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Structure Prediction of Nanoclusters; a Direct or a 

Pre-screened Search on the DFT Energy Landscape? 

M. R. Farrow,a Y. Chowa and S. M. Woodley*a 

The atomic structure of inorganic nanoclusters obtained via a search for low lying minima on 

energy landscapes, or hypersurfaces, is reported for inorganic binary compounds: zinc oxide 

(ZnO)n, magnesium oxide (MgO)n, cadmium selenide (CdSe)n, and potassium fluoride (KF)n, 

where n = 1-12 formula units. The computational cost of each search is dominated by the effort 

to evaluate each sample point on the energy landscape and the number of required sample 

points. The effect of changing the balance between these two factors on the success of the 

search is investigated. The choice of sample points will also affect the number of required data 

points and therefore the efficiency of the search. Monte Carlo based global optimisation 

routines (evolutionary and stochastic quenching algorithms) within a new software package, 

viz. Knowledge Led Master Code (KLMC), are employed to search both directly and after pre-

screening on the DFT energy landscape. Pre-screening includes structural relaxation to 

minimise a cheaper energy function – based on interatomic potentials – and is found to 

improve significantly the search efficiency, and in fact can reduce the number of DFT 

calculations required to locate the local minima by more than an order of magnitude. Although 

the choice of functional form is important, the approach is robust to small changes to the 

interatomic potential parameters. The computational cost of optimising initial structures was 

reduced by employing Gaussian smearing the electronic energy levels. Larger (KF)n 

nanoclusters are predicted to form cuboid cuts from the rock-salt phase, but also share many 

structural motifs with (MgO)n for smaller clusters. The transition from 2D rings to 3D (bubble, 

or fullerene-like) structures occur at a larger cluster size for (ZnO)n and (CdSe)n. Differences 

between the HOMO and LUMO energies, for all the compounds apart from KF, are in the 

visible region of the optical spectrum (2-3eV); KF lies deep in the UV region at 5eV and 

shows little variation. Continuing the trends in the electron affinities found for the clusters 

with respect to size results in the qualitatively correct work functions for the respective bulk 

materials. 

 

1 Introduction 

The prediction of the atomic structure of materials is of 

fundamental importance. This is particularly true for 

nanoclusters as they can exhibit substantially different chemical 

and physical properties compared to bulk phases. An 

understanding of the possible structural changes that arise as a 

function of the nanocluster size can lead to the discovery of 

new properties.1 For example, it is known that the optical 

properties of nanoclusters vary with size, providing an 

alternative “tuning” parameter over conventional methods such 

as using dopants in the bulk structures.2 Obtaining the structural 

information for small nanosized particles from experiment is, 

however, extremely difficult. Therefore, computer simulations 

are often used as a complementary predictive tool or an aid in 

the analysis of experimental observations. The goals of this 

study are to (1) optimise the use of computationally demanding 

ab initio calculations that are employed to assess the quality of 

trial structures during the search for atomic structures of 

nanoclusters, and (2) report and compare the structure and 

properties of these nanoclusters. 

 Global optimisation techniques have been adapted to 

explore energy landscapes and tuned to locate efficiently the 

lowest energy structures. The most common structure 

prediction methods include: Monte-Carlo basin hopping,3-5 

random (or stochastic) quenching,6-8 simulated annealing,9-12 

evolutionary algorithms (also called genetic algorithms),13-15 

and particle swarm algorithms.16-18 Evolutionary algorithms 

(EA), which are employed in the work reported here, have been 

used for structure prediction with much success using both 
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interatomic potentials19-22 and ab initio13, 23-28 levels of theory to 

describe the energy landscape. Informative reviews of structure 

prediction techniques have been reported by Woodley,1 

Johnston29-30 and more recently by Catlow et al.31 Previous 

studies have focussed on the method of exploration on a fixed 

energy landscape, i.e. one or more methods applied to a 

particular system, however, few studies have focused on the 

effect of changing the quality of the energy function. 

Mainstream global optimisation in the field of structure 

prediction is typically applied to searching the energy 

landscapes defined by interatomic potentials, and subsequently 

the better structures are refined at a higher level of theory, such 

as DFT.32 With greater availability of structural data for bulk 

rather than nanoclusters, interatomic potential parameters are 

generally fitted to reproduce bulk properties. When the atomic 

structure of nanoclusters is predicted to be different to the local 

structure found within the bulk phase, then it may be beneficial 

to refine the interatomic potential parameters to reproduce DFT 

energy minima nanoclusters.33-35 

 In this paper, switching the definition of the cost function 

(e.g. energy of formation) used to assess the quality of a 

particular atomic configuration during the global optimisation 

stage is investigated. Two different approaches to searching 

energy landscapes are compared for a range of binary 

compounds. In each approach both stochastic quenching and a 

Lamarckian evolutionary algorithm, as implemented within the 

Knowledge Led Master Code (KLMC),36 are tested. Both 

approaches sample many candidate structures and both utilise 

standard local optimisation routines to relax the atomic 

configuration of each sample point to an energy minimum. 

 In the first approach, an initial structural relaxation is 

performed at an interatomic potential level, and if the resulting 

energy is below a certain threshold then that candidate structure 

is further refined at the DFT level, i.e. the sample points are 

pre-screened. This approach of searching a hybrid landscape is 

applied here to configurations of ZnO and MgO. A similar 

approach is employed by others (see e.g. 37). As these two 

compounds have been studied extensively, they provide a 

suitable set of test structures for the structure prediction module 

of KLMC. This type of pre-screening is one of a broad family 

of techniques to assess the quality of candidate structures, 

which include geometrical, simple-potential, tight-binding, and 

semi-empirical methods.  

 The second approach is to perform a direct search on the 

DFT energy landscape, although simple geometrical constraints 

– atoms must be at least a typical bond distance apart – are 

applied. This approach is employed for four binary compounds: 

ZnO, MgO, KF, and CdSe. These compounds are used in a 

wide range of industrial processes: zinc  and magnesium oxides 

are basic components in catalysts,38-39 potassium fluoride is 

used in the manufacturing industry for brazing aluminium,40 

and cadmium selenide is used as a principle component in solar 

cells.41 These materials differ in their polarisability – from 

strongly polarisable CdSe to weakly polarisable KF – and thus 

offer contrasting energy landscapes, and, at the nanoscale, may 

have a broad range of structural motifs. For the computational 

cost of assessing each sample point on a DFT landscape many 

more can be assessed on the semi-empirical landscape. In 

contrast to CdSe, suitable empirical potentials are already 

available for MgO and ZnO and their landscapes have already 

been explored.20, 30 Thus, MgO and ZnO were chosen as our 

initial test systems. 

2 Method 

2.1 KLMC program – combining global and local optimisations 

All of the nanoclusters presented in this work were obtained 

using the Knowledge Led Master Code (KLMC).36 KLMC has 

been written in FORTRAN90 as one program, which uses MPI 

and SYSTEM calls. In common with other similar software for 

global optimisation,21 in order to (a) compute energies and (b) 

compute and minimise (using standard local optimisation 

routines) forces on the atoms, KLMC can call a range of state-

of-the-art third party software (TPS) packages. 

 As well as containing routines for global optimisation, 

KLMC, in the first instance, is a computational tool for the 

automation of many tasks that traditionally have had to be done 

by hand. Basic examples include: creation of input files for 

TPS; submission of calculations using TPS on either local or 

external computer platforms; monitoring progress of 

calculations performed by TPS; extraction of data from TPS 

output files for use in other KLMC routines or TPS; and, if 

required, the resubmission of uncompleted jobs (in an 

appropriate way so as to balance the workload over all available 

nodes). The evaluation of a set of structures stored as xyz file(s) 

– creation of input files, feeding through the chosen TPS, and 

collection of energies – is, perhaps, the simplest application of 

KLMC. 

 Routines within KLMC can also be employed to automate 

multistage optimisations (as used in this study), wherein the 

energy and atomic forces are computed at different levels of 

theory during the relaxation of each candidate structure, i.e. 

after a set number of line minimisations (iterations) or once a 

particular tolerance is achieved, the level, and therefore the 

computational load, is increased, and the relaxation of the 

structure is continued at this higher level. KLMC can therefore 

be seen as a tool to chain optimisation iterations together at 

differing levels of theory. Moreover, with the range of available 

global optimisation routines, KLMC has been developed to 

enable the flexibility of searching either on the interatomic 

potential energy landscape, on DFT energy landscape, or on 

DFT energy landscape after initial refinement at the interatomic 

potential energy level, i.e. pre-screening candidate structures 

prior to refining at the DFT level. In fact, the first application of 

chaining two energy functions within the Monte Carlo basin 

hopping routines of KLMC, enabled the successful prediction 

of low energy atomic structures of LiF3 nanoclusters.36 During 

the evaluation of each candidate structure, standard local 

optimisation techniques were used to minimise the energy as 

defined by a rigid ion model in the initial iterations and a shell 

model in the final iterations. In this work, KLMC is used to 
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search the DFT landscape or the hybrid landscape resulting 

from chaining a rigid ion mode with DFT. For this study, 

calculations at the interatomic potential level of theory are 

performed by the General Utility Lattice Program (GULP),42-43 

whereas for the DFT level of theory, a bespoke library version 

of the numeric basis set computer program FHI-aims (version 

071711_6) is employed.44 Parallel versions of both these TPS 

are available; for GULP, however, the less computationally 

demanding of the two, the serial version was used in this work. 

