, the lowest flat band,

below the 1P Dirac bands, remains non dispersive, protected

by the topology.38,39

The conduction band structure of a uniform 2D film of CdSe

is depicted in Fig. 2i. For the sake of comparison, we consider

the same film thickness D = 4.7 nm, and the band structure

is presented in the same Brillouin zone as for the honeycomb

lattices. In order to see the effect of the nano-geometry on the

bands, we have considered in Figs. 2g,h the same 2D film but

in which we apply a repulsive potential on each atom that does

not belong to the honeycomb lattice characterized by d/D= 1.

By tuning this potential, we can describe continuously all the

situations between the uniform film (Fig. 2i) and the honey-

comb lattice (Fig. 2f). The repulsive potential induces periodic

scattering of the electronic waves, opening gaps between the

bands. Increasing the potential (Fig. 2g), the 1S band is sepa-

rated from the others, the lowest flat band can be distinguished

progressively.

5 Effective band structure parameters

The width of 1S and 1P bands is presented as a function of

d/D in Fig. 3 for both types of lattices and for selected val-

ues of D. The gap between 1S and 1P bands is also shown.

The bandwidths increase approximately linearly with d/D, ex-

cept for 1P bands in honeycomb lattices where the bandwidth

saturates for d/D above ∼ 0.7 due to the coupling to higher-

energy bands (e.g., 1D bands). Consequently, the 1S−1P gap

decreases linearly with d/D. The bandwidths approximately

vary as α(d/D−0.1) where α is a parameter that depends on

D. From the fit on many configurations (D between 3 and 9

nm), it is found that α behaves as 1/D2. From Eqns. (1−4),

the 1S and 1P bandwidths are equal to |8Vssσ | and 4Vppσ for

square lattices, and to |6Vssσ | and 3Vppσ for honeycomb lat-

tices, respectively (neglecting Vppπ ). Remarkably, the values

for Vssσ and Vppσ deduced for square and honeycomb lattices

are very similar. We deduce general laws for the effective band

structure parameters

Vssσ ≈−26

(

5

D

)2(
d

D
−0.1

)

, (5)

Vppσ ≈ 107

(

5

D

)2(
d

D
−0.1

)

, (6)

in which D is in nanometer, Vssσ and Vppσ are in meV. Equa-

tions (5) and (6) are therefore valid for square and honeycomb

lattices.

Figure 3c shows the variation with d/D of the effec-

tive mass m∗ at Γ for the lowest 1S band of honeycomb

lattices. m∗ decreases with increasing d/D because the

bands become more dispersive for stronger coupling between

nearest-neighbour nanocrystals. m∗ can be approximated by

[Eqn. (3)]:

m∗ =
2h̄2

3Vssσ a2
. (7)

Similarly, the effective mass at Γ for the 1S band of square

lattices is given by [Eqn. (1)]:

m∗ =
h̄2

2Vssσ a2
. (8)

Another interesting quantity that characterizes 1S bands for

honeycomb lattices is the group velocity vg = h̄−1∂E/∂k at

the Dirac point. Figure 3c shows that vg increases with d/D

and reaches quite high values, about 100 km/s or even higher,

only one order of magnitude smaller than in graphene. vg is

approximately given by [Eqn. (3)]:5

vg =
3Vssσ a

2h̄
. (9)

In the case of graphene, the hopping parameter is about two

orders of magnitude larger than Vssσ but the lattice parameter

a is more than ten times smaller.5

Finally, it is important to emphasize that very similar results

would be obtained for other semiconductors characterized by

a single isotropic conduction band. We have checked that it is
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the case for CdTe and InP. All the effective parameters (hop-

ping terms, bandwidths, 1S− 1P gap) basically scale as the

inverse of the bulk effective mass. Therefore, the most in-

teresting band structures will be obtained for semiconductors

with a small effective mass. For semiconductors characterized

by degenerate valleys such as PbSe (or Si), the mixing of the

valleys plus the inter-valley couplings leads to more complex

band dispersions.27

6 Conclusions

In conclusion, we have performed atomistic tight-binding cal-

culations in order to understand the formation of the bands in

planar super-lattices consisting of spherical NCs connected by

horizontal cylinders. These systems are designed as models

for super-lattices which can be fabricated either by top-down

lithography or by bottom-up self-assembling of semiconduc-

tor NCs. We predict very rich band structures for materials in

which the NCs behave as multi-orbital artificial atoms assem-

bled on a lattice. Our theoretical study should motivate fur-

ther works to explore the possibilities offered by these super-

lattices with effective dimensionality below two.
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2012, 14, 053002.

12 D. Yu, C. Wang and P. Guyot-Sionnest, Science, 2003,

300, 1277–1280.

13 D. Vanmaekelbergh and P. Liljeroth, Chem. Soc. Rev.,

2005, 34, 299–312.

14 D. V. Talapin, J.-S. Lee, M. V. Kovalenko and E. V.

Shevchenko, Chem. Rev., 2010, 110, 389–458.

15 M. V. Kovalenko, M. Scheele and D. V. Talapin, Science,

2009, 324, 1417–1420.

16 E. Talgorn, R. D. Abellon, P. J. Kooyman, J. Piris, T. J.

Savenije, A. Goossens, A. J. Houtepen and L. D. A.

Siebbeles, ACS Nano, 2010, 4, 1723–1731.

17 D. Steiner, D. Azulay, A. Aharoni, A. Salant, U. Banin and

O. Millo, Nanotechnology, 2008, 19, 065201.

18 D.-K. Ko, J. J. Urban and C. B. Murray, Nano Lett., 2010,

10, 1842–1847.