As the chosen search algorithms are amenable to simultaneous 

evaluations of multiple sample points (configurations), a 

Message Passing Interface (MPI) parallelism strategy has been 

employed within KLMC in order to exploit many processors on 

high performance computing (HPC) platforms (large-scale 

supercomputers). Thus, KLMC makes simultaneous calls to 

GULP. The bespoke FHI-AIMS library enables a more efficient 

approach than having KLMC to use a “system call” to start 

each run of FHI-AIMS. Although there is an added risk that the 

TPS can crash KLMC (the TPS must pass back control to 

KLMC and not make a call to “STOP”), the library approach 

avoids a potential problem caused by HPC platforms, namely, 

that MPI system calls are not allowed unless made on the head 

node(s), i.e. from the originally submitted script and not from 

KLMC. We note that KLMC also has a client-server capability 

such that KLMC can run on a local desktop machine whilst the 

computationally expensive DFT calculations can be sent to and 

retrieved automatically from a remote supercomputer for 

processing (which also avoids non-head node MPI calls). 

 In this work, a Lamarckian evolutionary algorithm (EA), as 

implemented within KLMC, is employed to search the energy 

landscapes. Within an EA, the natural selection processes of 

“survival and procreation of the fittest” is simulated, where the 

metric of fitness for our application is the energy of the 

nanocluster. Ideas of Lamarck rather than Darwin are adopted; 

genetic information – in the form of structural coordinates – 

that has matured (aged) is used to create new offspring. Here, 

the aging process of a child becoming an adult is simulated by 

the application of standard local optimisation routines to relax 

the atomic structure. While this method of evaluating each 

candidate structure is computationally more expensive, cf. 

single energy calculations in Darwinian global optimisation, 

fewer candidate structures need to be evaluated, and all matured 

candidates (adults) are at least stationary points on the energy 

landscape. Typically, the overall efficiency of locating the 

lower energy minima is greatly improved.45-47 

 The starting point for an EA – see Figure 1 – is the 

generation of an initial set of representative structures, or initial 

population, which should ideally span the full potential energy 

surface. There is no unique way to generate the initial 

coordinates; one could use previously known structures out of a 

database or extract candidate structures from a high temperature 

molecular dynamics simulation at sufficiently spaced points of 

time. For the work presented in this manuscript, initial 

candidate structures were created, at minimal computation cost, 

by randomly placing the appropriate number and type of atoms 

in a cube with length between 4 Å, for the smallest clusters, and 

10 Å, for the largest. During this process, a constraint was 

imposed that a distance of at least 80% of a typical bond length 

must separate all atoms to prevent unfeasibly dense structures 

being created, which could cause problems with the DFT 

optimisations. Expanded structures benefit from the increased 

mobility of atoms as they have more room to move during 

geometry optimisation. If this restriction was not in place, two 

metal cations could be placed, at random, for example next to 

each other, which would result in the DFT predicting an 

unwanted formation of a metal-metal bond. 

 
Figure 1. Flow chart of EA as implemented within the module of KLMC. Blue 

represents actions solely undertaken by KLMC; orange – the main parallelised 

action; and green – main result of an action. The green arrow marks the last step 

of each EA cycle. 

 During each cycle of the EA, the current population of m 

members (labelled as the “Nth population” in the flow chart) is 

replaced by the unique lowest energy structures recruited both 

from the current and the “New adult population”. Note that 

duplicates (based on comparing energies and moments of 

inertia) are actively removed to help to maintain structural 

diversity in the population. In each EA cycle, before Action 5 

(“Tournaments for survival”) can be performed, KLMC 

generates m candidate structures that form the “Child 

population”, which subsequently matures to become the “New 

adult population”. Details of how each candidate matures or 

how each candidate is evaluated, are given below and shown as 

a flow chart in Figure 2. From the current population, 

tournaments are simulated within sets of three candidates 

chosen at random. The best structure in each set, one with the 

lowest minimised energy, is recruited in the “Population of 
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winners”. Action 1 of each EA cycle is repeated m times; the 

resulting population of winners may include the same structure 

more than once. Each member of the “Population of winners” is 

paired with one randomly selected member of the current 

population and passed to Action 2 (the application of a 

crossover moveclass, which combines structural information 

from both parent members to create a new child candidate 

structure) and Action 3 (a mutation moveclass, which perturbs 

the resulting child structure to help to introduce new structural 

features).14 In particular, the crossover moveclass, used in this 

work, cuts at a random angle the two parent structures and 

forms a new structure from two resulting fragments – subject to 

forming a child structure with the same composition and total 

number of atoms as each parent. The mutation moveclass as 

implemented in this study is a random displacement of each 

atom by up to a maximum of 1.0 Å from its original location. 

 The maximum number of EA cycles is set by the user, but 

can be reduced by either the time limit on runs on the chosen 

computer platform or the convergence of the Nth population (i.e. 

no improvements in the quality of the structures within 

consecutive populations). The population size, m, was typically 

set to either 10 or 16. 

 
Figure 2. Flow chart of the candidate structures assessment by KLMC. Green 

represents actions solely undertaken by KLMC; orange – actions undertaken by 

third party software; and blue – user-defined choice or main result of an action. 

2.2 Assessment of candidate structures 

ZnO nanoclusters have been investigated in previous work 

using interatomic potentials, where the atomic structures were 

predicted using EA routines within the GULP code.20, 48-49 

These configurations were also found using DFT methods,50 

although for larger sized clusters the ranking (with respect to 

energy) of the nanoclusters differed slightly. In the current 

work, interatomic potentials are employed for ZnO and MgO 

during a pre-screening stage before evaluating the DFT energy. 

The chosen interatomic potentials include a number of 

superimposed terms: a Coulomb potential: 

��������	
 � 	
 ���	��	 	, (1) 

where qi is the point charge representing ion i, k is a 

dimensional constant, and rij is the interatomic distance 

between point charges i and j; a Lennard–Jones potential: 

������	
 � 	 ��	��	�� �
��	
��	� 	, (2) 

where A and B are species dependent parameters; and a 

Buckingham potential: 

��������	
 � 	��	��� �� ��	 �	! �
"�	
��	� 	, 

(3) 

where C, ρ and D are also species dependent parameters. The 

atomic structure and a number of physical properties of the bulk 

phase were used in the refinement of the potential 

parameters.51-53 Unusually, three sets of Buckingham 

parameters for the Zn-O interactions were defined; the Zn-O 

Buckingham potential parameters are dependent upon rij. A 

polynomial function, 

�#��$���	
 � 	% & '��	 & (��	� & )��	* & ���	+ & ,��	- 	, (4) 

is employed between the three regions where the Zn-O 

Buckingham potential is defined. The potential parameters of 

equation 4 were fitted to ensure the resulting Zn-O potential is 

smooth (an important feature for many standard local 

optimisation algorithms). All parameters along with the range 

of interatomic distances in which they apply are given in Table 

I. The formal charge of +2.0 was used for magnesium and zinc 

cations and -2.0 for oxygen anions. 

 Structural relaxation during the pre-screening stage was 

achieved using the method of conjugate gradients until the 

resultant atomic forces were less than 100�	eV/Å, which 

stabilised the structure within a local basin “close” to a starting 

point, thereafter the more advanced Rational Function 

Optimisation algorithm was used to ensure that the stationary 

point is either stable or metastable and forces are less than 

1001 eV/Å. 

 After the population of candidates have been pre-screened, 

the structures are further refined at the DFT level; KLMC calls 

FHI-aims, rather than GULP. All of the calculations were 

performed with the FHI-aims default “light” settings for species 

specific basis sets (analogous with split valence and double zeta 

basis sets used in conventional Gaussian codes) and grids 

combined with a scalar ZORA relativistic treatment.54 During 

relaxations, the restricted wavefunction description was 

employed to discourage fragmentation of clusters, and energies 

were converged to within meV per atom. Typically, the DFT 
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calculations employed the solids-corrected Perdew-Burke-

Ernzerhof (PBEsol) Generalised Gradient Approximation 

(GGA) exchange-correlation functional.55 PBEsol was chosen 

as it is unbiased and is not too computationally expensive. The 

aim is to develop a method that is generically applicable rather 

than tuned to a particular system or property. A quasi-

Newtonian relaxation algorithm was used with a convergence 

criterion of 100*	eV/Å. 

Table I. Interatomic potential parameters for ZnO and MgO. Note the use of 
a subscript as the anion-anion interatomic potential is dependent upon the 
compound.  

Lennard-Jones 
Potentials 

(Equation 2) 
Range (Å) A (eV Å12) B (eV Å6)  

Zn – Zn 0.0 – 12.0 20000.0 30.0  
Zn – O  0.0 – 2.20 316.435 0.0  

Mg – Mg 0.0 – 12.0 1.0 0.0  
Mg – O 0.0 – 12.0 10.0  0.0  

OZn – OZn  0.0 – 12.0 0.0 0.0  
OMg – OMg 0.0 – 12.0 1.0 0.0  

Buckingham 
Potentials 

(Equation 3) 
Range (Å) C (eV) ρ (Å) D (eV Å6) 

Zn – O 0.0 – 2.2 592.343 0.352 12.897 
Zn – O 3.1 – 3.3 157.297 0.430 5.816 
Zn – O 3.6 – 12.0 912.518 0.008 11.723 
Mg – O 0.0 – 12.0 1428.50 0.295 0.0 

OZn – OZn  0.0 – 12.0 23674.698 0.226 33.477 
OMg – OMg  0.0 – 12.0 22764.0 0.149 27.88 

Polynomial 
(Equation 4) 

Range (Å) a (eV) b (eV Å-1) c (eV Å-2) 

Zn – O 2.2 – 3.1 111.902 -158.727 89.657 
Zn – O 3.3 – 3.6 64102.354 -93216.170 54188.807 

  d (eV Å-3) e (eV Å-4) f (eV Å-5) 
Zn – O 2.2 – 3.1 -29.986 4.0 -0.178 
Zn – O 3.3 – 3.6 -15741.071 2284.837 -132.581 

3 Results 

3.1 Atomic structures and properties of (AB)n nanoclusters 

Four binary compounds are investigated: KF, MgO, ZnO and 

CdSe. The atomic structures of their nanoclusters may depend 

on the relative size of the cation and anion, the degree of ionic 

character of the bonding, as well as the oxidation state and 

polarisibility of the ions. Table II contains the differences in the 

electronegativity56 of the atoms in each binary, ∆X, which gives 

a measure of the ionic character of a bond between them. Data 

in Table II is arranged with respect to increasing ∆X, and not 

surprisingly the greatest ionic character is expected for K-F 

bonds. The dissociation energy of a dimer and the refractive 

index of the binary compound also increase, from CdSe, ZnO, 

MgO to KF. The refractive index gives a measure of how 

polarisable the atoms are in the bulk phase, and therefore how 

polarisable we expect the atoms will also be when part of a 

nanocluster. Comparing cationic and anionic radii, K+ is larger 

than F-, whereas it is the reverse for CdSe; Cd2+ is smaller than 

Se2-. If the ratio of ionic radii is the dominant factor 

determining the atomic structure, then we may expect similar 

nanoclsuers for MgO and ZnO, and that the ordering of cations 

and anions in a particular structural motif for KF and CdSe to 

be reversed. 

Table II. Differences of electronegativity56 of the atoms (XA-XC); ratio of 
ionic radii57 (RA/RC); bond dissociation energy58 at 0K of the C-A dimer (D); 
and index of refraction58 of the compound CA (nr). 

Compound XA-XC RA/RC D (kJmol-1) nr 

CdSe 0.86 2.08 123.9 65.67 
ZnO 1.79 1.89 ≤ 246.3 75.40 
MgO 2.13 1.94 354.5 80.04 
KF 3.16 0.96 485.5 94.66 

 

 The lowest DFT energy nanoclusters of four compounds – 

ZnO, MgO, KF and CdSe – obtained using KLMC, with either 

the direct or pre-screening approach, are shown below in 

Figures 3 to 8.Pre59Suf As well as ordering by size and rank, the 

images of the clusters are also arranged such that the least 

polarisable compound (KF) are shown at the bottom, and the 

most polarisable (CdSe) at the top, of each figure. The 

structural motifs for ZnO and MgO nanocluster agree with 

previous work.19-20, 37, 60-62 Likewise for CdSe nanoclusters.63 

KF nanoclusters have received much less attention in the 

literature, and therefore comparison is made with those reported 

for (LiF)n, (NaCl)n , (NaCl)nCl- and (MgO)n when constituents 

are modelled as Mg+ and O-.19, 28, 64-65 A more detail comparison 

of the LM with those reported elsewhere is given below. For 

each size and compound, the lowest energy, local minimum 

(LM), nanocluster is referred to as GM (putative global 

minimum), the second lowest energy structure is referred to as 

LM2, and the third lowest energy structure is referred to as 

LM3. 

3.1.1 Two to six atom clusters 

The bond lengths of the n = 1 structures were used to determine 

the minimum interatomic distance between the atoms in the 

initial, randomly generated nanocluster configurations. The 

structural parameters of both n = 1 and 2 nanoclusters along 

with the bond strengths are summarised in Table III. 

Table III. FHI-aims calculated structural parameters and energetics of n = 1 
and 2 nanoclusters: A-B bond lengths, Ln, binding energies of n = 1, Eb, and 
A-B-A angles, Ɵ, where A is a cation and B an anion. 

Compound L1 (Å) Eb (eV) L2 (Å) Ɵ (°) 

CdSe 2.35 2.04 2.46 65.67 
ZnO 1.68 3.80 1.87 75.40 
MgO 1.73 4.39 1.90 80.04 
KF 2.17 6.37 2.36 94.66 

 The first three smallest GM nanoclusters are shown in 

Figure 3. For each size, the same structural motif is found for 

all four compounds. The shape of the n = 3 ring for KF is 

comparable to the rigid ion model of (ZnO)3, i.e. a model that 

does not include polarization effects. When a shell model is 

used anions are displaced further out from the centre than the 

cations, resulting in the structure generated for (ZnO)3 using 

FHI-aims.20 

 The DFT binding energy of an n = 1 cluster is presented in 

Table II, which gives a measure of the strength of the dimer 
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bond, calculated here with a restricted Kohn-Sham orbital 

ansatz. The same rank of the dimers with respect to this 

calculated bond strength and the dissociation energies reported 

in Table II is found, i.e. CdSe has the weakest bond, ZnO and 

MgO the second and third weakest, whereas KF has the 

strongest bond. The lowering of the bond strength in oxide 

dimers from the fluoride, as well as the increased polarisation 

(more acute cation-anion-cation bond angles) can be readily 

understood as an effect of the negative second electron affinity 

of oxygen, which counteracts the Coulomb energy gain due to a 

transfer of an additional electron from the cation to the anion 

and bond shortening between the smaller sized ions. Continuing 

the trend, the bond strength of CdSe is weakened significantly 

while it is more easily polarised due to the much larger ionic 

sizes of both the cation and anion even though they retain the 

formal oxidation states of the respective metal oxides. 

 
Figure 3. (CdSe)n, (ZnO)n, (MgO)n, and (KF)n GM nanoclusters, as determined on 

the PBEsol energy landscapes, for n = 1-3, arranged by size and degree of 

polarisation (with point symmetry group labels). Colours: turquoise is Cd, pink is 

Se, sea green is Zn, red is O, blue is Mg, light blue is K, and dark blue is F. 

3.1.2 Eight to ten atom clusters 

Figure 4 shows the lowest energy structures for n = 4 and n = 5, 

and at this size the ranking of the structural motifs can be 

compound dependent. For n = 4, ZnO and CdSe have a ring 

GM structure and a cuboid LM2 structure. The cuboid motif, 

however, is the GM for MgO and KF. The coordination of the 

atoms in the ring is lower than that found in the bulk phase. 

Thus, the stability of a cluster is expected to improve if there is 

an increase in the average coordination. However, the 

improvement in stability caused by an increased number of 

nearest neighbour (cation-anion) interactions is offset by strain 

and second nearest neighbour effects. For each compound, the 

anion-anion and cation-cation distances in the ring are shorter 

than those in the cuboid, and thus this second term favours 

rings. Moreover, there is typically less strain in the rings as the 

lower coordinated anions have more space for their valence 

electrons to relax into. The magnitude of this third stabilisation 

energy (or polarisation) will also depend on how easily the 

anions are polarised. Thus the observed trend in our predicted 

n = 4 GM nanoclusters is: from a KF cuboid to a CdSe ring. 