19 K.-S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray,

J. Am. Chem. Soc., 2005, 127, 7140–7147.

20 P. T. K. Chin, J. W. Stouwdam and R. A. J. Janssen, Nano

Lett., 2009, 9, 745–750.

21 J. Zhang, F. Huang and Z. Lin, Nanoscale, 2010, 2, 18–34.

22 C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander,

D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Ko-

rnowski, C. Klinke and H. Weller, Science, 2010, 329,

550–553.

23 S. Ithurria and B. Dubertret, J. Am. Chem. Soc., 2008, 130,

16504–16505.

24 W. H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf,

R. van Roij, M. Dijkstra and D. Vanmaekelbergh, Nano

Lett., 2013, 13, 2317–2323.

25 W. J. Baumgardner, K. Whitham and T. Hanrath, Nano

Lett., 2013, 13, 3225–3231.

26 E. Kalesaki, W. H. Evers, G. Allan, D. Vanmaekelbergh

and C. Delerue, Phys. Rev. B, 2013, 88, 115431.

27 E. Kalesaki, C. Delerue, C. Morais Smith, W. Beugeling,

G. Allan and D. Vanmaekelbergh, Phys. Rev. X, 2014, 4,

011010.

28 M. A. van Huis, L. T. Kunneman, K. Overgaag, Q. Xu,

G. Pandraud, H. W. Zandbergen and D. Vanmaekelbergh,

Nano Lett., 2008, 8, 3959–3963.

29 P. Schapotschnikow, M. A. van Huis, H. W. Zandbergen,

D. Vanmaekelbergh and T. J. H. Vlugt, Nano Lett., 2010,

10, 3966–3971.

30 Y. M. Niquet, C. Delerue, G. Allan and M. Lannoo, Phys.

Rev. B, 2000, 62, 5109–5116.

31 V. I. Gavrilenko and F. Bechstedt, Phys. Rev. B, 1997, 55,

4343–4352.

1–9 | 5

Page 5 of 9 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



32 G. Onida, L. Reining and A. Rubio, Rev. Mod. Phys., 2002,

74, 601–659.

33 C. Delerue and M. Lannoo, Nanostructures: Theory and

Modeling, Springer, 2004.

34 C. Delerue, M. Lannoo and G. Allan, Phys. Rev. Lett.,

2000, 84, 2457–2460.

35 W. A. Harrison, Electronic Structure and the Properties of

Solids: The Physics of the Chemical Bond, Dover, 1989.

36 J. C. Slater and G. F. Koster, Phys. Rev., 1954, 94, 1498–

1524.

37 P. R. Wallace, Phys. Rev., 1947, 71, 622–634.

38 C. Wu, D. Bergman, L. Balents and S. Das Sarma, Phys.

Rev. Lett., 2007, 99, 070401.

39 K. Sun, Z. Gu, H. Katsura and S. Das Sarma, Phys. Rev.

Lett., 2011, 106, 236803.

6 | 1–9

Page 6 of 9Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t



1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

X Γ M

E
 (

eV
)

k

CdSe film
(c)

[10] [11]
1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

X Γ M

E
 (

eV
)

k

CdSe film
(d)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

X Γ M

E
 (

eV
)

k

D = 6.0 nm, d/D = 1.0
(e)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

X Γ M

E
 (

eV
)

k

D = 6.0 nm, d/D = 0.5
(f)

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

X Γ M

E
 (

eV
)

k

D = 6.0 nm, d/D = 0.1
(g)

X

M

Γ

Fig. 1 (a) Schematic view of a square lattice of CdSe consisting of tangential spheres (diameter D = lattice spacing a) connected by horizontal

cylinders (diameter d). (b) Atomistic view of four unit cells of the square lattice for D = 6.0 nm and d/D = 0.5. The yellow (red) spheres

represent the Cd (Se) atoms. Pseudo-hydrogen atoms passivating the surface are not shown for clarity. (e-g) Lowest conduction bands

calculated using the atomistic tight-binding method for D = a = 6.0 nm and varying ratio d/D. For clarity, only sixteen bands are shown. The

Brillouin zone is shown as an inset in (g). (d) Conduction band structure of a 2D CdSe film (thickness = D) presented in the Brillouin zone of

the square lattice for comparison (restricted zone scheme). (c) Same but represented in the extended zone scheme. The red dotted line

corresponds to the conduction band of bulk CdSe.
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Fig. 2 (a) Honeycomb lattice of CdSe consisting of tangential spheres (diameter D = lattice spacing a) connected by horizontal cylinders

(diameter d). (b-f) Lowest conduction bands calculated using the atomistic tight-binding method for D = a = 4.7 nm and varying ratio d/D.

For clarity, only sixteen bands are shown. The inset in (b) depicts the Brillouin zone. The insets in (d) indicate the bands which mainly result

from the coupling between 1S states, or between 1Px and 1Py states, respectively. (i) Conduction band structure of a 2D CdSe film (thickness =

4.7 nm) presented in the Brillouin zone of the honeycomb lattice for comparison. (g,h) Same but a repulsive potential V is applied on each

atom of the film which does not belong to the honeycomb lattice characterized by d/D = 1.0 [V = 0.4 eV for (g), V = 0.2 eV for (h)]. These

two figures show the transition from (f) to (i), i.e., from the honeycomb lattice to the 2D film.
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Fig. 3 (a) Total width of the 1S band (red squares), of the 1P band (blue open circles) and of the gap between 1S and 1P bands (black solid

circles) for square lattices (solid lines: D = 6.0 nm; dotted lines: D = 8.5 nm). (b) Same for honeycomb lattices (solid lines: D = 4.7 nm;

dotted lines: D = 6.4 nm). (c) Effective mass (in units of the free electron mass m0) at Γ and group velocity at K for the 1S band in

honeycomb lattices (D = 4.7 nm).
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