 For n = 5, MgO and KF have the same structural motifs and 

corresponding ranks for the three lowest energy nanoclusters. 

The two lowest energy n = 5 clusters for ZnO and CdSe also 

have the same structural motif, but differ in their ranking. 

 
Figure 4: (CdSe)n, (ZnO)n, (MgO)n, and (KF)n lowest PBEsol energy nanoclusters, 

for n = 4-5. Energy differences from the GM (in eV) are given in brackets, and 

notations and colours are as in Figure 3. 

 The degree of polarisation is reflected in the appearance of 

the rings resembling more like a square (for n = 4) or a regular 

pentagon (for n = 5) than a regular octagon or regular decagon, 

respectively. Curiously, however, even though ZnO adopts the 

ring motif as its GM, CdSe has the same GM as MgO and KF. 

The balance between the destabilisation of strain and non-

bonded repulsive interactions and the stabilisation of the 

attractive Cd-Se interactions for (CdSe)4 and (CdSe)5 reverses 

resulting in an increase in the average coordination with an 

increase in n. This structural transition of the GM from a 2D to 

a 3D motif occurs earlier for MgO and KF, between n = 3 and 

4. ZnO GM nanoclusters remain 2D, as the lowest energy 3D 

structures are 2.5 eV and 2.4 eV higher in energy for n = 4 and 

n = 5, respectively. The LM2 for the other compounds are close 

in energy to the GM (within 1 eV). Note that the n = 4 ring 

structure for KF is actually ranked fourth lowest in energy, 

being 1.019 eV higher in energy than the GM. 

 The change in relative stability of tetragonal and the larger 

sized rings manifests in the appearance of ladders; the LM3 

structure of MgO and LM2 structure for KF. The average 

coordination of the atoms within the ladders is also higher than 

that in the 2D-rings, but less than that in the cuboids. Thus, 

preferred coordination is also related to the stability and 

ranking of the clusters; Mg is less likely than Zn to be stable in 

a low coordinated site.60 For example, the different ranking in 

the lowest two n = 4 clusters and the structural motif of ZnO 

LM3, which has three two-coordinated cation sites, is unstable 

for MgO. 

3.1.3 Twelve to eighteen atom clusters 
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For n = 6 and n = 7, shown in Figure 5, the ZnO energy 

landscape retains the 2D ring motif as the GM, although the 

energy difference between the GM and LM2 is now reduced to 

less than 1 eV. The transition of ZnO GM to a 3D structure 

occurs between n = 7 and 8 (see Figures 5 and 6), where a drum 

is adopted as the ZnO n = 8 GM. Unlike the other compounds, 

ZnO also has other 2D clusters within the top three 

configurations for n = 6 and 7; patchworks of three rings. As 

seen for n = 5, only (ZnO)7 has a different motif for the GM.  

 
Figure 5: (CdSe)n, (ZnO)n, (MgO)n, and (KF)n lowest PBEsol energy nanoclusters, 

for n = 6-7. Energy differences from the GM (in eV) are given in brackets, and 

notations and colours are as in Figure 3. 

 
Figure 6. (CdSe)n, (ZnO)n, (MgO)n, and (KF)n lowest PBEsol energy nanoclusters, 

for n = 8-9. Energy differences from the GM (in eV) are given in brackets, and 

notations and colours are as in Figure 3. 

 The structural motifs of all the low energy MgO clusters, 

shown in figures 5-6, can be found in clusters shown for one or 

more of the other compounds. The n = 7 LM3 motif is LM3 for 

ZnO and LM2 for CdSe; the n = 8 LM3 drum motif is the GM 

for ZnO; and n = 9 LM3 is the GM for both ZnO and CdSe. 

The other MgO motifs, including tubes and rock-salt cuts, are 

all found for KF. The n = 6 drum (double ring) is well known 

and appears in all the compounds (either GM or LM2), and has 

recently been shown to be important for hydrogen storage.66 

 For each size, at least one motif of the metastable low 

energy configurations shown for CdSe is not found elsewhere. 

In particular, even though the rock salt motif is not seen in the 

figures for CdSe, clusters with an average coordination number 

greater than three are competitive for (CdSe)9; there is a highly 

coordinated central Se in both LM2 and LM3 

3.1.4 Twenty to twenty four atom clusters 

Low energy nanoclusters for n = 10 and n = 11 are presented in 

Figure 7 and n = 12 in Figure 8. For n = 10, MgO and KF again 

have the same motif for their GM, however, the LM2 of MgO, 

which also has hexagonal rings, is the LM3 of KF as the LM2 

structure for the latter compound is a non-cuboid rock-salt cut. 

The GM of (MgO)11 is the LM2 of (KF)11, whereas the motif of 

the other (KF)11 clusters are again based on rock-salt cuts. The 

similarities between MgO and KF continue for n = 12, where, 

apart from the change in ranking, the clusters have the same 

motifs. Although rock-salt cuts are adopted by KF and MgO, 

the relative stability of tubes is greater for MgO, and as such 

the GM of (MgO)12 is a tube, and the (MgO)12 sodalite cage 

(see GM for (ZnO)12 and (CdSe)12) is only 0.15eV higher in 

energy than LM3.67 

 The LM of (CdSe)10 are very similar (and probably 

contained within the same energy super-basin). LM2 has the 

same structural motif as LM2 for (ZnO), the right hand side of 

which (as viewed in figure 7) is the same as that in the n = 9 

GM for ZnO and CdSe. The left hand side is composed of a 

tetragonal and a squashed hexagonal ring. If the central Se atom 

(highlighted by a yellow circle) is displaced to the centre of the 

cluster (changing the Cd-Se-Cd bond angle from convex to 

concave) and its coordination is increased by one then the motif 

of LM3 for CdSe is generated; increase the coordination of the 

Cd to the right of this Se to obtain the GM motif. Note that 

relaxation of initial (ZnO)10 geometries that are data-mined, 

without rescaling, from any of the three (CdSe)10 LM will 

generate same LM. 

 
Figure 7. (CdSe)n, (ZnO)n, (MgO)n, and (KF)n lowest PBEsol energy nanoclusters, 

for n = 10-11. Energy differences from the GM (in eV) are given in brackets, and 

notations and colours are as in Figure 3.  
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Figure 8. (CdSe)n, (ZnO)n, (MgO)n, and (KF)n lowest PBEsol energy nanoclusters, 

for n = 12. Energy differences from the GM (in eV) are given in brackets, and 

notations and colours are as in Figure 3. 

 The ashtray motif for n = 10 ZnO GM is also the motif for 

MgO LM3. For CdSe and ZnO, the same n = 11 bubble motif is 

predicted as the GM, which is also the LM3 for MgO, and 

(CdSe)11 LM2 matches (ZnO)11 LM3. In general, low energy 

ZnO and CdSe nanoclusters adopt a bubble motif. 

3.1.5 Comparsion of nanoclusters with earlier predictions 

Differences in predicted structures can be caused by missing 

local energy minima (a more exhaustive search of the energy 

landscape is required) and/or a different definition of energy is 

employed. In the latter, even after successfully matching 

clusters based on structural motifs, there can still be a change in 

energy ranking of the clusters. Below, the size (n) and the 

energy ranking of LM clusters may also be used the labeling of 

atomic configurations such that na = GM, nb = LM2, 

nc = LM3 … 

 With the lowest dimensional and simplest landscapes (cf. 

larger sized clusters), it is not surprising the n = 1-3 GM found 

agree with that already reported.20-21, 59-63 

 For our predicted atomic structures for (CdSe)n, there is a 

reasonable agreement with structures suggested by Sanville et 

al.63 Their CdSe configurations were data-mined from ZnS 

GM50, 68 that correspond to our 1a, 2a, 3a, 4a, 5b, 6a, 7a, 8a, 

9a, 11a and 12a for CdSe. Our 5a, which is also the GM for 

(ZnO)5, (MgO)5 and (KF)5, is only 0.024 eV lower in energy 

than our 5b for (CdSe)5. The largest discrepancy occurs for 

n = 10; no match is found between their (CdSe)10 bubble cluster 

(which has C3 symmetry) and any of our top three PBEsol 

(CdSe)10 LM. As discussed above, the three PBEsol LM are 

very similar and therefore have similar energies. The non-

perfect – has two two-coordinated atoms – bubble motif is, 

however, LM2 for (ZnO)10 on the energy landscape of the rigid 

ion (parameters in Table I) and shell model (SM),20 PBEsol 

LM3 for (ZnO)10, and found to be 0.07 eV less stable than our 

PBEsol (CdSe)10 GM. 

 The (ZnO)n atomic configurations are now compared to 

energy minima structures from a shell model (SM)20 that are 

obtained using an evolutionary algorithm implemented within 

GULP48, 69 and PBE energy minima structures37 (optimised 

using the DMol code70-71), the initial configurations of which 

were either constructed (handmade) or local minima from a 

rigid ion model (potential parameters fitted to bulk ZnO). We 

expect optimised PBE and PBEsol structures to be very similar, 

and changes in energy ranking only possible when there is a 

small energy difference between LM. In fact there is a better 

agreement between our PBEsol results and the PBE than 

between PBEsol and SM. Starting from the smallest cluster 

size, the discrepancies between the latter are found for 5c, 6, 7, 

8, 9c, 10b, 10c, 11b, 11c, 12b and 12c; whereas for the former 

we were not able to match 4c, 5b, 5c, 7c, 8a, 8b, 9c, 10b, 10c, 

11b, 11c, 12b and 12c. The lowest energy SM metastable LM 

have higher symmetry than that predicted for PBEsol LM. 

Many of the mismatches for the smaller clusters are caused by 

the SM employed erroneously containing additional LM.60 

Removing these LM, the match improves; for example, the 

motifs for the three lowest energy n = 6 and 8 clusters are now 

the same although the rank of the n = 6 ring and drum are 

reversed and the n = 8 SM GM is our PBEsol LM3. Allowing 

for polarization on the oxygen anions, the rank of 2D 

configurations deteriorate, which curiously leads to a better 

match of our n = 7 PBEsol LM with that of a rigid ion model. 

Typically, Wang et al. reports more than three PBE LM per 

cluster size.37 Many of the mismatches between our top three 

PBEsol LM and that of PBE is probably due to missing PBE 

LM, which would result in a larger PBE (smaller PBEsol) 

energy difference between LM when there is a mismatch. For 

example, the PBE (PBEsol) energy difference, in eV, between 

4b and 4c, 5a and 5b, 9a and 9c, 10a and 10b, 11a and 11b, 12a 

and 12c is 1.1 (0.5), 2.4 (0.4), 0.5 (0.1), 0.2 (0.1), 0.9 (0.5), 1.8 

(1.4), respectively. A change in rank is also caused by the 

change in the cost function, for example, 7c and 7d, which have 

very similar energies, are reversed. A larger change in ranking 

is found for metastable n = 10 LM; PBE and SM have a C3 and 

C2k bubbles for 10b and 10c, whereas these are 0.245 eV and 

0.406 eV higher in energy than the PBEsol GM. Another 

Finally, the reported PBE 8a structure, 2D patchwork of two 

n = 4 rings connected via the formation of a n = 2 ring, is 

0.466 eV higher in PBEsol energy than our GM. Wang et al. do 

comment37 that previous B3LYP calculations50, 72 suggest that 

the tube-like motif is more stable. Using PBE, we find that the 

2D patchwork is still less stable than the drum, although only 

by 0.017 eV, so suspect that the default cutoffs used for basis 

functions (double numerical including d-polarization functions, 

DND70-71) in their PBE calculations may have been too small. 

 The (MgO)n atomic configurations are now compared to: 

rigid ion (RI) LM (that were proposed alongside mass spectra 

of (MgO)n
+ clusters);73 Hartree Fock (HF) and, with correlation 

corrections, Coulomb Hartree Fock (CHF)74 LM (optimised 

from initial geometries created by cutting from bulk phases or 
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data-mining from alkali-halide clusters after initial pair 

potential calculations);75 PBE energy minima structures 

(optimised using DMol from initial geometries constructed 

using a topological method based on predefined range of 

coordination numbers); and B3LYP LM61 (optimised using 

TURBOMOL, where initial geometries were generated using a 

genetic algorithm76). There is a 42% match between our 12 

PBEsol GM and the reported RI LM; the low match is caused 

by both the change in the model employed and perhaps key 

motifs missing from their dataset. There were fewer 

mismatches between the HF and CHF GM: HF 5a is a 2D ring; 

CHF (MgO)7 GM matches our 7b; a D4d drum and S4 bubble 

motifs are the (MgO)8 GM for HF and CHF, whereas the rock 

salt PBEsol GM is their LM3; and the Th sodalite cage is the 

HF and CHF (MgO)12 GM. As expected, an also perfect match 

is found between our PBEsol LM (shown earlier in figures 1-5) 

and the PBE reported LM; our 5b is the only missing cluster 

from their set, and 7b and 7c are reversed. We have also used 

PBE for MgO clusters and a small number of changes in their 

ranking; 7b with 7c, 8a and 8b, 11a and 11c, and PBE 12b is 

the sodalite cage. Clusters with the same structural motifs are 

reported for both PBEsol and B3LYP LM, only the ranking 

differs such that the GM do not match for n = 8, 10, 11, and 12. 

What is more important here is the match between experimental 

and simulated infra-red (IR) spectra that Haertelt et al. have 

achieved in order to validate their predicted (MgO)n atomic 

structures. IR spectra are not computed in this work, but as we 

obtain clusters with the same structural motif we are able to 

gain confidence in our predicted PBEsol structures resembling 

those synthesized. As expected, contributions to each spectrum 

may be from more than one of the lowest LM, and the dominate 

contribution is typically from the B3LYP GM. The B3LYP 8a 

matches our 8b (in fact there is a very small PBEsol energy 

difference between 8a and 8b); B3LYP 10a matches our 10c; 

B3LYP 11a matches our 11c (however the structural match 

with our 11a is also used in their simulated IR); and B3LYP 

12a again the sodalite cage. Interestingly, it appears that the 

dominate contributions to the n = 12 IR spectrum comes from 

the cluster that matches our PBEsol GM. 

 A rock-salt (ring) structural motif is found for the larger 

(smallest) PBEsol (KF)n GM, which is in line with that reported 

for clusters of other alkali halides.65, 77 This trend is consistent 

with the findings of Roberts and Johnston,19 where the relative 

stability of bubble and rock-salt motifs are reversed when the 

magnitude of the charges on the atoms is reduced from 2 to 1. 

Our GM also match that reported by Fernandez-Lima et al.28 

who employed a genetic algorithm to search for B3LYP LM for 

n =1 to 4. They also report that a number of other LM for larger 

sizes; their lowest energy LM match our 5a, 6b, and 9a. Their n 

= 8 drum cluster was slightly more stable than their 3×1×1 

cuboid (LiF)8 cluster, and degenerate after correcting for zero 

point energy.  

3.1.6 Properties of the GM clusters 

A similar trend in the GM energies is found for all four 

compounds; decreasing energy and its rate of change with 

cluster size – see figure 9. Eventually the curves will converge 

to their respective bulk values, e.g. -5.69 eV/MgO. There also 

appears to be larger oscillations in the energy curve for (MgO)n. 

The relative change with respect to n is easier to see from the 

second energy differences (SED). There are three minima, and 

a greater local stability, for (MgO)n at n = 4 (cuboid), 6 (drum) 

and 9 (barrel, or tube), which correlates to the reproduction of a 

larger quantity of these sizes when (MgO)n clusters are 

synthesized (see mass spectra in reference 73). A smaller local 

minimum is found for other compounds if their GM has the 

same structural motif or, in the case of KF, the 2×1×1 cuboid. 

SED increases with increasing ring size. Local maxima in SED 

occur for the n = 3 2D hexagonal ring for KF (which prefers a 

rock-salt motif of tetragons); the n = 5 cluster, which is 

composed of a cuboid and two two-coordinated atoms, for KF, 

MgO, and CdSe; and the n = 7 clusters, where the second 

energy differences for all compounds are also much higher than 

those at n = 9. 

 

Figure 9. PBEsol energy difference, E
*

n=En-nE1, and the second energy difference of 

(XY)n GM nanoclusters. 

 From n = 1 to n = 12, the average coordination number of 

the constituent atoms in the GM form a set of plateaux and 

gradually increases for larger KF clusters (which have a rock-

salt rather than a bubble or tube motif); see figure 10. The 

plateaux correspond to the dimensionality of the cluster (1D, 

2D then 3D); hence the longer plateau for 2D (ZnO)n. The 

average bond distance, <D> also increases when the 

dimensionality of the cluster increases, but gradually decreases 

with increasing n otherwise. When clusters have the same 

dimensionality, <D> for MgO is slightly longer than for ZnO 

(which has the smallest value), KF is slightly smaller than those 

for CdSe (which has the longest value). 
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Figure 10. Average bond lengths (<D>) and coordination numbers for PBEsol GM 

nanoclusters. 

 Any subtle differences between compounds can be masked 

by a change in structural motif. In figures 11 and 12, the change 

in bond lengths and bond angles for rings and double rings 

(drums) are shown as a function of size for each compound. 

The bond lengths within rings or the larger rings of the drums 

decrease with increasing ring size. However, bonds connecting 

two such rings in the formation of a drum shorten with 

increasing n. The rate of change of the latter is greater for ZnO 

drums and then for CdSe, which suggests a greater 

destabilisation of drums compared to rings (note that there are 

one more ring GM for CdSe and four for ZnO). The differences 

in relaxed and ideal bond angles of the rings, which increase 

along the series KF, MgO, ZnO and CdSe, reflect the strength 

of the polarisation. Note that the bond angles centred on anions 

are more acute than those centred on cations. The same trend is 

found for angles within the large rings of the drums, but the 

opposite trend is found for the tetragonal faces; these become 

more regular (square) with cluster size. 

 

Figure 11. Bond lengths within rings (filled symbols) and drums (open symbols). A 

broken line connects data points corresponding to bonds that are formed for each 

drum when constructed from two rings. 

 

Figure 12. Differences between PBEsol relaxed and ideal bond angles. Upper graph: 

within a ring (unconnected symbols) and within one of the two larger rings of a drum 

centred on anions (broken line) and on cations (solid line). Lower graph: angles 

between one bond within a larger ring and one bond connecting the two larger rings. 

Note ideal implies 90° in the lower graph, and internal angles for regular 2n (n) sided 

polygons for rings (drums) in the upper graph. For colours see figure 11. 

 In the previous subsection our putative GM were compared 

to atomic structures already reported in the literature. Given 

that the nanoclusters of KF and CdSe are less extensively 

reported, we have also performed frequency calculations for all 

GM of these – see Figure 13, where the corresponding 

simulated infra-red spectra are also shown. As no imaginary 

frequencies were found, the GM are indeed LM and not 

stationary points. 

 

Figure 13. Frequencies (left) and simulated infra-red spectra (right) for the (KF)n and 

(CdSe)n GM nanoclusters. For clarity, (CdSe)n intensities have been doubled. 

 The highest occupied molecular orbital (HOMO), the lowest 

unoccupied molecular orbital (LUMO), and the difference 

between them, ∆E, are given in Table IV for ZnO and MgO, 

and Table V for KF and CdSe. Having employed the GGA 

approximation in the DFT calculations, it is expected that ∆E, 

which is also plotted in figure 14, is smaller than observed 

optical absorption transitions by a factor of 1.5 – 3 for the 
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heteropolar compounds studied.78-79 Therefore only qualitative 

trends will be of interest here. In common to all four 

compounds, there is an increase in the ∆E with n increasing 

from two to three, with the smallest change observed for KF. 

This behaviour can be attributed to the difference in the n = 3 

structures, where the KF ring is hexagonal in shape, and the 

other compounds adopt a more triangular shape. Moreover, as 

the size of the nanocluster is increased, the valence electrons 

localised on the anions are further apart and thus are more 

stable. The next transition should be expected and, indeed, 

occurs as the structures transform from 2D to 3D morphologies. 

Table IV. HOMO and LUMO energies and their differences for ZnO and 
MgO, in eV. 

n 

ZnO MgO 
EHOMO ELUMO ∆E EHOMO ELUMO ∆E 

2 -5.65 -4.35 1.30 -4.57 -3.13 1.45 
3 -6.46 -3.03 3.03 -5.44 -2.61 2.83 
4 -6.32 -3.25 3.06 -4.97 -2.51 2.45 
5 -6.46 -3.35 3.12 -4.88 -2.79 2.10 
6 -6.28 -3.06 3.06 -5.29 -2.28 3.01 
7 -6.37 -3.28 3.28 -5.10 -2.48 2.61 
8 -6.20 -3.63 2.57 -4.98 -2.30 2.68 
9 -6.02 -3.88 2.15 -5.39 -2.20 3.18 

10 -6.05 -2.21 2.21 -4.97 -2.25 2.72 
11 -6.01 -2.11 2.11 -5.15 -2.33 2.81 
12 -6.33 -2.52 2.52 -5.45 -2.17 3.28 

Bulk - - 3.44a - - 7.77b 

a. As given in 39 
b. Experimental value reported in 80 

 For ZnO, ∆E shows a transition between n = 7 and 8, which 

directly correlates with the 2D to 3D structural transition 

discussed earlier and which also agrees with early reports of 

Matxain et al. 72 For 2 < n < 7, ∆E of ZnO was found to be 

around 3 eV, then dropped to 2 eV from n = 8. This is also 

similar to what has been reported in PBE exchange-correlation 

results by Wang et al.,37 although they found that ∆E, for this 

same range, monotonically increased from 3 to 4 eV. Similarly, 

the 2D – 3D transitions occurs at n = 3 – 4 for MgO and can be 

seen as a drop in ∆E. The smaller 3D structures of MgO are 

observed to have a smaller ∆E, a trend previously reported from 

experiment on larger nanoparticles.81 

 

Table V. HOMO and LUMO energies and their differences for KF and CdSe, 
in eV.  

n 

KF CdSe 
EHOMO ELUMO ∆E EHOMO ELUMO ∆E 

2 -5.32 -0.35 4.97 -5.17 -3.92 1.26 
3 -5.47 -0.25 5.22 -5.64 -3.09 2.55 
4 -5.67 -0.12 5.55 -5.63 -3.02 2.61 
5 -5.32 -0.44 4.89 -5.27 -3.64 1.63 
6 -5.58 -0.17 5.41 -5.64 -3.47 2.17 
7 -5.67 -0.28 5.40 -5.46 -3.43 2.03 
8 -5.61 -0.17 5.44 -5.69 -3.42 2.27 
9 -5.50 -0.23 5.28 -5.75 -3.43 2.31 

10 -5.58 -0.31 5.27 -5.19 -3.38 1.81 
11 -5.47 -0.41 5.06 -5.71 -3.45 2.26 
12 -5.52 -0.21 5.31 -5.92 -3.40 2.52 

~10Å - - - - - 3.00a 

Bulk - - 
10.9b 

- - 
1.86c 
1.74d 

a. Experimental value on CdSe nanoparticles reported in 82 
b. Experimental value reported in 83 
c. Nanorod bulk-limit value reported in 84 
d. Nanoparticle bulk limit value reported in 85 

The calculated ∆E for KF is nearly constant around 5 eV for the 

range of n considered, which is about half the reported bulk 

value.86 Considering all 3D GM structures of KF, only n = 5 

includes lower coordinated ions in a “handle” feature, which 

corresponds to an observed drop in ∆E. 

 The calculated ∆E for CdSe for the larger nanoclusters is 

compared with the absorption edge experimentally observed for 

the smallest nanoparticles of about 3 eV.84 Extensive 

measurements on larger CdSe nanoparticles of different 

morphologies show an inverse trend compared to MgO, as the 

particle size increases the gap decreases,84-85 with data 

extrapolated to bulk values of 1.74 eV and 1.86 eV for 

nanoparticles and nanorods, respectively. 

 Based on the calculated ∆E values and their known under-

estimation using the exchange-correlation functional adopted, 

the general absorption in the UV region by the nanoclusters is 

predicted. 
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Figure 14. The energy difference between HOMO and LUMO, ΔE, for ZnO, MgO, 

KF, and CdSe GM (upper) and LM with a matching motif (lower) as a function of 

nanocluster size n (formula units). 

 The first ionisation potential (I) and electron affinities (A) 

for the GM clusters are shown in figure 15. Only KF clusters do 

not accept an additional electron. The electron affinity for MgO 

decreases with size, whereas it increases and plateaux for ZnO 

and CdSe. Continuing this trend would result in the 

qualitatively correct work function of the bulk material for 

these compounds. All trends also conform to our reported 

structural phase transition, in particular, from 2D to 3D. 

Comparing ZnO, CdSe and MgO, the ionisation potential of the 

bulk materials is highest for ZnO, a trend in the ionisation 

potential that is also seen for the nanoclusters. 

 
Figure 15. Ionisation potential and electron affinity for ZnO, MgO, KF, and CdSe 

as a function of nanocluster size n (formula units) for GM and LM with the 

chosen motif (see figure 14). 

 If the same structural motif is used for each cluster size, 

then, comparing data from different compounds, the trends seen 

in ∆E, I and A with respect to cluster size should be more 

similar. This certainly true for ∆E; LM in the curves now align 

and there are few crossovers and ∆E is only smaller for MgO 

compared to ZnO when n = 3 (see earlier discussions). For the I 

curves, ZnO and CdSe now follow the same pattern. However, 

there is a peak, not seen previously for any GM, at n = 9 for 

KF, the LM of which is 0.72 eV less stable than its GM. 

3.2 Global optimisation of atomic structures of (AB)n 

nanoclusters 

3.2.1 Searching DFT energy landscapes 

The most computationally expensive part of the energy 

landscape search is the DFT refinement of the candidate 

structures. Pure DFT calculations are normally performed on 

structures that are close to their ground state energy minimum 

and therefore only require a small refinement. A search on the 

DFT energy landscape will, however, require investigating 

structures that are far from a local minimum and, therefore, 

need many more iterations to converge, and indeed may be 

even problematic to converge the electronic structure for the 

initial atomic configuration. Hence, any avenue that may lead 

to a saving in computational effort is worth investigating. One 

popular way to stabilise and accelerate the electronic self-

consistent field (SCF) calculations, particularly in a solid-state 

context, is by using one-electron energy smearing, for example, 

with a Gaussian function. The default value of the smearing 

width used in FHI-aims is 0.01 eV, tuned on metallic systems.  

For this work, the Gaussian smearing width was increased to 

0.1 eV, and its effect on the SCF calculation on a zinc oxide 

dimer at varying interatomic distances was investigated. Figure 

16 shows the dependence of the number of SCF cycles required 

to converge single-point energy calculations with respect to the 

interatomic distance. It was found that using a value of 0.1 eV 

significantly reduced the number of SCF cycles needed to reach 

convergence. Even greater values of the Gaussian dispersion 

could be used but with a particular care as the resultant energy 

landscape may differ significantly from the true state of 

matters, i.e. that approached by DFT with zero smearing. In 

particular, it becomes possible to trap the optimisation process 

in artificially stabilised high-energy minima, or excited states 

with unusual atomic configurations, which are not of direct 

interest here. Alternatively, important low-energy minima can 

be missed with the too large fraction of the initial structures 

refined to the GM or a particular LM. 

 Typically, for larger sized clusters, geometry optimisations 

using this 0.1 eV Gaussian smearing width did not affect the 

resulting atomic configurations of the GM and low-lying LM. 

This value of the Gaussian smearing width was employed in the 

initial iterations of the DFT refinements, before a final 

structural relaxation with zero smearing. 

3.2.2 Interatomic potential based pre-screening 

Interatomic potential based pre-screening and a direct search of 

the DFT landscape was used to predict the structures of (ZnO)n 

and (MgO)n nanoclusters, with n = 4−12. With an increased 

number of possible local minima as the size of the cluster is 

increased, the initial EA population was increased from ten 

structures to sixteen at n = 8, and therefore more likely to span 

the energy landscape. 
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Figure 16. Number of SCF cycles to convergence for a ZnO dimer at a given inter-

atomic separation using the default value Gaussian smearing in FHI-aims of 0.01 

eV. Inset: The effect of increasing the Gaussian smearing to 0.1 eV.   

 Tables VI and VII give the averages for the number of EA 

iterations and number of DFT calculations required to find the 

lowest energy nanoclusters for ZnO with and without the use of 

pre-screening, respectively. The corresponding tables for MgO 

are Table VIII and IX. For ZnO and MgO the lowest energy 

minima were found within the first three EA iterations for all n 

considered, except for LM2 of (ZnO)12, which required five EA 

iterations. Without pre-screening, many more EA cycles were 

typically required; hundreds rather than tens of DFT 

calculations were performed. Comparing the tables of ZnO and 

MgO, it is clear that fewer EA cycles are needed to locate the 

MgO low-energy minima. 

Table VI. Average over three independent runs of EA iterations, NEAi, and 
number of DFT calculations, NDFT, to locate the lowest energy nanoclusters 
of ZnO when using pre-screening  

 GM LM2 LM3 
n m NEAi NDFT NEAi NDFT NEAi NDFT 
4 10 0 2 0 2 1 6 
5 10 0 5 0 5 2 12 
6 10 0 4 1 8 0 4 
7 10 0 6 0 6 1 11 
8 16 0 12 1 25 1 25 
9 16 0 14 1 28 0 14 

10 16 3 60 1 29 2 45 
11 16 1 29 2 44 1 29 
12 16 1 31 5 90 1 31 

Table VII. Average over three independent runs of EA iterations, NEAi, and 
number of DFT calculations, NDFT, to locate the lowest energy nanoclusters 
of ZnO without using pre-screening  

 GM LM2 LM3 
n m NEAi NDFT NEAi NDFT NEAi NDFT 
4 10 0 10 3 36 4 45 
5 10 2 28 14 132 3 46 
6 10 3 27 7 46 9 64 
7 10 5 54 3 46 3 40 
8 16 3 57 3 67 6 108 
9 16 8 136 17 278 15 231 

10 16 11 171 3 57 4 70 
11 16 6 82 9 84 9 84 
12 16 2 52 5 94 5 101 

 

Table VIII. Average over three independent runs of EA iterations, NEAi, and 
number of DFT calculations, NDFT, to locate the lowest energy nanoclusters 
of MgO when using pre-screening  

 GM LM2 LM3 
n m NEAi NDFT NEAi NDFT NEAi NDFT 
4 10 0 3 0 3 0 3 
5 10 0 4 1 9 0 4 
6 10 1 7 2 13 3 18 
7 10 2 22 0 7 0 7 
8 16 0 12 0 12 0 12 
9 16 0 13 0 13 2 41 

10 16 2 43 2 43 0 16 
11 16 1 30 0 15 2 30 
12 16 2 45 2 45 0 16 

 

Table IX. Average over three independent runs of EA iterations, NEAi, and 
number of DFT calculations, NDFT, to locate the lowest energy nanoclusters 
of MgO without using pre-screening  

 GM LM2 LM3 
n m NEAi NDFT NEAi NDFT NEAi NDFT 
4 10 1 11 1 11 0 6 
5 10 1 13 3 32 21 135 
6 10 1 15 1 17 4 46 
7 10 2 22 1 13 0 8 
8 16 3 59 1 21 1 31 
9 16 1 31 1 29 3 55 

10 16 7 70 6 56 5 64 
11 16 3 50 2 43 7 106 
12 16 2 34 5 74 5 74 

 

 Without prescreening, a smaller average number of EA 

iterations was required to locate the GM for (MgO)12 than 

expected; the same number of iterations as required with 

prescreening, just two. As the prescreening typically coalesce 

fragmented clusters, a greater number of DFT calculations are 

performed per iteration with prescreening and therefore 

suggests a direct search is more efficient for this particular 

example. This in fact is misleading as the average time for each 

DFT run is much longer when prescreening is not applied. The 

time required for each DFT calculation depends on the number 

of SCF steps and the number of times the analytical derivatives 

are calculated (Geometry Optimisation steps). For the (MgO)12 

example, the GM was found after an average of 20,593 SCF 

and 1,782 GO steps when prescreening employed, and a 

staggering 158,463 SCF and 7,478 GO steps without. Clearly 

the comparison of the average required DFT calls 

underestimates the performance difference between the two 

approaches. 

 The tabulated data provide direct evidence that using a pre-

screener is an effective way of reducing the computational load 

and increasing the efficiency of the EA. This efficiency is 

attributed to passing atomic configurations that are typically 

near stable (or metastable) local minima on the DFT energy 

landscape for DFT refinement. Moreover, this procedure 

removes the unphysical structures that take much 

computational effort to optimize using DFT. This conclusion of 

course relies on the suitability of the chosen interatomic 

potentials, which is considered below. 

 Another advantage the pre-screener has over a direct search 

on the DFT energy landscape is that pre-screening will coalesce 
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fragmented nanoclusters more readily. Fragmented nanoclusters 

are high on the energy landscape and therefore computing them 

is a waste of computational resources from the point of view of 

the result. The charge on atoms in the model using interatomic 

potentials is fixed (set by the user) and so oppositely charged 

fragments will be attracted to each other. However, using DFT 

the electrons can redistribute to ensure charge neutrality of each 

fragment, and therefore a fragmented cluster will often remain 

fragmented. Furthermore, dispersion interactions between 

fragments are poorly described by standard DFT. 

 Searches on the PBE landscape were also conducted for 

(MgO)n, which produced matching LM to those reported above 

for PBEsol as well as similar statistics in the success and 

efficiency of the searches. 

3.2.3 Effect of the interatomic potential on the search 

It is important that the DFT landscape is searched and that the 

pre-screening does not lead to missing important local minima. 

One possible way to limit the bias of the pre-screener is to 

restrict the number of line searches (relaxation steps) or reduce 

the required accuracy of the local optimiser. This typically will 

allow for the removal of any structure with very short 

interatomic distances that may cause DFT problems, but any 

computational cost saving in the pre-screening is negligible. 

Here, the effect of the accuracy of the chosen interatomic 

potentials (IP) on effectiveness of the pre-screening is 

investigated. In particular, the IP used for pre-screening MgO 

nanoclusters was used during the search for ZnO nanoclusters. 

This IP is less computationally complex (it does not have the 

multi-region Buckingham potential), but is still appropriate for 

modelling oxides with an additional benefit of exploiting ionic 

size similarity between Mg and Zn. No ZnO local minima were 

missed and, moreover, no discernible difference was found in 

the computational cost or the efficiency to locate all the local 

minima. It is important to note that the number of local minima 

on the IP and DFT landscapes will differ, but this can be either 

an advantage or a disadvantage of this approach. For example, 

unwanted higher DFT energy minima may not exist on the IP 

landscape and therefore easily avoided when implementing pre-

screening – see below. 

3.2.4 Energy landscape complexity 

In order to understand why the MgO LM were located quicker 

than the corresponding ZnO LM, differences between the 

energy landscapes of ZnO and MgO are investigated. The ease 

of finding a particular LM using a Lamarckian approach will 

depend on the catchment area of the LM. The catchment area is 

defined as the area of landscape from which the local 

optimisation routine will converge to the LM, and typically will 

be larger than the energy basin that the LM is contained within. 

An estimate of the relative size of these catchment areas is 

obtained by using the random quenching routines of KLMC 

(the accuracy of which will improve with the number of sample 

points). One hundred random configurations of ZnO and MgO 

were generated and subsequently refined at the DFT level. The 

frequency of finding the GM, LM2 and LM3 structures are 

summarised in Tables X and XI. 

 The probability of locating the three lowest energy minima 

for both systems rapidly drops to a few percent for cluster sizes 

n > 6. In fact, the number of sample points were generally not 

enough for generating the lowest energy ZnO structures for n > 

6; although the GM for n = 9 was found. This highlights the 

advantages of using an advanced methodology (such as an EA) 

for structure prediction, as most minima were located with 

fewer than a hundred calculations using EA for the direct 

search on the DFT energy landscape. 

 Better results were found for MgO; the random quench data 

suggests that the catchment areas for LMare larger than their 

corresponding ZnO LM, although the percentage of finding the 

lowest three energy structures for MgO is rather small (<10%) 

for n > 6. 

 Tables X and XI also show a high probability of locating 

higher energy structures for both ZnO and MgO – the majority 

of these structures contained peroxide units, i.e. have at least 

one oxygen-oxygen bond. These minima cannot form when 

using the pre-screener, as the charges on the oxygen anion is 

fixed to -2.0. As these higher energy structures are not wanted 

their removal during the pre-screening stage is extremely 

beneficial to the efficiency of the search. 

Table X.  From a hundred random configurations, the probabilities of 
locating each of the three lowest energy nanoclusters, GM, LM2 and LM3, 
and other local minima, LM, for ZnO.  

n GM LM2 LM3 LM Fail 
2 0.10 0.38 0.00 0.52 0.00 
3 0.11 0.00 0.00 0.89 0.00 
4 0.06 0.00 0.01 0.92 0.01 
5 0.05 0.00 0.00 0.94 0.01 
6 0.08 0.00 0.02 0.89 0.01 
7 0.00 0.00 0.00 1.00 0.00 
8 0.00 0.00 0.00 0.99 0.01 
9 0.01 0.00 0.00 0.99 0.00 

10 0.00 0.00 0.00 1.00 0.00 
11 0.00 0.00 0.00 0.99 0.01 
12 0.00 0.00 0.00 1.00 0.00 

 

Table XI. From a hundred random configurations, the probabilities of 
locating each of the three lowest energy nanoclusters, GM, LM2 and LM3, 
and other local minima, LM, for MgO.  

n GM LM2 LM3 LM Fail 
2 0.34 0.10 0.00 0.56 0.00 
3 0.52 0.00 0.00 0.48 0.00 
4 0.11 0.05 0.06 0.78 0.00 
5 0.20 0.01 0.01 0.78 0.00 
6 0.17 0.09 0.01 0.73 0.00 
7 0.02 0.02 0.03 0.91 0.02 
8 0.02 0.09 0.00 0.85 0.04 
9 0.00 0.00 0.02 0.94 0.00 

10 0.00 0.00 0.01 0.99 0.00 
11 0.02 0.00 0.00 0.96 0.02 
12 0.04 0.04 0.02 0.88 0.02 

4 Summary and conclusions 

The study here was performed using KLMC, a new 

computational tool for the automation of many tasks that 
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traditionally a user had to do by hand. A Lamarckian 

evolutionary algorithm incorporated into the global 

optimisation module of KLMC successfully located the DFT 

energy minima of nanoclusters of ZnO, MgO, KF, and CdSe. 

Calculated frequencies, and in particular the simulated infra red 

spectra, for the (KF)n and (CdSe)n GM (n = 1 to 12) are 

provided for future comparison with experimental data. After 

taking into account the affects of using different exchange-

correlation functionals, the predicted atomic structures agree 

with previous studies. 20-21, 37, 59-63 Importantly, LM found for 

(MgO)n match LM found from a previous search for B3LYP 

LM, from which a good match between simulated and 

experimental infra-red spectra was reported.61 KF nanoclusters 

were found to prefer cuboid cuts from the rock-salt phase and 

shared many structural motifs with MgO. As drum nanoclusters 

increased in size (number of atoms), a more rapid change and a 

greater difference between bond lengths within and connecting 

the larger rings was also found for these two compounds. 

Within rings the bond lengths decreased (as typically found for 

the average bond lengths for LM) and between they increased 

with cluster size. These changes were more pronounced for 

ZnO and correlates with a greater number of GM rings. For 

larger n, nanoclusters of ZnO and CdSe adopt similar bubble-

like structures, and a number of the structural motifs of (CdSe)n 

LM were not found for (ZnO)n nor found on the interatomic 

potential energy (IP) landscapes. The second energy differences 

contained significant minima at n = 4, 6 and 9, which correlates 

to stronger peaks found for these sizes in mass spectra of 

(MgO)n clusters.73 We do not expect as strong a correlation for 

the other compounds as the minima in their second energy 

differences were either smaller or nonexistence.  

 The differences between the HOMO and LUMO energies, 

∆E, for all the materials lie within the visible part of the UV 

spectrum region (at around 2-3 eV) apart from KF, which lies 

deep in the UV region. It was observed that ∆E does not 

uniformly follow the conventionally assumed trend of 

increasing with decreasing system size, as predicted by models 

of quantum confinement.60, 87 Only KF clusters do not accept an 

additional electron. The electron affinity for MgO decreases 

with size, whereas it increases and plateaux for ZnO and CdSe. 

Continuing this trend would result in the qualitatively correct 

work function of the bulk material for these compounds. 

 Both IP based pre-screening and Gaussian smearing of 

electronic energy levels were investigated as methods for 

optimising the use of computationally demanding ab initio 

calculations that are employed to assess the quality of trial 

structures during the search for atomic structures of 

nanoclusters. Gaussian smearing of 0.1 eV in the initial 

geometry refinement steps significantly reduced the number of 

SCF cycles and, when used in geometry optimisation, this value 

allowed for hundreds of DFT calculations to be performed on a 

routine basis. Pre-screening was shown to be dramatically more 

efficient, reducing the number of DFT calculations needed to 

find the local minima by more than an order of magnitude. 

Using a suitable functional form of the interatomic potentials, 

this approach is robust to small changes to the potential 

parameters. 

 Comparing the probabilities of finding the lower energy 

local minima for MgO and ZnO, the energy basins containing 

each of these minima are predicted to be larger for MgO. A 

comparison of the performance of the random quench and a 

Lamarckian evolutionary algorithm showed, as expected, that 

the latter required fewer DFT calculations to locate the local 

minima, and thus highlights the efficiency of global 

optimisation techniques such as an evolutionary algorithm. 

Further analysis showed that the majority of structures located 

with a random quench on the DFT energy landscape were 

peroxide structures. The formation of these structures is 

impossible with the pre-screening potentials used here, and 

therefore these structures are automatically avoided in any DFT 

refinements. 

 Traditionally, DFT energy minima were obtained by 

refining IP energy minima structures found from global 

optimisation. With the increase in the available computer 

power, there is a drive towards direct searches on DFT energy 

landscapes. This study has shown that a careful application of 

interatomic potential based pre-screening will lead to a 

successful and, in fact, a more efficient algorithm for searching 

the DFT energy landscape. Pre-screening is therefore 

recommended for future applications of structure prediction 

techniques. 
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